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INVOLUTION AS A BASIS FOR PROPOSITIONAL CALCULI

M. B. SMYTH

Given two sets of propositions, S; and S,;, we may say that the relation
of involution holds between S; and S;—or simply that S, involves S,—provided
that, if all elements of S, are true, then at least one element of S, is true.
The notion was introduced by Carnap [3], and treated at length by Kneale
[7]. According to these authors it may profitably be taken, in place of
entailment (of which it is a generalization), as the primary object of study
in logic. In developing its properties, they treat it solely as a metalogical
relation between sets of propositions in an involution-free system; nested
involutions do not occur. It is interesting to enquire what happens if, on the
model of existing implicational calculi, involution is treated rather as a
primitive operator within a system. This has been done by Duthie [4]. His
enquiry is, however, somewhat restricted in scope, being concerned almost
exclusively with the question of avoiding the (so-called) paradoxes of
implication. Apart from this, the nearest approach to an involutional
calculus appears to be the ‘deduction-logic’ of Lorenzen [11] (also
Kutschera [9]). This is formulated in terms of a primitive operator —, on
the left of which may appear a variable number of arguments; the
consequent, however, is restricted to have exactly one formula.

In the present paper an attempt is made to develop a less restricted
theory. It is shown that, by varying the inference rules, purely involutional
calculi may be constructed that are substantially equivalent to the classical
and intuitionistic propositional calculi, and to the modal systems T, S4, S5.
Some of the applications are discussed in the final section.

1 The formalism and its intevpretation. The basic vocabulary shall
consist of:

i) A denumerable set £ of proposition letters (or atomic formulas).

ii) A logical constant, denoted by ‘—’.

iii) Auxiliary symbols: comma, parentheses. Further auxiliary symbols,
used for special purposes: the star *, and the ‘signs’ T, F.

The set of formulas is defined inductively by:

Received September 12, 1971



570 M. B. SMYTH

i) Every proposition letter is a formula (specifically, an atomic formula).
ii) If L and M are (possibly empty) lists of formulas, then (L — M) isa
formula.

The formula-occurrences in a list (in case there are two or more) are
assumed to be separated by commas. Outermost parentheses of formulas
will usually be omitted. In certain contexts, the formulas defined so far
are called unstarrved formulas. Then we add: If X is an unstarred formula,
X* is a starved formula.

In certain contexts, the formulas defined so far (whether starred or
not) are called unsigned formulas. Then we add: If X is an unsigned
formula, TX and FX are signed formulas.

We define the components of a signed formula A as follows: If A is

Xy .. wXw— Yy, ... Y, the components of A are FX,, ..., FX,, TY,,
o TYy if A is FX,, .. ., X, — Y, ..., Yy, the components of A are
Xy, ... TXy, FY,, ..., FY,. The device of starring comes from Acker-

mann [1], by way of Hacking [6]. The technique of signed formulas is due to
Smullyan [14].

A comparison of the present system with standard logical systems will
be undertaken later in this section, and for this purpose we require
classical, modal, and intuitionistic formulas, built up by means of a, v, ~
(classical negation), O (necessity operator), 7(intuitionistic negation), and
D (intuitionistic implication) from # in the usual way. Also, it will be
technically convenient to allow mixed formulas containing, say, — as well
as classical connectives. To avoid confusion, formulas as originally
defined (having — as the only connective) may be called involutional
formulas, or simply involutions. Only involutional formulas can be starred
or signed.

The interpretation of the formalism will be in terms of a Kripke-style
modelling. Let H be a set (the set of universes) having a distinguished
element G,, R a reflexive relation defined on H, ¢: P x H— {T, F} a
mapping which assigns a truth-value to each proposition letter for each
universe. Then the quadruple (G, H, R, ¢ is called a T-model. Suppose
that a T-model satisfies, in addition, one of the following four conditions:

C (for ‘classical’): G, is the only element of H;

S4: R is transitive;

I (for ‘intuitionistic’): R is transitive; and for all G, G' such that GRG', and
all pe P, if ¢(p, G) = T then ¢(p, G') = T;

S5: R is transitive and symmetric.

Then the model will be called, respectively, a C-, $S4-, |-, or S5-model.
(In the case of C-models most of the apparatus is, of course, dispensible,
but it is convenient to retain it for the sake of a unified treatment.)

We adopt the convention (Fitting [5]) that, when ‘G’ refers to a
universe, ‘G* is a variable which ranges over those universes G' such that
GRG'. Given a model (G,, H, R, ¢, the relation G FX (read ‘G realizes X’),
for arbitrary unstarred formula X and universe Ge H, is defined inductively
by (the appropriate selection from) the rules:
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GEX, wheve X is atomic, iff (X, G) =T
GE~Xiff GEX
GEXAYiffGEXand GEY
GEXVYiffGEXor GEY

GFEOX iff G*EX for all G*

G E X iff, for all G*, G*¢£X

GFE X D Y iff, for all G*, G*¥X or G¥EY
GEXy, .., Xn— Yy, ... Y, iff, for every G*: G*¥¢X; for some i (1 <
i <sm) ov G* EY; for some j (1 <j <n)
GETXiff GEX

GEFX iff GEX.

Stated in terms of components, the rules for signed involutional formulas
are:

G realizes TX iff, for every G*, G* realizes some component of TX
G vealizes FX iff, for some G*, G* realizes every component of FX.

Thus, in the terminology of Smullyan [15], an involution signed with T is a
V-special 38, while an involution signed with F is a 3-special a.

A formula X is said to be frue in (G,, H, R, ¢) iff G, = X; logically true
provided it is true in every model (of the appropriate kind). Validity will
be defined for sequents I'-A (where I', A may be conceived as either sets
or lists of formulas). A sequent I'+A, then, is valid in the sense of C, I,
T, S4 or S5 iff, for every model (G, H, R, ¢) of the appropriate kind, and
every G¥: if every unstarred element of I' is realized by G, and every
formula X such that X*¢ T" is realized by G¥, then some unstarred element
of A is realized by G, or some formula Y such that Y*eA is realized by Gg.
It should be pointed out that starred formulas are used only in connection
with 7. When no starred formulas are present, the definition of validity
reduces to the usual one.

We now consider a method of translation which assigns to each
classical (propositional) formula, each modal formula of the form 00X, and
each intuitionistic formula of the form 17X or X D Y, a logically equivalent
finite set of involutions. The method may be described, somewhat
imprecisely, as follows:

For a classical formula @, first reduce to conjunctive normal form
CiaCyn. ... To each conjunct C;, assign an involution L — M such that L
(resp. M) is a list of all the proposition letters which occur negated (resp.
unnegated) in C;. The resulting set of involutions is the involutional
transform of Q.

For modal and intuitionistic formulas we proceed inductively. If @ is
atomic, the involutional transform of @ is {Q}. Let, then, 0Q be a modal
formula such that the involutional transform has already been defined for
all formulas of the form OX properly contained in 0 Q. Let 0X,,0X,, ...
be the maximal occurrences of this form in @ (i.e., 0X,, 0X,, .. ., do not
lie within the scope of any modal operator in ). Replace each OX; (i =
1,2, ...) by the conjunction of the elements of its involutional transform.
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@ is thus replaced by an expression @' which is built up from involutional
formulas by means of A, v, and ~. Treating the (maximal) involutional
formulas occurring in @' as atoms, apply the reduction already described
for classical propositional formulas. This yields a set of involutions,
which is taken as the involutional transform of 0OQ. Example: the
transform of O(~0OP = O~0OP), ie., O(~~OPvO~0OP) A (~O~OPv
~0OP), is {~(=P), (—P)—); (—P), (—P)—)-}.

Finally, let X be an intuitionistic formula of the form 1P or P D @, and
suppose that the involutional transform has already been defined for all
proper subformulas of X having either of these forms. Begin by replacing
every such formula (-occurrence) in X by the conjunction of the elements
of its involutional transform. If the result is 1P’, this is replaced in turn
by P'—; if P' D Q', by P'— @'. We now have an expression P' — Q"' (Q"'
empty, or Q"' = Q') where P', @' are built up from involutions by means of
A and v. It is easily seen that the following transformations:

L — M, ArB, M, =>L — M,, A, My; L — M,, B, M,
L—M,AvB, My =L — M, A, B, M,
Ly, AnB,L,—M =>L,,A, B, L, — M
L,AvB,Ly—~ M =L,,A,Ly— M; Ly, B, Ly, = M

in each of which a formula having a specified occurrence of A or v is
replaced by (at most two) formulas not having that occurrence—enable us
to reduce P'— Q' to a set of involutions. This set is taken as the
involutional tvansform of X. Example: 1(Pv@) O (1P A1Q) reduces to

{(P-), (@) — (P-); (P-), (@) — (@—)}.

Clearly, these instructions may be converted into a precise algorithm,
yielding a unique result. Moreover, a trivial verification establishes the
following result:

If S is the involutional transform of a formula X, then, for any model u
(of the appropriate kind), X is true in y iff evevy element of S is true in .

It is perhaps worth remarking that a more comprehensive translation
is possible for some of the standard systems. For example, intuition-
istically, a disjunction Pv@v ... is logically equivalent to —P, @, ...
(This depends on the fact that, in an I-model, a formula X is realized by a
universe G iff X is realized by all G*.) By making use of this equivalence,
one can extend the translation to all intuitionistic formulas. Again, by
utilizing certain modal equivalences one can extend the translation of
modal formulas in $4 and S5 (though not to a complete translation).

For logical truth/validity a complete (and natural) reduction is
possible even for the modal calculi. As to logical truth, we need only point
out that a formula X is logically true iff X is logically true. For validity,
the proof is almost as straightforward: Let a modal sequent I'-A be
given. Begin by replacing each maximal formula-occurrence of the form
00X by the conjunction of the elements of its involutional transform. Then
apply Gentzen-like rules to ‘reduce’ the sequent to a set of sequents in
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which no truth-functional connectives occur—and which must, therefore, be
purely involutional sequents.

2 Axiomatics. In this section we set up involutional calculi corresponding
to the classical and intuitionistic propositional calculi, T, S4 and S5, and
establish their correctness and completeness. The methods used are
mainly due to Kripke, Hintikka, Smullyan, and Fitting,

‘Formula’ is now understood to mean ‘involutional formula’. A
formula of the form TX, where X is non-atomic (and may be starred) is
called a T-involution; F-involution is defined similarly. The involutional
calculi take the form of deductive systems for proving the inconsistency of
sets of signed formulas. In the statement of the rules, S is an (arbitrary)
finite set of signed formulas, X an unsigned formula, D a signed formula, 4
a T-involution, and B an F-involution. To simplify the notation one writes,
e.g., ‘S, A’ instead of ‘SU{A}. For Cin (‘classical’ involution) the rules
are:

o) {1x, Fx}
W (Weakening) S
& S, D
S, Ay ... 5,A
T-intr = l,S e >~" where A,, . . ., A, are the components of A.
. S, By, ... Ba . .
F-intr s B where each B;(i =1, .. .,n) is a component of B.

That is, a set S’ is considered as derivable in C;,, iff it is either of the
form {TX, FX} or can be constructed from sets of this form by a series of
applications of the transformations W, T-intr, F-intr.

Next, we must state the modifications needed for the modal and
intuitionistic systems. In modal contexts, a sirict formula is a formula
that contains at least one occurrence of —. For S4;,,, then, the system is
changed in just one respect: in the rule F-intr, S is restricted to contain
only T-involutions. The system l;,, is like S$4;,, except that now, in the
statement of F-intr, S may contain any formulas signed with T (and only such
formulas).

In S5;,y, we have O, W and T-intr as in Ciny. F-intr is now subject to the
restriction: either every member of S is strict, or every B; is strict (or
both). We add the special rule:

S, A% S, A%; .. .S, A,
S, A

T-intrgs

where Aj, . . ., A, are the strict components of A, and A° is the formula
obtained by omitting all strict components from A (that is, if Ais TL — M,
then A° is TL° — M°, where L°, M° are the lists obtained by omitting all
strict formulas from L, M).

In T;,, formulas may be starred. We have the rule of star-
introduction:
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Star-intr where no element of S is starred.

S
{D*|De S}
O, W and T-intr are as for C;,,, and in addition we have the following starred
version of T-intr:

S, A¥; . . .; S, A

T-intr* S A " where Ay, ..., A,are the components of A.

F-intr is replaced by:

S, B¥, ..., B}
T sB where each B; is a component of B, and

no element of S is starred.

F-intr*

This completes the statement of the rules for T;,,.

A set S of signed formulas is said to be safisfied by the model
(Go, H, R, ¢y iff there is some G, such that: every unstarred element of S
is realized by Gy, and every formula D such that D*¢ S is realized by G¥.
We will show that, relative to the appropriate class of models, each of the
systems just described is correct and complete w.r.t. unsatisfiability of
(finite) sets of signed formulas.

There is a natural correspondence between finite sets of signed
formulas and sequents of unsigned formulas (which is (1,1) if the two parts
of a sequent are regarded as sefs of formulas). Namely, the sequent I' A
corresponds to the set {TX|XeT'}U{FX|XeA}. The sequent is valid iff the
corresponding set of signed formulas is unsatisfiable. Hence the results in
the present section immediately yield similar results for sequents.

Lemma In each of the involutional systems: in any application of an
infervence vule (excluding OQ), if the conclusion is satisfiable, then at least
one premise is satisfiable.

Proof: For W this is trivial. For T-intr, in any of its versions, it follows
immediately from the definitions that any model which satisfies the
conclusion satisfies at least one premise. This holds also for F-intr in C,y
and for F-intr* (in T;,,). Consider, then, an application of F-inir in S4,,,
such that the conclusion S, B is satisfied by the model (G,, H, R, ¢). Since
G, realizes B, there is some G¥ which realizes all the components of B,
including B,, ..., B,. Since each element of S is realized by G, and S
contains only T-involutions, each element of S is also realized at G.
Hence by taking G, as the new distinguished universe, and restricting (in
the obvious sense) H, R and ¢ to the R-successors of G we obtain a model
satisfying S, By, . . ., B,. The proof for liny is similar. Finally, consider
an application of F-intr in S5;,,, under the same conditions. If all formulas
of S are strict, we obtain a model satisfying the premise S, B,, . . ., B, by
the same construction as in $4;,,. Suppose, instead, that B,, . . ., B, are all
strict. Since G, realizes B, there is some G¥ which realizes B,, . .., B,.
Since the latter formulas are strict, it follows by familiar properties of
S5-models that G, realizes By, ..., B,. Hence the model (G, H, R, ¢,
assumed to satisfy S, B, also satisfies S, By, . . ., B,.
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Theorem 1 Each of the involutional systems is covvect w.v.t. unsatisfi-
ability in the appropriate class of models.

Proof: A set of the form O is trivially unsatisfiable. By contraposing the
lemma we find that, in any application of one of the rules of transformation,
unsatisfiability of the premises implies unsatisfiability of the conclusion.
The result follows by induction.

The role of the starred rules in T;,, is particularly noteworthy. Let
S, A be a set of formulas satisfied by the T-model (G, H, R, ¢). By the
interpretation assigned to T-involutions, some component of A must be
realized by G,; this is mirrored in the rule T-intr. But, in addition, some
component of A must be realized at an arbitrarily chosen G¥. Hence if
none of S, A¥; .. .; S, A} is satisfied by the model, then S, A cannot be
satisfied by it; this explains the presence of the rule T-intr*., A similar
explanation can be given for the rule F-intr*. From this point of view, the
use of starred formulas is a direct reflection of the fact that the realization
of a strict formula by a universe G has ‘effects’, not only at G, but at
neighbouring G*. It is perfectly feasible to set up all the modal systems in
terms of this device (¢f. [6]). But we have preferred to avoid its use as far
as possible—at the cost, it must be admitted, of some artificiality in the
rules for S5;,v.

By inspection of the transformation rules, we find that, in each
involutional system, if S is a finite set of signed formulas, then

(i) there is only a finite number of collections C,, C,, . . ., such that S can
serve as the conclusion in some application of a rule in which C; is the
collection of premises (=1, 2, . . .);

(ii) the possible premises (i.e., elements of some C;) are, in an obvious
sense, simpler than S. (We do not quite have the subformula principle, on
account of the special T-intr rule in S5;,,, and the starred rules in Tj,,.)

The construction of trees of possible premises therefore constitutes a
decision-procedure. Let us say that a finite set of formulas is consistent
w.r.t. an involutional system iff it is not derivable in the system. Then the
construction (decision-procedure) just mentioned, applied to a consistent
set, yields a model which satisfies the set; this is, roughly, the content of
the completeness proofs which follow.

First, the notions of educed set and associated set (Fitting [5]) will be
adapted to the present systems. Let S be a consistent set. Then, in $4i,,,
linv Or Tinv, a consistent set S’ is called a 7educed sef for S iff conditions
(i)-(iii) are satisfied:

(i) Scs".
(ii) Every element of S' is a subformula' of some element of S.

1. ‘Subformula (of)’ may here be taken to represent the reflexive and transitive
closure of the relation component (of).
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(iii) If a T-involution A belongs to S', then at least one component of A
belongs to S'.

In C;,, it is required that S’ satisfy (i)-(iii) and, in addition,

(iv) If an F-involution B belongs to S’, then every component of B belongs
to S'.

In S5;,, it is required that S’ satisfy (i)-(iii) and also (v), (vi):

(v) If an F-involution B belongs to S’', then every strict component of B
belongs to S'.

(vi) If a T-involution A belongs to S’, then either some strict component of
A belongs to S, or else A° belongs to S’, where A° is the formula obtained
by omitting strict components from A (cf. the statement of T-intrgs).

Lemma In each system, if Sis a consistent set, theve exists a rveduced set
for S.

Proof: Consider first the systems Tiny, S4inv, linv. Suppose that S’ is a
consistent set which satisfies conditions (i) and (ii), but not condition (iii):
i.e., there is a T-involution A in S’ such that no component of A is in S'.
Let A,,...,A, be the components of A. At least one of the sets S,
A; @=1,...,n) is consistent; for if all these sets were derivable, S, A
would be derivable by virtue of T-intr. Hence S’ can be properly extended to
a new consistent set which also satisfies conditions (i), (ii). Since there
are only finitely many subformulas of members of S, a finite sequence of
such extensions, starting from S (which, of course, satisfies conditions (i),
(i1)), must yield a reduced set for S. For C;,, and S5i,v we have to take
account of extensions of S' corresponding to conditions (iv), (v) and (vi) (as
well as (iii)). That these extensions preserve consistency is seen by
considering the rules F-intr (in Ci,y), F-intr (in $5i,,) and T-intrgs, respec-
tively. The argument is then completed as before. Thus, for each
consistent set S, there is a finite, non-empty collection of reduced sets. At
least one element of this collection is minimal, i.e., has no proper subset
that is a reduced set for S. We shall assume that, by some arbitrary rule,
a single, minimal element is chosen from each collection, so that we can
speak of the reduced set S’ for S.

We now define the associated sets of a consistent set S, for each
system except Ciny. There will be one associated set for each F-involution
in S. In the definition, there occurs the symbol ‘S*’, whose meaning
depends on the system under consideration: in S4;,,, St is the set of all
T-involutions belonging to S; in [, ST is the set of all formulas signed
with T which belong to S; in S5;,,, S* is the set of all strict formulas
belonging to S. For S4i,, linv and S5;,, the definition is: If B is an
F-involution belonging to S and B, ..., B, are the components of B, then
{Bl, RN B,,}L)S’IL is an associated set of S. For Tj,y, the construction of
the associated sets is a little more complex. Let S be a consistent set of
unstarred formulas, and B an F-involution in S. Let A', ..., A" be all the
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T-involutions in S. Construct a sequence of sets as follows: Set S°=
Su{BY, ..., B}}, where By, ..., B, are the components of B. S° is
consistent, since F-intr* enables one to derive S from S°. Suppose that
skt (1 <k <m) has been defined, as a consistent extension of S. In virtue
of T-intr*, at least one set S*' U {4%*}, where Af is a component of A%, is
consistent; take a particular such set as S*. This construction produces a
sequence S ..., S”. Then the set {D|D*e S"} is an associated set of S.
We note that, since S” is consistent, the presence of the rule star-intr
ensures the consistency of the associated set.

Theorem 2 For each involutional system: if S is consistent and contains
no stavved formulas, S is satisfiable.

Proof: The simplest case, Ci,,, is treated first. In constructing the model,
we ignore G,, H and R. Let S’ be the reduced set of S. For each proposition
letter P, let ¢(P) = Tif TPe S’, ¢(P) = F otherwise. ¢ determines a model (in
an obvious way); we show, by induction on the degree of D, that if DeS’' then
D is true in this model. If X is atomic, this is trivial. Suppose that X is a
T-involution, and that the assertion is true for all formulas of degree less
than that of X. If Xe S', at least one component of X, say X;, also belongs
to S'. By the induction hypothesis, X; is true in the model. But then (since
there is only one universe) X is true in the model. The case in which X is
an F-involution is dealt with similarly. Thus each element of S', and a
fortiori of S, is true in the model.

For each of the other systems, we construct the required model with
the aid of a certain directed graph, to each node of which is attached a set
of formulas. The construction of the graph begins with a single node G, to
which is attached S’ (the reduced set of S). Then the graph is extended by
steps of the following kind: Let N be a node already present, U the set
attached to N. Let U’ be the reduced set of any associated set of U. If U’
is already attached to some node of the graph, insert an arc leading from N
to this node (provided such an arc is not present already); if not, insert a
new node N', attach U'to N', and add an arc leading from N to N'. Since
only a finite number of distinct sets of formulas can arise in the course of
this construction, we must reach, in a finite number of steps, a graph Z for
which no further extension is possible.

We take the nodes of Z as universes, i.e., set H = set of nodes of Z.
Define ¢ by: for any G € H, and any proposition letter P,

T if TP occurs at G,
F otherwise.

9P, G) = {

For the rest of the construction—and its justification—the various systems
are treated separately.

Tinv: Define GRG' (where G, G'eH) to mean that either G = G' or there is
an arc leading from G to G'. Thus we have a T-model (G, H, R, ¢).
Trivially, if X is an atomic formula occurring at a node G in Z, then X is
realized by G in (G,, H, R, ¢). Further, the method of constructing Z has
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ensured that (i) if an F-involution X occurs at node G, then there is a node
G' such that GRG' and every component of X occurs at G', and (ii) if a
T-involution X occurs at G, then at least one component of X occurs at each
G' such that GRG'. By induction on the degree of X it follows that every
formula occurring at a node G in Z is realized by G in (G,, H, R, ¢). In
particular, every element of S is realized by G,; i.e., S is satisfied by
(Gos H, R, ).

S$4i,,: Define GRG' to mean that there is a sequence of zero or more arcs
leading from G to G'. Evidently, (G, H, R, ¢) is an S4-model. The
construction of Z has ensured that, if a T-involution. X occurs at node G,
then X, and hence at least one component of X, occurs at each G' such that
GRG'. Apart from this, the argument proceeds as before (T;,,).

linv: The construction is the same as for $4;,,. That the extra condition
demanded of |-models—namely, G F TX implies G*¥ETX even when X is
atomic—is fulfilled, follows from the way in which ‘associated set’ has been
defined for [;,y.

SS5inv: The argument here is more involved. The main burden of the proof
is to show that, if X is a strict formula occurring at some node G in Z, then
X occurs at every node in Z. Let G'be a successor of G (i.e., there is an
arc from G to G'). It is trivial that any strict formula which occurs at G
occurs also at G'. We prove the converse by reductio ad absurdum.
Suppose, if possible, that X is a strict formula which occurs at G’', but not
at G, and that X is of maximal degree among formulas having this property.
Let S, S’ be the sets attached to G, G', so that S’ is the reduced set of an
associated set of S. By the minimal property of the reduced set, one of the
following cases (i), (ii) must obtain:

(i) X is a component of some F-involution belonging to S;
(ii) X is a component of some T-involution A belonging to S’.

(Otherwise S'—{X} would satisfy the conditions for a reduced set.) But
(i) can be ruled out since, by the definition of ‘reduced set’ for S5, every
strict component of an F-involution in S must itself be in S. Turning to (ii),
we can assume, without loss of generality, that X is the only component of
A that belongs to S’; for if every T-involution in S’ that has X as a
component also has other components which belong to S’, then, as is easily
seen, S'—{X} must satisfy the conditions for a reduced set. Since A4 is
strict and of higher degree than X, Ae¢ S. But no strict component of A
belongs to S (for every strict element of S is an element of S'). Hence
(clause (vi) in the definition of ‘reduced set’) A°¢ S, where the components
of A° are exactly the atomic components of A. Then A°—and therefore at
least one component of A°—belongs to S’. But this contradicts the
assumption that X is the only component of A in S’. Thus case (ii) is ruled
out, and we conclude that there is no strict formula in S’ that is not also in
S. Let R be the relation on H such that GRG' holds for every pair of nodes
G, G'. Since Z is connected, the preceding argument shows that every
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T-involution that occurs at G also occurs at each G' such that GRG' (i.e., at
every node G'). As with S4i,,, it follows that S is satisfied by the $5-model
(Gy, H, R, ¢). This completes the proof of the theorem.

An example of a set whose derivation in S5i,y requires the use of
T-intrgs is {Tp — (¢ — 7), Tq, Fr, Fp} (b, q, v proposition letters). If sets
of signed formulas are represented by the corresponding sequents, the
derivation may be set out in tree form as follows:

q+q w V=7
p—> )—p——) q }"1”; p——); q 7; q ‘-7’; [)-—» T-intr
b= qk7; g 4= 7, 4+ 7; p— T-i
-Infl'ss

p—(q—7);qr-7;p—
There is no way of deriving this conclusion if the rule T-intrgs is dropped.

3 Applications.
3.1 The Problem of Entailment. The formula

pa~p— g (1

where the arrow may, for the moment, be taken to represent strict
implication, enshrines a standard implicational ‘paradox’. According to
the scheme of translation into the (classical or) modal involutional
systems, (1) is to be construed as

pP—0bq (2

The occurrence of ¢ here is ‘redundant’: if it is dropped, we obtain the
‘stronger’, but still valid, involution

p—Dp (3

It would seem that the redundancy of ¢ provides the only possible ground
for objecting to (2). But before attempting to generalize this observation,
we need to consider whether, in replacing (1) by (2) and (3), we have not
unduly trivialized the problem. A less trivial rendering of the principle
which (1) is intended to express would be, for example,

—p; p— = —q (4)
or, more generally,
t—pyt,p—>t—gq (5)

(Parentheses have here been suppressed in favour of dots, as in [11].)
(5) may be read as: something which entails p, and at the same time is
incompatible with p, entails anything. A slight variation of (5) gives us

t—p,q;t,p— > t—q (6)

which may be regarded as a version of the principle of disjunctive
syllogism (say, D).

It is apparent that the occurrence of ¢ on the right of (5) is redundant,
but not so the parallel occurrence in (6): if the second occurrence of ¢q in
(6) is omitted, the resulting involution is invalid. Thus, according to the
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criterion—so far only vaguely indicated—that entailments should be irre-
dundant, D seems to be acceptable. This agrees with the views of most
theorists of entailment. An apparent exception is provided by Anderson and
Belnap [2], who maintain that—at least if disjunction is understood purely
truth-functionally—D is invalid. In rejecting D, they have in mind a
formulation such as

bva)a~p—gq (M

Now, to construe the disjunction (and negation) in (7) ‘purely truth-
functionally’ may be taken to mean, on the present approach, that (7) is to
be dissolved into involutions in accordance with the scheme of translation
in section 1. One finds that (7) reduces to the pair of involutions

pb—0,9 q—0,9

both of which have redundant constituents. Anderson and Belnap qualify
their rejection of D in case the connectives are understood intensionally.
In the involutional systems, the intensional disjunction of p, ¢ may be
rendered by — p, ¢; and the intensional negation of p by p — (cf. Duthie, [4]).
This involves construing (7) as
—p,q;p— > q,

a restricted version of (6). We have already indicated that (6) is
acceptable. In this way the view of Anderson and Belnap on the status of D
can perhaps be reconciled with the involutional approach.

Related to the criterion of irredundancy is a second criterion having
to do with methods of proof: it requires that, in the course of proving an
entailment (or involution), no items should appear that are not relevantly
used in the proof. That the two criteria (which will be stated more
precisely in a moment) are non-equivalent is shown by an example of
Smiley [12]:

b—ag,q—p;p—oq>Dp—q (8)

According to the first criterion, (8) is clearly unacceptable. Yet we can
easily give a natural-deductive proof of (8), in which all items which appear
are relevantly used:

(1 (2)
P p—q (3)

b p—g
q
ey

ﬁq;q—»p;p—.q—‘ﬂp-—»q

(2) (3) (4) s

It should be noted that (8), although unacceptable by the first criterion, is a
substitution-instance of
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p—q,q—-7;vy -8 >p—s,

which is acceptable.

For the systematic treatment, we again use signed formulas. But now
we shall be concerned with lists rather than sets of such formulas. For
simplicity, we consider only versions of the classical involutional system.
Let L be a list of signed formulas, P an arbitrary proposition letter not
occurring in L. Then L is said to be irredundantly unsatisfiable (i.u.) iff

(i) no C-model satisfies L,

(i) if any unsigned formula which occurs in L (i.e., as a subformula of an
item in L) is replaced, at any one occurrence, by P, the resulting list is
satisfiable.

For the precise version of the second criterion, we set up a modified
version of Ciny, in which only ‘relevant’ deductions of (the inconsistency of)
lists of signed formulas can be carried out. A list is velevantly deducible
(7.d.), then, iff it can be derived from lists of the form

O: TX, FX by the transformation rules.
P (Permutation): A list may be permuted in any manner.

LlyAl; < e Ln’An

~intr: where A,, ..., A, is the list of ts of
T-infr L LA r 1 , A, 1s the list of componen

the T-involution A; i.e., if Ais TX,,.. ., X; =Y, ..., Y, thenn= +1,
and 4, = FX,, . . ., mA, = FXp, A4, = TY,, . . ., A, = TY].
L,By,...,B

F-intr: ——_1,—79———" where By, . . ., B, is the list of components of B.
b

As already hinted, the two criteria are closely related:
Theorem 3 Every v.d. list is a substitution-instance of an i.u. list.

Proof: Trivially, a list of the form O is a substifution-instance of an i.u.
list; and, if the premise of an application of P or F-intr has this property, so
does the conclusion. It remains to consider T-intr. Suppose that the lists
L, Al;...; L), A, are substitution-instances of i.u. lists LI, Al;.. .;
L,, A,. We assume that the latter lists are chosen in such a way that no
proposition-letter occurs in more than one list. Let P be a proposition-
letter not occurring in any of the lists. Let A' be the T-involution whose
list of components is A/, . . ., A,. Then the list L}, ..., L,, A’ is unsatis-
fiable (by the correctness of T-intr), and has L,, ..., L,, A as a substitution-
instance. We have to show that, if some formula-occurrence in Lj, .. .,
Ln, A'is replaced by P, then the resulting list L}, ..., L., LY, Ly, + ..,
Ly, A' (supposing the replacement made in L)), or L{,..., L, A"' (supposing
the replacement made in A') is satisfiable. Take the former case (replace-
ment in L;) first. Since each of Ly, A;; . . .; Ly, Ayis i.u., each of L}; .. .;
Liy; L{', Aj; Li,y; . . .; L, is satisfiable. Since no proposition letter occurs
in more than one of the latter lists, we can construct a model y which
simultaneously satisfies them all. It is clear that y satisfies the list
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Ly, ...,Li, L}, L}, ... A, as required. A similar argument is easily
supplied for the case that the replacement is made in A’'. This completes
the induction-step required for the proof of the theorem.

The converse of this theorem is false. Example: The list whose only
item is

Fpsp—aq;p— (@ v)> 7 (9)

is i.u. but, as is easily checked, not r.d. We can get an r.d. list by
repeating the first p in (9):

Fospsp—q;p—(@—7) > 7.

It seems plausible that every i.u. list can be obtained from an r.d. list by
deleting repeated items in sublists; but we do not have a proof of this at
present.

3.2 Operative Logic. By restricting the rules of formation of I,y so that
only involutions having exactly one formula in the consequent are per-
mitted—a restriction which will be presupposed in the rest of this
sub-section—one obtains a system essentially equivalent to the ‘con-
sequence-logic’ of Lorenzen [11] and the system of ‘positive S-formulas’ of
Kutschera [9]. The completeness of these systems, relative to I-models, is
easily proved. However, the following question arises: Is the interpreta-
tion in terms of Kripke’s models consonant with the meaning which
Lorenzen and Kutschera attribute to their formalisms?

Lorenzen’s interpretation (which we can here only hastily summarize)
is in terms of the admissibility of rules in calculi. Roughly speaking, a
first-order rule is admissible with respect to a given calculus iff, when
applied to derivable formulas as ‘premises’, it yields a ‘conclusion’ that is
also derivable in the calculus. Rules of arbitrary finite order are
introduced, and the definition extended to these rules as follows: a rule of
order » is admissible iff, when applied to admissible rules of order »n - 1
as premises, it yields an admissible rule (of order »n - 1) as conclusion.
Let P be an involution of degree n. P is said to be generally admissible
provided that, for any calculus K, if formulas of K are substituted for the
proposition letters in P, the result is an admissible rule of order = over K.
The system of generally admissible involutions gives us deduction-logic.
Note: the present restriction to propositional logic means that we can treat
only of ‘rules’ in which no variables (ranging over expressions of K) occur.

Kutschera [9], citing Lorenz [10], argues that, on constructivist
grounds, one should work with derived rules rather than admissible rules.
A first-order rule R is devivable w.r.t. calculus K provided that, if the
premises of R are added to K as axioms, the conclusion of R is a derivable
formula in the extended calculus. The definition may be repeated for
second-order rules, since the premises of a second-order rule can be
added to K as 7ules (instead of axioms).

It is not immediately evident how to extend this kind of definition to
rules of arbitrary order. Kutschera’s method involves the construction of
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a special hierarchy of calculi on the basis of K. An alternative, perhaps
simpler, procedure is as follows: A formula of K is regarded as a rule of
ovder 0. For rules of order 0, i.e., formulas, the definition of derivable is
as usual. Then, a rule A, ..., A,— B of order >0 is said to be
derivable iff, in every extension of K for which the rules A,, . .., A, (of
order n > 1) are derivable, B is also derivable. It is readily seen that this
agrees with the usual definition in the case of 1’st- and 2’nd-order rules.

In its systematic use of exfensions of calculi, the method closely
resembles Kripke’s ‘provability’ interpretations of intuitionism [8]. Ex-
plicitly: Let H be a set of extensions of the calculus K (all with the same
vocabulary and rules of formation as K). Take G, = K, and define R by:
GRG' iff G' is an extension of G. Let a mapping 8:/# — E be given, where
E is the set of formulas of K, and define ¢ by: ¢(P, G) = T if B(P) is
derivable in G, F otherwise, With these specifications (G, H, R, ¢) is
an I-model. Consider the special case in which H is the set of all exten-
sions of K. For any involution X, let 8(X) be the result of replacing each
proposition letter P in X by 8(P). Then we have: an involution X is true
in the model just defined iff B(X) is derivable as a rule over K. It is
apparent that, with a different specialization of H, we obtain also the
admissible rules. Namely, let H= {K}—in effect, reducing the model to a
C-model. In this model, X is true iff B(X) is admissible over K. Thus,
on the present analysis, Lorenzen’s method presupposes a classical,
Kutschera’s an intuitionistic, modelling.

3.3 Syllogistic. Quantificational logic lies outside the scope of this paper.
Yet involution is quite naturally thought of as a relation between properties,
not just propositions; and to illustrate this point of view, the involutional
version of a fragment of predicate logic, in which variables and quantifiers
are dispensable, will now be sketched.

Throughout the section, involutional formulas are restricted to be of
degree at most one. In view of the application to traditional syllogistic
proposition letters are usually referred to as ferms. By an S-model is
meant an ordered triple (D, U, 6), where U is an arbitrary non-empty set,
D a distinguished element of U, and 6:/# — 2Y a mapping which assigns a
subset of U to each term. Truth in such a model is defined thus: an atomic
formula P is true iff De 6(P); a formula P,, ..., P, — @, ..., @, Of

degree one, is true iff Q o(P;) C L! 6(Q;). A sequent I'-A is S-valid iff, in
i= i

every S-model in which every element of T is true, at least one element of
A is true. A formal system for deriving S-valid sequents may be
constructed along the lines of the modal and intuitionistic systems of
section 2. Indeed the restriction of any of these systems to formulas of
degree at most one would suffice, in view of:

Theorem 4 For sequents composed of (unstarved) formulas of degree at
most one, S-, T-, S4-, |-, and S5-validity are equivalent.

Proof: The proof depends on the following observation: an involution
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P,...,P,—®,... @, of degree one, is true in the T-model (or
55—mode1) (G, H, R, ¢) iff

Nictlor, e = T}CU {G¥6(q;, GF) = T}.

To establish the theorem, it suffices to show that every S$5-valid
sequent is S-valid, and that every S-valid sequent is T-valid. As to the
first, suppose that (D, U, ) is an S-countermodel for T'A-—i.e., an
S-model in which every element of T is true, every element of A false. An
S5-countermodel for the sequent may be obtained as follows: Take G, =D,
H= U, R as the relation which holds between every pair of elements of U,
and define ¢ by

o(P, G) = T ifGeb(P), F otherwise.

As to the second, suppose that (G,, H, R, ¢) is a T-countermodel for I'-A.
An S-countermodel is obtained by taking D = Gy, U = H, and, for Pe £,

6(P) = {G¥lo(P, G = T}.

The next theorem shows, in effect, that we can restrict attention to
sequents having at most one formula in the consequent.

Theorem 5 If no element of T is atomic, and the sequent T+ A is S-valid,
then, for some Ye A, T' =Y is S-valid.

Pyoof: The proof rests on a simple observation concernmg the algebra of
sets: Suppose that, for j =1, ,m (SIS, T ..., T} is an
1 + m-tuple of subsets of a set U,- (I, m fixed) Then, prov1ded that
U, ... U,are pairwise disjoint,

n

Q(Hsf)cf'J(U 7l

1

iff, for j=1, ..., n,

Let A={Y, ..., ¥,}, and suppose that each T'+Y; is invalid (j=
1, ..., n). Choose countermodels (D;, U;, 6;) for these sequents, such that
Ui(j=1, ... n) are pairwise disjoint. Let D be any object not in the set
n n
Uu. vet v=U v, u {p). Define 6:# — 2" by
it '

j=1

op) =U g(p.

Then it follows from the observation on set-algebra that (D, U, 6) is a
countermodel for I't- A, Hence, if T'+A is valid, some I'-Y; is valid.

From this point on we shall be concerned only with sequents in which
all formulas are of exactly degree one. For studying the validity of these
sequents, the S-models are unnecessarily complicated. All that is neces-
sary is to consider assignments, that is, (partial) mappings from terms to
sets.
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Py,... P,— @, ... Qis true under the assignment ¢ iff
m n
Ner) <l a@q).
i=1 j=1

Definitions of validity, etc., are as usual. When all formulas are of degree
one, the two definitions of validity are in agreement. An assignment is said
to be 7estricted iff all its values are non-empty sets. For the interpreta-
tion of traditional syllogistic, it is required that all assignments be
restricted. This involves a change in the notion of validity. Let us
temporarily distinguish validity in the original sense (unrestricted assign-
ments) from validity w.r.t. restricted assignments by means of the
subscripts u, 7.

Theorem 6 The sequent I' - A is valid, iff either

(i) for some Ye A, T'+Y is valid,,

or

(ii) for some tevm P occurving in T or A, T' -P — is valid,.

Pyoof: An assignment 6 is restricted iff, for all P for which 6 is defined,
P— is false under 6. Hence I'+A is valid, iff T+A; P,—; .. .; P,—is
valid,, where P,, ..., P, are all the terms which occur in I" or A. The
result follows by Theorem 5.

The preceding results provide the basis for a treatment of syllogisms
with an arbitrary number of premises and with arbitrarily complex terms
(built up from simple terms by means of A, v and ~). For a syllogistic
sequent may be reduced to a set of involutional sequents (and thus tested
for validity) by the following operations: First, replace

SaP by S— P
SeP by S, P—

SiPpP by ~(S, P—)
SoP by ~(S— P)

Next, reduce each expression of the form S — P or S, P—, in which S or P
is compound, to a conjunction of purely involutional formulas (of degree
one) by methods familiar from section 1. Finally, reduce the resulting
sequent to involutional sequents in the natural way (cf. remarks at end of
section 1).

If there are no compound terms, the syllogistic sequent reduces to a
single involutional sequent, in which all formulas are of the form S — P or
S, P—.? This case will be treated in somewhat more detail; we begin with
some definitions: Let I" be a set of formulas each of which is of the form

2. The reduction of syllogisms to sequents of this form, and the method of enumer-
ating valid syllogistic moods outlined below, was suggested to me by Mr. L.
Jackson.
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S — PorS, P—. For any terms @, R, we say that @ is a predecessor of R,
and that R is a successor of @, in T, iff there is a sequence P,, . . ., P, of
terms such that @ =P,, R = P, and, for each ¢ such that 1 <i <k, P; —
P,eI. @ is said to be separated from R in T iff @, R have successors
Q',R' resp., such that @', R"—¢eT or R', @ —e I. (For a given I, these
relations may be conveniently displayed in a directed graph.)® Finally, T is
consistent iff, for all terms @, R, if @, R—e T then @ and R have no
common predecessor in I'.

In the following theorem, and subsequent comments, it is presupposed
that all involutional formulas are of the form S — P or S, P—, that all
assignments are restricted, and that ‘valid’ means ‘valid,’.

Theorem 7 (i) I'+ is valid iff T is inconsistent. If T is consistent, then
(i) T+P — @ is valid iff @ is a successor of Pin T} and (iii) T' P, @ —
is valid iff P is separated from Q in T.

Proof: (i) Suppose that I' is inconsistent. We show that, if 6 is any
assignment, the elements of I" are not all true under 6—in short, 6 does not
satisfy I'. For suppose that 6 satisfies I'. Since T is inconsistent, there
are terms P, @ with the following properties: P and @ have a common
predecessor R in I'; and P, Q —eI. The first property entails that
6(R) < 6(P) and 6(R) C 6()), hence that 6(P) N 6(®) is non-empty; the second
entails that 6(P) N 6(Q) is empty. Thus it is impossible that 6 satisfy I'; in
fact, T' +is valid.

Next, suppose that I' is consistent. For each term P occurring in T,
let 6(P) be the set of predecessors of P in I'. Then 6 satisfies I'. (6 will
be called the canonical assignment determined by T.)

(ii) It is trivial that TP — @ is valid if @ is a successor of P in T.
Suppose, then, that @ is not a successor of P in I'. By hypothesis, T is
consistent. The canonical assignment 6 therefore satisfies T', but—since P
is not a predecessor of @—not P — . That is, 6 is a ‘counter-assignment’
for TP — Q.

(iii) Sufficiency of the condition (for validity) is again straightforward.
Suppose, then, that P is not separated from @ in I'. Let R be any term not
occurring in I'. Then the set I'' = T' U{R — P} U{R— Q} is consistent; and
the canonical assignment determined by I'' refutes T'+-P, @ —.

It follows from Theorem 7 that a sequent I'-Z (where Z is either
empty or a single formula) is valid iff I has a subset whose elements may
be listed as follows:

G) P, — Piy; ... Po— Py; Py — Py .o o5 Py — Pp; Py, Pr— (where 1 <
i <sn)—which we shall abbreviate as P;--->P,; P; --->P,; P,, P,——; or

(ii) P,--->Py,; or

(iii) P,—>P;; P, -~->P,s; P;, P;,;— (where 1 <i <n).

If T+Z is ivrvedundantly valid, then T has no other elements than those

3. A detailed treatment of syllogistic in terms of directed graphs is given in [16].
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listed. In case (i), Z is empty, and there are n possible choices for i,
giving us 7 ‘moods’ for the antilogism. Case (ii) (with Z = P, — P,)
provides one mood. In case (iii), Z is either P,, P,— or P,, P,—, and there
are n - 1 choices for ¢: hence 2(n - 1) moods.

Each involutional sequent I'-Z is equivalent, under the translation
process described earlier, to several distinct syllogistic sequents. This
enables us to enumerate the valid moods of the n-term syllogism, cf. [12].
Roughly speaking, we can arrange for any one of the n formulas in T, Z to
appear, suitably transformed, on the right of the sequent; e.g., when P, —
P,eT’, we can get a syllogism ... -P,0 P,. Thus each of the n + 1 + 2(n - 1)
involutional moods gives rise to » syllogistic moods, yielding 7(37z - 1)
moods altogether.
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