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A THEOREM ON RECURSIVELY ENUMERABLE
VECTOR SPACES

RICHARD GUHL

This paper* is based on [1] and [2], but since we study only r.e. spaces,
we prefer an exposition which is almost self-contained. Let F be a
countable field for which there is a one-to-one mapping ¢ from F onto a
recursive subset of € = (0, 1, . ..) such that: ¢(0g) =0, ¢(1p) = 1, +pand .p
correspond to partial recursive functions, ¢(F) = (0, . . ., ¢ - 1), ifcard(F) =
q and ¢(F) = ¢, if card(F) = 8,. We write % for the vector space over F
which consists of all sequences of field elements with at most finitely many
nonzero components, together with component-wise addition and scalar
multiplication. Put

W afe}= Tl p,#n- 1, tor fe e,

where p, = 2, p, = the »’th odd prime, £ any number such that x, = O, for
n > k. Then & maps %onto a vector space _ﬁF = [&p, +, -], where &g is an
infinite recursive set and + and - are partial recursive functions. Note that
the ordinary number 0 is also the zero element of _(7,:. Set e, =p,- 1,
n=1(ey, €, ...), then n is an infinite recursive basis of -[71:', hence
dim (Ug) = R,. The word ‘‘space’ will be used in the sense of ‘‘subspace of
Tr”. A space V=|[a, +, -] is called 7.e., if the set a is r.e., vecursive, if
V is r.e. and has at least one r.e. complementary space, decidable, if a is a
recursive set, i.e., if both @ and € - @ are r.e.

The purpose of this paper is to examine the relationship between (I) V
is a recursive space, and (II) V is a decidable space. We shall prove;

(a) #f F is finite, (I) < (11),
(b) if F is infinite, (I) => (II), but not conversely.

A linearly independent subset of &g is called a repere. According to
[1], p. 2, there is an effective procedure which enables us to decide for any

*This paper was written under Dr. J. C. E. Dekker.
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finite subset o of £ whether ¢ is a repére. It follows ([1], p. 3) that a space
is r.e. if and only if it has a r.e. basis. If B is a r.e. basis of the r.e. space
V we can (cf.[1], p. 5), given any x € V, test whether ¥ ¢ 8; moreover, if x # 0
and x ¢ E, we can effectively express x as a linear combination of elements
in B, i.e., find the nonzero elements #,, . . ., 7p € F and the distinct elements
bo, .« . ., b € B such that

(2) x=7byg+ ...+ 7rbg.

For a subset S of Ur we write L(S) for the span of S. A repere B is perfect,
if for xe€ ¢ep,

(3) xe L(B)=>xelL{yeeplyeBand y <x}

A basis of a space V is a perfect basis of V, if it is also a perfect repére.
One can prove ([2], Prop. B) that every space V has exactly one perfect
basis, say my, and that V is a decidable space if and only if 7, is a
recursive set. If f(n) is a function from ¢ into €, we write pf for the range
of f(n). Let V and W be spaces; then W< V means that Wis a subspace of
Vand W< V that W is a proper subspace of V.

Proposition A Every recursive space is decidable.

Proof: LetV be a recursive space with W as a r.e. complementary space.
Suppose that B, 9 are r.e. bases of V W respectively. An element X ¢ &g
belongs to V, if either (i) x= 0, or (ii) » # 0 and relative to the r.e. basis
BUD of UF all coordinates of x with respect to elements in 3 are zero.

Thus V is a decidable space.

Proposition B If the field F is finite, a r.e. space V is vecursive if and
only if it is decidable.

Proof: Let V be a decidable space. Since every finite dimensional space is
r.e., every r.e. space of finite codimension is recursive. We may therefore
assume that codim(V) = R,. Put

gy Co=(m0)lreer&x+0&x/V], _
Cpy1 = (ux)[xe €r & x{L(Co, . .oy Cn) &V N L(Coy « ooy Cpy x) = (0)]’

then V @ L(pc) = Ur. The number c, can be computed from (the recursive
characteristic function of) V. Assume that ¢y, . . ., ¢, have been computed
and that VN t{cy, . . ., ¢,) = (0). Then we can for every x e £ test whether

(i) x£L(coy ..., Cn), i.e., whether x£(co, . .., Cp) and (cq, . . ., Cp, X) is a
repere, B
(ii) in case (i) holds, whether V N L(cg, . . ., ¢y, %) = (0).

Note that (i) can be tested whether F is finite or infinite. However, in (ii)
we use the fact that F is finite. For if card(F) = ¢, we can for every
x¢ L(cy, . . ., c,) compute the ¢""* elements of L(c,, . . ., Cs, %) and deter-
mine whether any belongs to V. Hence the function c, defined by (4) is
recursive and so is the space V.

Proposition C If V is a vecursive space and p € €, then V + L(p) is also a
recuvsive Space.
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Proof: We only need to show that
(6) V recursive & p£V =V @& L(p) recursive.

Assume the hypothesis. Let B be a r.e. basis of V, 3 a r.e. basis of some
r.e. complementary space of V and 6 =8U0. Let p=7ydy +. ..+ Vndy,
where 7o, . . ., 7, € F - (0) and dy, . . ., d, are distinct elements of 5. Since
b V at least one of d,, . . ., d, belongs to 9; we may assume w.l.g. that
dyed. Define o* =[2 - (dy)] U (p), then L(3%) is also a r.e. complementary
space of V. It follows that B U (p) is a r.e. basis of V @ L(p), while 3 - (dy)
is a r.e. basis of the r.e. complementary space L[d - (dy)] of V. Thus
V @ L(p) is a recursive space.

Corollary The sum of a recursive space and a finite dimensional space is
again a recursive space.

We say that the element x ¢ F can be computed, if we can compute ¢(x).
Similarly, a function f(n) from ¢ into F is vecursive, if the function ¢f(»)
from € into € is recursive. These definitions become superfluous if one
identifies F with a subset of €, but it remains important to distinguish the
field operations of F, the vector space operations of —ﬁp, and ordinary
addition and multiplication in €. If x > 0 we write x~ for x - 1; thus e, = p5,
for nee. Finally, for ve F we abbreviate the number 29" by i(»). The
next proposition plays the key »ole in our paper.

Proposition D For every infinite field F and every one-to-one vecursive
function s, vanging over a subset of (py, ps, . . .), theve is a vecursive
functionm(n) from ¢ into F such that

(7)) D=L[m0) ey +s5, m(l) e +s7,...]
is a decidable space.

Proof: Let the one-to-one recursive function s, be given. Define for every
function m(n) from € into F,

(8) Bn‘_‘ L[m(o)’eo*"s(;, LEEIES) m(")'eo"‘ S;L
(9) gy = min[Dg - (0)], ¢y = min[D,ir - D).

If we can define a recursive function m(z) such that the function g, is
strictly increasing and recursive, we are done. For then (go, . . ., ¢,) is
the perfect basis of D,, hence pg the perfect basis of D; moreover, pg is a
recursive set, hence D a decidable space. First of all, for every recursive
function m(#), the function g, defined by (8) and (9) is recursive. For if

ay=[m(0)-e,+s5]+...+[mn) ey +s,],
then a, is a recursive function such that
ao,€D, - (0) and a,,, € Dyyy = D
Also,

qo = (1y Sao)[yfb-&“ (0)]_,_
Gnin = (py < @ys) [ Y €Dy - D,,].
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Since we know a finite basis for each of 50, D,, .. .and given any finite
repére f3, we can for every x € £ test whether x € L(B), it follows that g, is a
recursive function. All that remains is the definition of a recursive
function m(n) from ¢ into F such that the function ¢(n) is strictly in-
creasing. We put m(0) = 1. Assume as inductive hypothesis that field
elements m(0), . . ., m(n) have been defined such that ¢, <. ..<g(n). As
observed above, ¢o, . . ., g, can be computed from m(0), . . ., m(n), hence ¢,
is known. We now examine how m(n + 1) and g,., should be related in order
that

(10) Tpi1 = min[ﬁnﬂ - Bn] > Gy,
An element x ¢ D,,, - D, looks like
[tom(0) - eq + to-55] + . o . + [ty m(n + 1) - eg + by - S50,

where fy, . . ., lyu € F and #,,; # 0. Thus, by (1),

n+1

(11) =x= [h ("i tim(i)> 1:! si¢(‘i)] ,

where the summation sign refers to addition in F and the product sign to
ordinary multiplication in €. Replacing m(n + 1) by v, we can rewrite (11)
as

n+1

(12) =x= [h<f_) tim(i) +g by v) g si¢'(ti)] .

The expression between the brackets in (12) will be abbreviated by A,.
Hence x¥ = A,. Note that A, is a function of (¢, . . .,%,1), fOr every ve F.
We wish to choose v = m(n + 1) in such a way that for all (%,, . . ., t..),

(13) (o) + . oy tp) €F" 2 & 1, #0=>4,>q(n) + 1.

For a specific ordered (n + 2)-tuple satisfying the hypothesis of (13), each
of the following two conditions will guarantee that the conclusions of (13) be
true:

(14) ;%) > g(n) + 1, for somei<n + 1,
(15) h[zo t;m(i) +g t,mv] > q(n) + 1.

We call an ordered (n + 2)-tuple (%, . . ., f,yy) With £, # 0, bad, if it does
not satisfy (14); let B denote the set of all bad (z + 2)-tuples. If B is empty,
A, > q(n) + 1, for every v, hence ¥ > g(n) for every choice of m(%n + 1); then
we define m(n + 1) = 1z. From now on we assume that B is nonempty. B is
finite, since for every i< = + 1, there are only finitely many elements ¢;;,
such that $;%%) < g(#) + 1. Let card(B) = w + 1, then w can be computed and
B can be effectively generated in a finite sequence By, . . ., B,. With every
u < w we wish to associate a field element 7() such that for allve F,

(16) ¢(v) > ¢r(u)=> A, > q(n) + 1.
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Such an element #(u) exists, for if we put
n
a= Z{Z tzm(l), b= tn+1 ’
i=

then a and b are constants (depending on %) and A, is of the form k[a ¢p bv],
a one-to-one function of v. From a and b we can compute the set

6,={veF|nla Ep bv] < g(n) + 1},

i.e., find out whether it is empty and determine its elements and cardinality
if it is nonempty. Put

Of, if 5, is empty,
(17 r(u) =
v, if 5, is nonempty and ¢(v) = max ¢(5,).

It follows that (@ and b being defined in terms of «, i.e., in terms of 8,), we
have for allve F,

(V) > or(u) =>v ¢6, =hla + bv] > q(n) + 1.
The set (#(0), . . ., 7(w)) of field elements can be computed from B, hence
from m(0), . . ., m(n). Thus the element ¢ ¢ F such that

¢(c) = 1 + max(¢7(0), . . ., ¢7(w))

can be computed. Then we have for all v e F,
w
o(v) = ¢(c) = v ¥ l.g o, =hla +r bv] > qn) + 1,
U=

and this holds for every B,e B. Thus ka +r bc] > q(n) + 1 and (12) will be
true if we take v = ¢. We therefore define m(n + 1) = ¢. Then all elements
of D,.1 - D, exceed g(n) by (11); in particular, g,,, > ¢,. This completes the
proof.

Proposition E For every infinite field F theve is a decidable, but not
vecursive space.

Proof: Suppose S, is a one-to-one recursive function ranging over a subset
of (p1, P, - . '); Let m(n) be a recursive function from ¢ into F such that
the r.e. space D defined by (7) is decidable. Then ey¢ D and

(18) D @ L(ey = Lleg, S5, ST, . . ).

In fact, (e, Sg, ST, ...) is the perfect basis of D @ L(¢,). We now choose
S, in such a way that the r.e. set ps is not recursive; then the perfect basis
of D ® L(e,) is not recursive, hence D ® L(e,) is not decidable. If, however,
D were a recursive space, D ® L(e,) would be recursive by (b) and
decidable by Proposition A. We conclude that the space D is not recursive.

Remark. This proof implies that for every infinite field F there is a r.e.
space V and an element p € £ such that

(19) V decidable & pe V & V @ L(p) not decidable,

in striking contrast with (b).
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