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RESULTS REGARDING THE AXIOMATIZATION
OF PARTIAL PROPOSITIONAL CALCULI

W. E. SINGLETARY

In §3, §5, and §6 the problems of determining whether or not partial
(partial implicational) propositional calculi may be axiomatized by one, n
or fewer,or finitely many axioms are shown to be unsolvable. In §4 the
split problem for partial (partial implicational) propositional calculi is
shown to be unsolvable. We show further that there is a problem of each of
these types of any recursively enumerable degree of unsolvability.*

§0. Introduction. The problem of reducing the number of axioms for a
calculus seemed to us to be basic. Its study led to the results of §3, §5 and
§6. The split problem for partial propositional calculi dealt with in §4 was
brought to our attention by Henry Hiz after the other work was completed.
He believes the formulation of the split problem to have originated with
Yukasiewicz.

In §2 we prove that there is a partial (partial implicational) calculus
with unsolvable decision problem. This result is known but the proof given
here differs rather radically from the existing proofs. The result is in-
cluded here because it was necessary to give a complete proof of it in
developing the machinery for the proofs of later results. The style of the
proof in §2 and in part of §3 is a parallel of Yntema’s [11] proof for a less
general system. The known unsolvability results for partial (partial
implicational) calculi are included in the references listed at the end of this
paper.

§1. Preliminary Definitions and Remarks. A pariial implicational proposi-
tional calculus is a system having O, [, ] and an infinite list of propositional
variables pi,q1,71,029272 ... as primitive symbols. Its well-formed
formulas are (1) a propositional variable standing alone, and (2) [A D B],
where A and B are well-formed formulas. Its axioms are a finite set of
tautologies and its two rules of inference are modus ponens and substitu-
tion.

*This research was supported by the Office of Naval Research Nonr(G)-0085-64.
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A partial propositional calculus is a system having as primitive
symbols all of the primitive symbols of a partial implicational proposi-
tional calculus and, in addition, the primitive symbol ~. Its well-formed
formulas are (1) a propositional variable standing alone, (2) ~A, where A is
a well-formed formula, and (3) [A D B], where A and B are well-formed
formulas. Its axioms are a finite set of tautologies and its two rules of
inference are modus ponens and substitution.

A set of tautologies involving only the symbols [, ],> and the proposi-
tional variables can be taken to completely specify either a partial implica-
tional propositional calculus or a partial propositional calculus. In the
following discussions all of our calculi are specified by such sets of
tautologies and our proofs are intended to be equally valid under either
interpretation. For this reason we shall refer simply to the calculus
specified by a certain set of tautologies. We shall say that a calculus P,
specified by a set of tautologies S, is axiomatizable by a set of tautologies
S' if and only if the calculus specified by the set S' has the same set of
theorems as does P. We shall henceforth write wif as an abbreviation for
well-formed formula.

In the sequel wifs are often abbreviated by the use of the heavy dot, =,
or by the omission of brackets or both. Wherever such abbreviations occur
the replacement of brackets is to be done in accordance with the conven-

e
tions of Church [2]. We shall also use the symbol S,ABI to denote the

result of replacing the propositional variable a by the wif A at each of its
occurrences in the wif B.

Wherever we give the argument which involves a given proof from a
calculus we shall assume that the given proof is so arranged that all uses
of substitution precede all uses of modus ponens and, furthermore, that the
substitutions have been made directly in the axioms. There is no loss of
generality in making this assumption.

A semi~Thue system T shall consist of a finite alphabet Z7 and a finite
set of word pairs Ur. The members of Ur are called defining relations.

Zr 121,22 + v, Zn_ _
Ur : UL —>U,U2—Usy o oo, Up Uy .

A word is a finite (possible empty) string of symbols of Zr, with possible
repetitions. We shall define W . X, where W and X are words on Zr, to
be the assertion that there exists a finite sequence of statements W, H X,
W2 b X2, . . ., Wy bk Xy such that W, is W and X, is X, and such that each
statement W; . X; is justified by one of the following rules.

1. W; is W;Y, X; is X;Y for some j, 1 < j < i and for some word Y on

Zr.

2. Wi is YW;, X; is YX;, for some j, 1 <j < i, and for some wovd Y on
Zr.

3. W is X;.

4. W; is Ujand X; is 17, for some j, 1 <j< m.

5. Wiis W;, X; is X, X; is Wy for some jand k, 1<j<i; 1<k <i.
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A less explicit summary of these rules is given as follows:

1. If W+ X, then WY + XY.

2. If W+ X, then YW + YX.

3. WrWw.

4. If W —X, then W + X.

5. f WrYand Y + X, then W+ X.
A

semi-Thue system T will be called a standard semi-Thue system if
(1) zr is {1,b}, and (2) no word in a defining relation of T is the empty
word.

§2. The existence of Calculi with Recursively Unsolvable Decision Prob-
lems. We shall establish the following results.

Result 1A. There exists a partial implicational propositional calculus with
a recursively unsolvable decision problem.

Result 1B. There exists a partial propositional calculus with a vecursively
unsolvable decision problem.

The proof of these results and subsequent results will be dependent
upon the following Lemma which is due to Boone [1].

Lemma 1. (Boone). There is a recursive constvuction M°® such that the
vesult of applying M° to any given vecursively enumevable set of natural
numbers S is a standavd semi-Thue system Ts having the property that the
decision problem for S is equivalent to the wovd problem for Ts.

With Lemma 1 assumed, the proof of Results 1A and 1B are immediate
from the following theorem.

Theorem 1. There is a vecursive constvuction M' such that the vesult of
applying M' to any standavd semi-Thue system T is a calculus Py and a
mapping fi of the non-empty worvds on {1,b} onto a recursive subset of the
wffs of Pr. Furthermove, f1is one-to-one, and if W1 and W2 are non-empty
words on {1,b}, then W1 . W2 if and only if b JUW1) 2 S(Wo).

We shall turn now to the task of establishing Theorem 1. Let T be a
standard semi-Thue system defined by

Up :U; = Uiy, 5=1,2,...,m.
If Wis a non-empty word on {l,b} then W* is the wif defined by

1*is pa D[ p2 Dps]
b* is p2 D[ p2 D[ p2 D pal]
(X1)* is [X* v 1%,

and
(XB)* is [X* v b¥],

where X is an arbitrary non-empty word on {l,b} and [A v B] is an abbre-
viation for [[A D B] D B]. If W is a non-empty word on {1,b}, then f,(W) is
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defined to be W* v k, where & is an abbreviation for the wif ps D[p2D [p2D
[p2D pal]ll. Now we specify the calculus Pr by the following set of
tautologies.

c([prvadvrdvr]D[[pav [gav 7i]] v A]
([prvgrv mllv 2] O[[[prv gi] v i) v 1]
. [pavh]2[guv h] Da [[prv 7l v BRI 2[[giv 1] v 1]
. [pavh]D[aav h] Pu [[rav pul v B] 272y au] v 4]
. [prvr]D[prv i)
CAU)D fulT), i=1,2, ..., m
. [prvR]2[giv k] On [[g1v Rl D[7riv Bl D[[prv k] 2[71v Rl

These wffs are intended to be, in some sense, the logical equivalents of
the rules of the semi-Thue system 7 and it may not be readily apparent
that this is the case. Actually, Axioms 1 and 2 have no counterparts in the
rules of T, but we account for them by the fact that the letters in a word on
{1,b} are not grouped as are the variables in a calculus. If one then con-
siders # as no more than some sort of spacer, he readily sees that
Axioms 3-T are rather faithful translations of the rules 1-5 of T.

-t

I O WU AW

A wff A of Pr is semi-vegular if (1) Ais 1*or A is b* or (2) A is of
the form A:v As where Ajand Azare semi-regular wffs.

A wif A of Py is regular if A is of the form B v k, where B is semi-
regular. One should note that p. is the only propositional variable occurring
in a regular wff.

If A v 2 is a regular wif of Pr, then <A v k> is the unique word on {l,b}
obtained from A v 2 by (1) abbreviating A so that it contains only [, ], v, 1*
and b*, (2) replacing all occurrences of 1* by 1 and b* by b, and (3) re-
moving all occurrences of [, ] and v.

Two regular wifs of Py, A and B, are associates if and only if <A> is
<B>.

Lemma 2. If A and B are associates, then + A D B and 1+ B D A.

The proof is by mathematical induction on the number 7 of occurrences
of 1* and b* in A.

Ifrn=1 A is fi(l)or A is fi(B). Hence <A> is 1 and <B> is 1 or
<A> is b and <B> is b. In either event A is B. Since [p1v k] D [p1vh]is
an axiom of Pr it follows by substitution that we have bor A D B and
by BDA.

If n>1, call the number of occurrences of 1* and b* in A the length of
A and let £¢4) be an abbreviation for length of A. Since A and B are associ-
ates of {4) = ). The induction hypothesis is that if Ci and Czare associ-
ates such that {(¢,) = {cp then K, Ci1D Ca.

Since 4y > 1 it follows that A is [A1v Az} v h and B is [By v Ba] v & for
some semi-regular wffs A1,A2 B; and B2. There are two cases to consider,
either fa;vh) = UBivh) OF LA vk # B vhy.

Assume first that a,vjk) = &Byvh). Then it follows that LAavp) =
UBavh), <A1 v B> must be the first Y4,vih) letters of <A>, <Biv k> must be
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the first £(8,vh) letters of <B>, and <Az v k> must be the last {(4,vh) letters
of <A>, <Bzv k> must be the last LB,vh) letters of <B>. From this and
the fact that <A> and <B> are identical we see that Aiv # and By v & are
associates and A, v & and Bz v 2 are associates. We complete the proof for
this case as follows.

[Al v h] D[B:iv k] by hyp. ind.
|T,T[[A1 v Azl v ] D[[Biv Az] v k] by Axiom 3.
i—pT[Az v ] D[Bz2v k] by hyp. ind.
|—PT[[B1 vAzlv k] D[[Biv Ba]v k] by Axiom 4.
|—,,T[[A1 v A2l v B] D[[B1v Ba] v ] by Axiom 7.

i.e., o A D B. Then, by symmetry, we also have For BoA.

Now assume that (4,va) # 4B,vk). Since we must prove the implication
in both directions there is no loss of generality in assuming that £4,v#)
LB,vhy +k Let[Anv A} v i be an associate of A; v 2 such that 44,,vh) =
U, vhy and La,vhy = k. Let [Bz1v Bz2] v B be an associate of Bav & such
that &gy vh) = & and L(gyy vh) = L(agvhy. Then <Anvh> is <Bivh>, <A v B>
is <Baiv k> and <Aav B> is <Ba2v I>. We complete the proof for this
case as follows:

I-pT[[Al v A2l vi] D[[[A1v Azz] v Az] v ] by previous case
o [[A11v Awz] v 2] D[[Biv Bzl v £] by previous case
[[[Au vAwlv Az v ] D[[[Biv B2l v A2 v 4] by Axiom 3
I—‘,T[Az v h] 2 [Bzz v h] by hyp. ind.
I—i)T[[[B]_ \ B21] \' Az] \'4 h] D[[[Bl v Bz]_] \' Bzz] v k] by AXiOI'ﬂ 4
'—PT[[[B" v le] v Bzz] v h] D[[Bl v [Bz1 v Bzz]] v h] by Axiom 1
For [[Biv [Ba1v Ba2]] v k] D[[Biv Ba] v &] by previous case
n—pT[[Al v Azl v h]D[[Biv Ba] v k] by Axiom 7

i.e., oy ADB.

We also have:

‘—PT [[B], \ Bz] v h] D[[Bl v [Bz1 \ Bzz]] v h] by previous case
tpp[[Bar v Baa] v 2] D[[Arav A v ] by previous case
r— [[B1 v [Baiv Bza]] v k] D[[Biv [A1zav A3]] v I] by Axiom 4
|—p [31 vh]D[Auv k] by hyp. ind.
l'i, [[B1 v [A12V Az]] v h] 3[[A11 v [A12V A ]] v h] by Axiom 3
‘—p [[Au v [A12 v Az]] v h] D[[[Au v A12] v Az] v h] by Axiom 2
’—P [[[AuvAwz]vAslv R]D[[ALv A2) v K] by previous case
Wy [[Brv Bal v ] D[[A1v A2] v £] by Axiom 7

i.e ;— BDA.

*y

Lemma 3 For mnon-empty words W and X on {1 b} if W b X, then
pp J1(W) D filX).

If » =1, wither W is X or W — X is a defining relation of 7. In either
case fl(W)Dfl(X) by Axiom 5 or Axiom 6.

Suppose n>1. Let Wik Xu, oo oy, Wyoy bp Xty W Xbe a proof in
T, then by the induction hypothesxs we have i, HW)DfiX ) fori =1,
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2,...,n-1. If WF Xis justified by rule 3 or rule 4, then h, fi(W)>

f1X) by Axiom 5 or Axiom 6 respectively. If W b X is justified by rule 1,

then Fpr1(W) Dfi(X) by Axiom 3 and Lemma 2. If W k. X is justified by

rule 2, then h, fi(W)DfuX) by Axiom 4 and Lemma 2. If W b X is

justified by rule 5, then + fi(W)Dfi(X) by Axiom 7 and modus ponens.
The following definition is crucial in the proof of Theorem 1.

If A is a wif of Py, then A is valid if and only if A is of the form
A1 DAz A is not of the form B;v Bzand (1) A, is regular, A is regular
and <A> . <A:> or (2) A: is not regular, A: is not regular and, if A, is
valid, then A:is valid.

In the following proposition we single out certain simple properties of
wifs which will be used rather extensively in the remainder of the paper.

Proposition 1. No wff of any one of the following forms may be abbreviated
in the form B, v Bz, wheve B, and B, ave wffs.

Form a. [A,v H] D[Azv H]
Form b. [A1V H] D[sz H] D. [A3 VH] D[A4 \4 H]
Form €. [Ayv H]D[Azv H] o [[Aav H]D[Asv H]]D[[A1v H]D [Asv H]].

For the proof for Form a we simply recall that [B,v Bz} is an ab-
breviation for [B, DB,] DBz and hence, if [A;v H] D[A2v H] were of this
form, then B; would necessarily be identified with H and also with Az v H,
which is impossible. The proof for Form b follows from the result for
Form a, since in this case B; would necessarily be identified with Aav H
and also with [As v H] D [A4 v H]. The proof for Form ¢ follows from the
result for Form b, since in this case B, would necessarily be identified
with A2 v Hand also with [[A2v H] D[As v H]] D[[A:v H] D[As v H]].

Lemma 4. Evevy theorem of Pris of Form a, b or ¢ of Proposition 1,
wheve H is a substitution instance of h.

First we note that substitution instances of Axioms 1, 2, 5 and 6 are of
Form a, substitution instances of Axioms 3 and 4 are of Form b, and
substitution instances of Axiom 7 are of Form c¢. Then from Proposition 1
it follows that Forms b and ¢ can never serve as the minor premise in a
use of modus ponens where a formula of Form a, b or ¢ is the major
premise. Likewise we see that a formula of Form a can never serve as
minor premise in a use of modus ponens where another formula of Form a
is the major premise. If a formula of Form a is the minor premise and a
formula of Form b or ¢ is the major premise in a use of modus ponens,
then the resulting theorem is in Form a or b respectively. The proof of
Lemma 4 is now complete if we take into account our assumption on the
arrangement of proofs in the calculus.

Lemma 5. If A is a vegular wff of Pr and if B is a wff distinct from pa,

then SI;ZAI is not vegular and is not valid.

Sl;z | is distinct from % and hence SI;ZA| is not of the form Biv k
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and, therefore, cannot be regular. On the other hand, S,[;gAl is of the form
B v Bz and hence is not valid.

Lemma 6. All substitution instances of the axioms ave valid.

For the proof we shall consider the axioms individually. From
Proposition 1 and Lemma 4 it follows that no substitution instance of an
axiom is of the form A v B. Let P,  and R be the wifs substituted for p,,
q,, and 7, respectively, and let H be the substitution instance of % in each
case.

Axiom 1. [[[Pv Q]v R]v H]D[[Pv [Q v R]] v H].

If [[PvQ]lvR]vH is regular, then P, @ and R are all semi-regular
and H is h. Hence [Pv [@ v R]] v H is also regular. And since <[[Pv @] v
R]vH> is <[Pv[QvR]]v H> we also have <[[PvQ]vR]vH>H
<[Pv[VvR]vH> Dby rule 3 of T. If [[Pv@Q]vR]vH is not regular,
either P, @ or R is not semi-regular or H is not . In any event
[Pv[Q v R]lvH is not regular, and [P v [Q v R]] v H is not valid since it
is of the form A v B. In either case [[[Pv @] v R]vH]D[[P v [Q v R]] v H]
is valid.

Axiom 2. [[Pv[Q v R]lv H]D[[[PvQ]vR]vH]
The proof here is similar to the proof for Axiom 1.
Axiom 3. [PvH]D[QvH]>g[[PvR]vH]D[[Q Vv R]vH]

By Proposition 1 [P v H] D [Q v H] cannot be regular and [[P v R] v
H] D [[@ v R] v H] cannot be regular. We shall assume, therefore, that
[Pv H]D[Q v H] is valid and show that [[Pv R] v H] > [[@ v R] v H] must
also be valid.

Case 1. Assume that [Pv H] is regular, [@ v H] is regular and
<RvH>H <Q vH>. If Rv H is also regular, then P, @ and R are all
semi-regular and H is k. It follows that [[P v R] v H] and [[Q v R] v H] are
also regular. With <P v H> - <@ v H> we also have <[P v R]v H> Fr
[Q v R] v H>by rule 1 for T. If R v H is not regular it follows that R is not
semi-regular and hence neither [Pv R]v H nor [@ v R] v H is regular.
Then, since [Pv R]v H cannot be valid, we see that in either event
[[Pv R]v H]D[[Q v R] v H] is valid.

Case 2. Assume that P v H is not regular and @ v H is not regular.
Then either H is not % or neither P nor @ is semi-regular. In either event
neither [P v Q] v H nor [@ v R] v H is regular, and, since [P v R] v Hcan-
not be valid, we see that [[P v R] v H] o [[Q v R] v H]is valid.

Axiom 4. [Pv H]D[QvH]Dg[[RvP]vH]D[[RvQ]vH]L
The proof here is similar to that for Axiom 3.
Axiom 5. [P v H]D [P v H].
If Pv H is regular, then Pv His regular and <P v H> k. <P v H>by
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rule 3 of T. If [P v H] is not regular, then [P v H] is not regular and P v H
cannot be valid. In either event [P v H] D [P v H] is valid.

axiom 6. §f7 11w > §7 1@
If A is p2 then Si“ AU is f1(U;) and 72 AT is f(T;). Now

A
f1(U;) and f1(T;) are both regular and <f1(U;)> +. <fi(U;)> by rule 4 for 7.

If A is not ps it follows from Lemma 5 that neither S’&z S1U;)| nor
! — |

Sizfx(UiH is regular and S&z f(U)] is not valid. In either event
I Y —_—

Siz FiU) > Siz £1(T;)| is valid.

Axiom 7. [Pv H]D[Q v H]|Dg4l[@ v HI D[R v H]] D[[P v H] D[R v H]].

From proposition 1 it follows that neither [P v H] D [Q v H] nor
[[@ vH]>[Rv H]I>[[Pv H]> [Rv H]] can be regular. Hence it suffices
to show that if the former is valid then the latter is also valid. Again from
Proposition 1 we see that neither [@ v H{ D [Rv H] nor[Pv H] D [R v H]
can be regular. Therefore, in order to show that [[@ v H] D [R v H]] D
[[Pv H] > [Rv H]] is valid it is only necessary to show that if [@ v H] D
[R v H] is valid, then [P v H] D [Rv H] is valid. Hence we shall assume
that [Pv H] D [@ v H] and [@ v H] D [R v H] are both valid and show that
[Pv H] D[R v H] must then be valid also.

Case 1. Assume Pv H is regular. Then since [Pv H]D[Q v H] is
valid, @ v H is regular and <P v H> k. <Q v H>. But then, since [@ v H] D
[Rv H] is also valid, Rv H is regular and <@ v H> . <R v H>. Now
PvH and Rv H are both regular so we need only show that <P v H>
<Rv H>, but this follows from <Pv H> bk, <Q@vH> and <Q v H> b
<R v H>by rule 5 for T.

Case 2. Assume P v H is not regular. Then, since [Pv H] D [@ v H]
is assumed to be valid, @ v H is not regular. But then, since [Q v H] D
[R v H] is assumed to be valid, Rv H is not regular. Then, since Pv H
cannot be valid, we see that [P v H] D [R v H] is valid.

Lemma 7. If Ay and Az ave wffs of Pr such that A, is valid and A,D Az is
valid, then Az is valid.

A; is not regular for if it were it would be of the form B v H and hence
not valid. The result then follows from the fact that A; D A is valid.

Lemma 8. If A and B ave vegular wffs of Pr and l—PTA D B, then
<A> . <B>.

By Lemma 6 all substitution instances of the Axioms are valid. By
Lemma 7 modus ponens preserves validity. Hence A DO B is valid. Then
since A is regular we have <A> k. <B> from the definition of validity.

Lemma 9. Wi b Wz if and only if #—PTf1(W1) D fi(Wa).

This is merely a restatement of Lemmas 3 and 8.
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§3. Recursive Unsolvability of the Problem of Detevmining Whether or not
an Avbitvary Calculus is Axiomatizable by a Single Axiom. We shall
establish the following results.

Result 2A. For each vecurvsively enumevable degrvee of unsolvability D
theve exists a class of partial implicational propositional calculi Cp such
that the problem to determine of an avbitvarvy member P of Cp whether or
not P is axiomatizable by a single axiom is of degree D.

Result 2B. For each vecursively enumerable degree of unsolvability D
theve exists a class of partial propositional calculi Cp such that the
problem to determine of an arbitvary member P of Cp whether ov not P is
axiomatizable by a single axiom is of degree D.

These results are immediate from Lemmal and the following theorem.

Theorem 2. Theve is a vecursive construction M® such that the vesult of
applying M® to any standard semi-Thue system T is a vecursive class of
calculi Cy and a mapping fr of the pairs of non-empty wovds on {I,b} onto
Cr. Furthermove, fris one-to-one, and if W, and W, are non-empty words
on {1,b}, then W, b Waif and only if fr(Wi, W) is axiomatizable by a single
axiom.

We turn now to the task of establishing Theorem 2. In order to fascili-
tate this task we find it convenient to introduce several new notions here.

A recursive (possibly empty) set of tautologies S is said to be sterile
if (1) no substitution instance of a wif of S is a substitution instance of any
other wff of S, and (2) no substitution instance of a wff of S is a substitution
instance of the antecedent of any wif of S.

Lemma 10. The minimum number of axioms mnecessary to axiomatize a
calculus P(S) specified by a sterile set of tautologies S is the cardinality
of S.

From condition (2) of the definition of a sterile set it follows that
modus ponens is vacuous in P(S). Then from condition (1) we see that any
set of axioms for P(S) must contain at least one substitution instance of
each wif of S.

A wff A is said to be completely untrue with respect to a calculus P if
no substitution instance of A is a theorem of P.

A set Sof tautologies is said to be completely independent of a calculus
P if (1) the set S is sterile, (2) every wff of S is completely untrue with
respect to P, (3) the antecedent of every wif of S is completely untrue with
respect to P, and (4) the antecedent of every theorem of P is completely
untrue with respect to the calculus specified by S. One should note that
every subset of a completely independent set is completely independent.

Lemma 11, If P is a calculus and S is a set of tautologies completely
independent of P, then the minimum number of axioms necessary to
axtomatize the system vesulting from the addition of the wffs of Sto the
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axioms of P is equal to the wminimum number of axioms necessary to
axiomatize P plus the cardinality of S.

From properties (1) and (2) of the definition of a completely inde-
pendent set it follows that no theorem of P is a theorem of the calculus
specified by S and vice versa. Properties (3) and (4) guarantee that there
is no modus ponens interaction between the theorems of P and the theorems
of the calculus specified by S. Therefore any set of axioms sufficient to
axiomatize the enriched system must contain mutually independent sets of
axioms for P and for the calculus specified by S. The result then follows
from Lemma 10.

We shall use the symbol ¥ as an abbreviation for the wff

(222 @] D71 D[22 p1] D[g2D pul.

Iukasiewicz [8] has shown that % is sufficient to axiomatize the complete
implicational propositional calculus.

Let T be a standard semi-Thue system and construct Prfrom T as in
the proof of Theorem 1. For each pair of non-empty words Wi, W2 on {l,b}
we shall designate fr(Wi,W,) to be the system resulting from the addition of
[ /(W) D fi(W2)] D & to the axioms of Pr. The class Cy will then consist
of all systems of this form. We complete the proof of Theorem 2 by showing
that fr(Wy, W2) is axiomatizable by a single axiom if and only if Wi b Wa.

Lemma 12, If W1 b Wa, then f1(W1,W2) is axiomatizable by a single axiom.

From Lemma 3 and Wi b W2 we have oy S1(W1) D fL(Wz). Hence
Fi(W) D fi(Ws) is a theorem of fr(Wi,W2) and by definition [ fu(W.) D
f1(W2)] D L is also a theorem of fr(W1,Wz). Hence by modus ponens L is a
theorem of fr(Wy,W2). It follows that f7(Wy,W2) is axiomatizable by any set
of axioms sufficient to axiomatize the complete implicational calculus.
Specifically, L is sufficient to axiomatize fr(Wiy,Ws).

Lemmas 13 through 20 lead to a proof of the contrapositive of the
converse of Lemma 12. Lemmas 13, 14, 18 and 19 are the necessary steps
in establishing the complete independence of [fi(W1) D fi(W2)] D L with
respect to P if it is not the case that k—PTfl(Wl) D fu(Ws).

Lemma 13. For arbitrary non-empty words on {1,b}, Wi and Wa, the wff
[ f1(W) D f1(W2)] D L is a sterile set.

Suppose some substitution instance of [ fi(Wi) D fi(Wz2)] D . were a
substitution instance of fi(W;) D fi(W2). Then some substitution instance of
JuW1) D f1(W2) would necessarily be a substitution instance of fi(Wi). Re-
calling that fi(W,) is of the form Aiv % and that fi(W2) is of the form Azv &
we readily see from Proposition 1 that this is impossible. Hence
[f1(W1) 3f1(W2)] DO L is a sterile set.

Lemma 14. For arbitvary non-empty words W, and Wz on {1,b} the wff
[ f1(W1) D fi(W2)] D L. is completely untrue with vespect to Pr.

For the proof we shall show that no substitution instance of
[fi(W1) D fi(W2)] D L is of the form a, b or ¢ of Proposition 1, and hence
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by Lemma 4 it follows that no substitution instance of [ fi(W1) D fu(Wa)] DL
is a theorem of Pr. We shall consider the forms separately.

Form a. If some substitution instance of [ fi(W.) D fi(W2)] D L. were of the
form [A,v H] D [Az2v H], then some substitution instance of [ fi(W;) D
f1(W2)] would necessarily be of the form A;v H. This is impossible by
Proposition 1.

Form b. Suppose some substitution instance of [ £,(W1) D fi(W2)] D L were
of the form [A1v H] D [A2v H] Dg [As v H] D [A4 v H]. Recalling that % is
an abbreviation for [[p: D qi] D71] Dm [#1 D p1] D [g2 D p1] we see that some
substitution instance of [#1 D pi] D [g2D p1] must then be identified with
Asv H. But then, since A4 v His an abbreviation for [As D H] D H, H must
be identified with the substitution instance of p; and also with the substitu-
tion instance of g2 D p;. This is clearly impossible.

Form c. Suppose some substitution instance of [ fi(W,) D fi(Wz)] D L were
of the form [A vH] D [A2vH] Dg [[A2vH] D [AsvH]] D [[A1v H] D [4s v H].
Then some substitution instance of L is of the form [[Azv H] D [Asv H]] D
[[Aiv H] D [As v H]]. Hence, from the first occurrence of p, in L, the
substitution instance of p, must be identified with A2 O H. While, from the
second occurrence of p1 in %, the substitution instance of 1 must be
identified with H. Clearly these conditions are incompatible.

Lemmas 15 through 18 below constitute a proof that fi(W.) D fu(W2) is
completely untrue with respect to Py if it is not the case that r—PT Su(Wy) D
SfiuWz). In order to establish this result we first introduce two new
definitions.

A wiff B of P is S-regulav if and only if there is a regular wff B;, and
awif A such that Bis §* Bil.

Recalling that p2 is the only variable occurring in a regular wff and the
fact that every regular wif is of the form C v &, one easily sees that if B is

?,
S-regular, then there is a unique B; and a unique A such that B is SAZ Bil.

A wif B of Pr is S-valid if and only if B is of the form B; D Bz, B is not
of the form A v Az and (1) there are regular wffs C; and Cz: and a wff A

. 12 . 2
such that B; is SAZ Cil, Bz is SAZ C:l, and tpp C12 Cs, or (2) Bu is not
S-regular, Bzis not S-regular, and if B, is S-valid, then Bz is S-valid.
Lemma 15. All substitution instances of the axioms of Pr ave S-valid.

For the proof we shall again consider the axioms individually. Let P,
@ and R be the substitution instances of pi, g1, and 7, respectively, and let
Hbe the substitution instance of %.

Axiom 1. [[[Pv@Q]v R]vH]|D[[Pv[QvR]vH].

We shall consider two cases. For the first case assume that [[Pv @] v
R]v H is S-regular. Then there is a wff A and a regular wff C, such that
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[PvelvRlvE is §2cil. Thus ¢i is [Cuv Cia v Cu]v hfor some
semi-regular wffs Cy, Ci2 and Ci3. Hence [Pv [@ v R]] v H is Siz [Cuv

[Cizv Cis]] v k]|, and [C1y v [Ciz v Cis]] v k is regular. Then since <[[Ciu v
Ci2) v Cislv k> is <[Cuv [Ciav Cis]lv B>, we have bop [[[Ciiv Ciz] v
Cis]v h] D[[Ciav [Cizv Cis]] v k] by Lemma 2. For the second case as-
sume that [[Pv @] v R] v H is not S-regular. Then [Pv [@ v R]] v H is not
S-regular, for if it were [[P v @] v R] v H would be also by an argument
similar to the one given above. Since [[Pv Q]v R]v His of the form
Aiv Az it is not S-valid. Hence in either case[[[Pv Q]v R]vH]D[[Pv
[@ v R]] v H] is S-valid.

Axiom 2. [[Pv[@ v R]]v HID[[[PvQ]v R]v H]
The proof here is similar to the proof for Axiom 1.
Axiom 3. [PvH]D[QvH]>g[[PvR]lvHID[QvR]vH].

From Proposition 1 we see that neither [P v H] D [@ v H]nor [[P v R] v
H] > [[Q v R] v H] can be S-regular. Therefore it is sufficient to assume
that the former is S-valid and to prove under this assumption that the latter
must be also. We consider two cases.

|
Casel. PvH is S’ff Cil and @ v H is S‘p: Cz| where C; and C; are

both regular and +, C1D C2. Then C; is of the form Cuv 2 and Cz is of
the form Ca1 v & where Ciu1 and Caz; are both semi-regular. We shall con-
sider two subcases.

Case la. R is S‘p: Ri| where R,is semi-regular. Then[P v R] v H is
I . P,
Sliz [CuvRi]vhland[Q v R]vHIs sz [Caiv Ri] v k|l where [Cuiv Ri] v &

and [Caiv Ri] v k are regular. By assumption we have e C1D Cy, i.e.,
. [Cuiv R] D[Ca1v k). Hence from Axiom 3, substitution and modus
ponens we obtain ;| [[Cirv Ri] vR]D[[Cav Ri]vE]. And we see that the
result holds in this case.

Case 1b. There is no semi-regular wif R; such that R is S,Zz Ril. Then

neither [Pv R]v H nor [@ v R} v H is S-regular and, since [Pv R]v H
cannot be S-valid, the result holds in this case.

Case 2. Neither P v H nor @ v H is S-regular. Then neither [P v R] v
H nor [@ v R]v H is S-regular, and, since [P v R] v H cannot be S-valid,
the result follows.

Axiom 4. [Pv H]D[QvH]Dg[[Rv PlvH]D[[RvQ]vH]
The proof here is similar to that for Axiom 3.

Axiom 5. [Pv H|D [P v H].
The proof here is immediate.

axiom 6. §P2 110 S 1.
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Both fi(U;) and f(U;) are regular and k. f1(U;) > £1(U;) by Axiom 6.
Hence S!:ffl(U,»)l > Sizfl(ﬁ,-) is S-valid for every wif A.
Axiom 7. [PvH]D[Q@ vH]Dg[[@ vH]D[Rv H]]D[[Pv H]D[Rv H]].

From Proposition 1 it follows that neither the antecedent nor the
consequent is S-regular. Since we also have from Proposition 1 that
neither [@ v H] D [Rv H] nor [P v H] D [R v H] is S-regular it is sufficient
to prove that if [Pv H] D [Q v H] and [@ v H] D [R v H] are both S-valid,
then [P v H] D [R v H]is S-valid. We consider two cases.

|

Casel. If Pv H is S:f Pyv k| for some semi-regular wff P, and
some wff A, then, since [P v H]D [@ v H] is assumed to be S-valid, @ v H

|
is S‘iz Qv k| for some semi-regular wif @ and . [P1v k] D [Q.v &)
But then, since [@ v H] D [Rv H] is S-valid, Rv H is Sff Ryv k| for some

semi-regular wif Riand ' [Qiv 2] D[Riv h]. Hence by Axiom 7, sub-
stitution, and modus ponens we obtain t, [P1v k] O [R1v k], and it follows
that [P v H] O [R v H] is S-valid.

Case 2. If Pv H is not S-regular, then, since [Pv H]|D[Q v H] is
assumed to be S-valid, @ v H is not S-regular. But then, since [@ v H] D
[R v H] is assumed to be S-valid, it follows that R v H is not S-regular.
Hence neither Pv H nor Rv H is S-regular and since P v H cannot be
S-valid it follows that [P v H] D [R v H] is S-valid.

Lemma 16. If A is S-valid and A D B is S-valid, then B is S-valid.

Since A is S-valid it cannot be S-regular. Hence from the fact that
A D B is S-valid it follows that B is S-valid.

Lemma 17. All theorems of Pr are S-valid.

By Lemma 15 all substitution instances of the axioms are S-valid and
by Lemma 16 modus ponens preserves S-validity. The conclusion follows
from our assumption on the form of the proofs.

Lemma 18. If it is not the case that Wi b Wa then fi(Wi) D fu(Wa2) is
completely untvue with respect to Pr.

12
We shall prove the contrapositive. Suppose smzfl(Wl)D Filwa)l

for some wiff A. Then from Lemma 16 and the fact that fi(W,) and fi(W2)
are regular we have by JuWy) D f1(W,). Hence from Lemma 9 we also
have W, +, Wa. This establishes the result.

Lemma 19. For arbitvary non-empty wovds Wy and Wz on {1,b} no substitu-
tion instance of [ folWi)D fuW2)] D L is a substitution instance of the
antecedent of a theovem of Pr.

For the proof we shall consider the forms of the theorems as given in
Lemma 4. We consider these separately.
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Form a. [Aiv H]| D [Azv H]. If [ /oA(W1) D fu(W2)] D& had a substitution
instance of the form A,v H, then some substitution instance of L would
necessarily be a substitution instance of % but one easily sees that this is
impossible.

Form b. [Aiv H| D [A2v H| Dg [Asv H] D [As v H]. Note that the ante-
cedent of this form is of Form a. Then the result follows from Lemma 14,

Form c. [Ayv H] D [Aav H] Dg[[A2v H] D [Asv H]] D [[ALv H] D [As v H]].
The proof here is siiilar to that for Form b.

Lemma 20. If it is not the case that Wi - W, then [ fi(W1) D fi(W2)] O L
is completely independent of Pr.

This follows from Lemmas 13, 14, 18 and 19 and the fact that modus
ponens is vacuous in the calculus specified by [ fi(W1)D fu(W2)] D L.

Lemma 21. If it is not the case that W, b W, then at least two axioms
are vequired to axiomatize fr(Wi,Wa).

This is immediate from Lemmas 11 and 20.

Lemma 22. f (W1, W2) is axiomatizable by a single axiom if and only if
Wy . Wa,

This is a restatement of Lemmas 12 and 21.

§4. Recursive Unsolvability of the Split Problem for Propositional Calculi.
A calculus P is said to allow a split if P is axiomatizable by a set of
tautologies S and the set S can be divided into two non-empty sets S; and S,
such that every theorem of P is a theorem of the calculus specified by S, or
of the calculus specified by Sz and the calculi specified by S: and Sz have no
theorem in common. We shall establish the following results.

Result 3A. For each vecursively enumerable degree of umnsolvability D
there exists a class of partial implicational propositional calculi Cp such
that the problem to determine of an arbitrary member P of Cp whether or
not P allows a split is of degree D.

Result 3B. For each recursively enumevable degree of unsolvability D
theve exists a class of partial propositional calculi Cp such that the
problem to determine of an arbitrary member P ov Cp whether or not P
allows a split is of degree D,

These results are immediate from Lemma 1, the proof of Theorem 2
and the following theorem.

Theorem 3. Consider a class of calculi Cr constructed from a semi-Thue
system T as in the proof of Theovem 2. An arbitrary member P(W1,W3) of
Cr allows a split if and only if P(Wi,W2) is not axiomatizable by a single
axiom.

We turn now to the relatively easy task of establishing Theorem 3.
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Lemma 23. If a calculus P is axiomatizable by a single axiom A, then P
allows no split.

For the proof assume there is a calculus P axiomatizable by a single
axiom A which allows a split. Let P, and P; be the two calculi resulting
from the split of P. Then A is a theorem of either P; or P,. Without loss
of generality assume A is a theorem of P,. Then all of the theorems of P
are theorems of P; and this is clearly a contradiction.

Lemma 24. Let P(W,,W2) be a calculus of Cr which is not axiomatizable by
a single axiom. Then P(W,W2) allows a split.

From Lemma 12 we have that it is not the case that Wi 5 Wa. Then
from Lemma 20 it follows that [ £i(W1) D fi(W2)] O L is completely inde-
pendent of Pr. Clearly Pr and the calculus specified by the single axiom
[ f1(W1) D fu(W2)] D L constitute a split of P(Wy, Wa).

§5. Recursive Unsolvability of the Problem of Detevmining Whether oy not
an Arvbitvary Calculus is Axiomatizable by n or Fewer Axioms. We shall
establish the following results.

Result 4A. For each vecursively enumevable degree of unsolvability D and
each natuval number n theve exists a class of partial implicational proposi-
tional calculi Cp,, such that the problem to detevrmine of an arbitvary
member P of Cp,, whether ov not P is axiomatizably by n or fewer axioms
is of degree D.

Result 4B. For each recuvsively enumevable degree of unsolvability D and
each natuval number n theve exists a class of partial propositional calculi
Cp,n Such that the problem to detevmine of an arbitvary member P of Cp,,
whether ov not P is axiomatizable by n ov fewer axioms is of degree D.

These results are immediate from Lemma1l and the following theorem.

Theorem 4. There is a vecuvsive constvuction M® such that the result of
applying M® to any standavd semi-Thue system T and any natuval number n
is a recursive class of calculi Cr,nand a mapping f1,» of the paivs of non-
empty words on {,b} onto Cr,n. Furthevmove, fr,, is one-to-one, and for
non-empty wovds Wi and Wz on {l,b} Wi b Waif and only if fr,.(W1,Wa) is
axiomatizable by n ov fewer axioms.

We turn now to the task of establishing Theorem 4. With each natural
number n we recursively associate a wff L, as follows. L, isp2D [pgD
[p2D [p2D [p2 D p2llll and Luws is p2 D La.

Note that no substitution instance of L;is a substitution instance of L;
for ¢ # j, and that no substitution instance of L;, for any natural number 7,
can be abbreviated in the form A v B. For each natural number # let K,, be
the class of wifs of the form L;j O Lj for 1< j< n. Let K, be the class of
formulas of the form L; D L; for 1sj< . Now let T be an arbitrary
standard semi-Thue system and construct Prfrom 7. We shall prove that
if W1 and W are arbitrary non-empty words on {1,b} and it is not the case
that Wy &, W, then L, is completely independent of fr(Wi,W2).
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Lemma 25. The class of wffs K, is stevrile.

From the fact that no substitution instance of L; is a substitution
instance of L; for ¢ # j we see that no substitution instance of a wif of K., is
a substitution instance of any other. Now all members of K, are of the
form A D A while the antecedents of these wffs are all of the form L;.
From the fact that no substitution instance of a wif of the form A D A can
be a substitution instance of a wff of the form L; we see that no substitution
instance of a wff of K, is a substitution instance of the antecedent of a wff
of K.

Lemma 26. If it is not the case that Wi & Wa, then every wff of the class
K, is completely untrue with rvespect to fr(Wy,Wa).

By Lemma 20 [ fi(W.) D fi(W2)] DL is completely independent of Prin
this case and it follows that the theorems of fr(W,Wz)are the theorems of
Py and substitution instances of [ fu(Wi)D fi(Wz)] D L. It is sufficient,
therefore, to prove that the class K, is completely untrue with respect to
P; and that no substitution instance of a member of K, is a substitution
instance of [ fi(W1) D fi(Wz)] DL. Now every wif of K,, and every substitu-
tion instance of such a formula is of the form A D A. If we consider the
forms the theorems of Py may take as given in Lemma 4, we see that only
theorems of Form a or b could be of the form A O A. But the antecedent of
every wff of Form a contains more symbols than the consequent of the
antecedent and this is untrue with respect to every substitution instance of
a wff of K.. Also the antecedent of the consequent of the antecedent of
every wff of Form b contains more symbols than the consequent of the
consequent of the antecedent and this is untrue with respect to every
substitution instance of a wff of K,. Therefore every wff of K, is com-
pletely untrue with respect to Pr.

If some substitution instance of [fi(W1) D f1(W2)] DL were a substitu-
tion instance of a wff of K, it follows from the form of the L, and the form
of L that the wff identified with [p1 D g1]> 71 in the substitution instance of
¥, would also have to be identified with 71 D p,in this substitution instance
of L, but this is impossible.

Lemma 27. Ifit is not the case that Wy b W2, then the antecedent of every
wff of K., is completely untvue with respect to fr(Wi,Wz).

As in the proof of Theorem 4 we use the fact that here in the theorems
of f1(W,,W2) are the theorems of Pr and substitution instances of [ fy W) D
fi(Wz)] DL. We shall first show that the antecedent of every wff of K, is
completely untrue with respect to Pr. For this purpose we shall consider
the forms the theorems of Pr may take as given in Lemma 4. We consider
the forms separately.

Forma. [Aiv H]D [A2v H].

Recall that every wff of K, has an antecedent of the form L; for some
j. The antecedent of the consequent of every wif of Form a contains more
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symbols than the consequent of the consequent, but this is untrue with
respect to every substitution instance of a wif of the form L;.

Formb. [A1v H]| D [A2v H] D g[Asv H] D [As v H]. The antecedent of the
consequent of the consequent of every wif of Form b contains more
symbols than does the consequent of the consequent of the consequent, but
this is untrue with respect to every substitution instance of a wff of the
form L;.

Formc. [Aiv H] D[A2v H| Dgl[A2v H] D [As v H]] D [[ALv H] D [As v H]].
The antecedent of the consequent of the consequent of the consequent of
every wif of Form a contains more symbols than does the consequent of the
consequent of the consequent of the consequent, but this is untrue with re-
spect to every substitution instance of a wff of the form Lj.

Now suppose some substitution instance of [ fi(W,) D f1i(W2)] O L were
a substitution instance of a wff of the form L;. Then from the form of L; it
follows that in the substitution instance of [ fi(W1) D fi(W2)] D L the substi-
tution instance of [p1D gi] D #: would necessarily be identical to the
substitution instance of [, D p], but this is impossible.

Lemma 28. If it is not the case that W1 . W, then no substitution instance
of the antecedent of a theorem of fr(Wy,Wa2) is a substitution instance of a

wff of K.

Again recall the fact that the theorems of fr(W.,W2) are the theorems
of Pr and substitution instances of [ fi(W1) D fi(W2)] DL in this case. That
the result holds for wffs of Form a of Lemma 4 follows from the fact that
the antecedent of the antecedent of every wif of Form a contains more
symbols than the consequent of the antecedent while every substitution
instance of a wff of K, is of the form AD A. For all wffs of Form b or ¢
of Lemma 4 and all substitution instances of [ fi(W1) D fi(W2)] D L it is the
case that the antecedent of the consequent of the antecedent contains
more symbols than the consequent of the consequent of the antecedent but
for every substitution instance of a wif of K. the antecedent of the conse-
quent contains fewer symbols than the consequent of the consequent.

Lemma 29. If it is not the case that W1 b Wa, then the class Ky is com-
pletely independent of fr(W.y,We).

This is immediate from Lemmas 25, 26, 27 and 28 and the fact that
modus ponens is vacuous in a calculus specified by a sterile class of wifs.

Now let T be an arbitrary standard semi-Thue system and let # be any
natural number. If #» is 1 and Wiand W3z are arbitrary non-empty words on
{1,8}, then J1.o(Wy,W2) is fr(Wy,Was). Ifn> 1 and W, and Wzare arbitrary
non-empty words on {1,b} then fr,,(Wi,W2) is to be the calculus resulting
from the addition of K,-, to the axioms of f7(Wi,W2). In any case the class
Cr,,» shall consist of all calculi of the form fr,,(Wy, W).

Lemma 30. If Wi b Wi, then fr,.(Wy,Wa2) is axiomatizable by a single
axiom.

This follows from Lemma 12,
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Lemma 31. If it is not the case that Wy . We, then fr,,(W1,W2) is axioma-
tizable by no fewer than n + 1 axioms.

This follows from Lemma 29, the fact that every subset of a completely
independent class is completely independent, Lemma 11 and Lemma 21.

Lemma 32. fr,,(Wi,W2) is axiomatizable by n or fewer axioms if and only if
Wi & Wa,

This is immediate from Lemmas 30 and 31.

§6. Recursive Unsolvability of the Problem to Determine Whether ov not an
Avbitrary Infinite Calculus is Axiomatizable by a Finite Set of Axioms. We
now relax the condition that the axioms of a partial (partial implicational)
propositional calculus be a finite set of tautologies and require only that the
set be recursive. If the set of axioms is infinite we then call the system an
infinite pavtial (partial implicational) propositional calculus. We shall
establish the following results.

Result 5A. For each recursively enumevable degvee of unsolvability D
there exists a class of infinite partial implicational propositional calculi
Cp,.. such that the problem to determine of an arbitvary membev P of Cp, .,
whether or not P is finitely axiomatizable is of degree D.

Result 5B. For each recursively enumevable degree of unsolvability D
there exists a class of infinite partial propositional calculi Cp,. Such that
the problem to determine of an arbitvary member P of Cp,. whether ov not
P is finitely axiomatizable is of degree D.

These results are immediate from Lemma 1 and the following theorem.

Theorem 5. Theve is a recursive procedure M* such that the vesult of ap-
plying M* to any standavd semi-Thue system T is a vecursive class of
infinite calculi Cr,, and a mapping fr,. of the paivs of non-empty words on
{1,b} onto Cr,. Furthermorve, fr,. is one~to-one, and for non-empty wovds
Wy and Wz on {1,b}, Wi'ty Wa if and only if fr,o(Wy,W2) is finitely
axiomatizable.

Let T be a standard semi-Thue system. If W; and W:zare arbitrary
non-empty words on {l,b} let fr,0(Wi,W2) be the infinite calculus resulting
from the addition of the class K to the axioms of fr (Wi, Wa2).

Lemma 33. If Wi & Wa, then fr,,(Wiy,W2) is axiomatizable by a single
axiom.

This follows from Lemma 12,

Lemma 34. If it is not the case that Wi k. W, then fr,,(Wi,W2) is not
finitely axiomatizable.

This follows from Lemmas 29, 11 and 21.
Lemma 35. fr, (W1, Wa) is finitely axiomatizable if and only if W1 ‘= Woa.

This is immediate from Lemmas 33 and 34.
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