EVERY FUNCTIONALLY COMPLETE m-VALUED LOGIC HAS A POST-COMPLETE AXIOMATIZATION

NUEL D. BELNAP, Jr., and STORRS McCALL

Let ${\mathfrak M}$ be an m-valued functionally complete matrix with truth-values $1, 2, \ldots m$, and let D be the class of designated values and U the class of undesignated values of ${\mathfrak M}$. We shall assume that ${\mathfrak M}$ is Post-consistent, i.e. that U is not empty. Then the truth-functions definable using ${\mathfrak M}$ will include the functions Cpq, Np, and F_ip , $1 \le i \le m$, with the following properties, where ' $|\alpha|$ ' denotes the truth-value of α :

- (1) If, for all assignments of values to the variables of α and β , $|\alpha| \in D$ and $|C\alpha\beta| \in D$, then $|\beta| \in D$ for all similar assignments.
 - (2) For all values of p and q, $|CpCNpq| \in D$.
 - (3) For all values of the variables in α , if $|\alpha| \in U$ then $|N\alpha| \in D$.
- (4) The $F_i p$ are constant functions such that, for all values of p, $|F_1 p| = 1$, $|F_2 p| = 2, \ldots, |F_m p| = m$.

Consider now the deductive system M having as theses all \mathfrak{M} -tautologies, and having among its rules of inference the rule of substitution of wffs for proposition variables and the rule of $modus\ ponens$ for C in the sense that β is derivable from α and $C\alpha\beta$.\(^1\) We shall show that adding any non- \mathfrak{M} -tautology γ to M as a thesis makes M Post-inconsistent. Since γ is not an \mathfrak{M} -tautology, there will be an assignment of values to its variables such that $|\gamma| \in U$. Let γ' be the result of substituting appropriate constant functions $F_i p$ for the variables of γ so that γ' is itself a constant function and $|\gamma'| \in U$. We shall write ' $\vdash \alpha$ ' to denote that α is a thesis of M. Since $\vdash \gamma$, we obtain $\vdash \gamma'$ by substitution. Also, since $|\gamma'| \in U$, $|N\gamma'| \in D$, and hence $\vdash N\gamma'$. Using the appropriate substitution of $\vdash CpCNpq$ and two applications of the rule of $modus\ ponens$ we obtain $\vdash q$. Hence M plus $\vdash \gamma$ is Post-inconsistent, and M is Post-complete.

University of Pittsburgh Pittsburgh, Pennsylvania

^{1.} Note that M may or may not be finitely axiomatizable.