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A SIMPLE ALGEBRA OF FIRST ORDER LOGIC

CHARLES C. PINTER

1. Introduction1 The idea of making algebra out of logic is not a new one.
In the middle of the last century George Boole investigated a class of
algebras, subsequently named Boolean algebras, which arose naturally as a
way of algebraizing the propositional calculus. More recently there have
appeared several algebraizations of the first-order predicate calculus, of
which the most important are the polyadic algebras of Halmos [3], and the
cylindric algebras of Tarski [5]. Each of these two approaches to algebraic
logic has its relative merits, and presents conceptual difficulties which
have proved to be a stumbling block for many an interested reader.

The purpose of this paper is to present a formulation of algebraic logic
which is closely related to both polyadic and cylindric algebras and is, in a
sense, intermediate between the two. The advantage of the system we are
about to present is that it is based upon a small number of axioms which
are extremely simple and well motivated. From a didactic point of view,
this may be the most satisfactory way of introducing the student and
non-specialist to the ideas and methods of algebraic logic. We will show
precisely how our algebra is related to cylindric and polyadic algebras.

2. Quantifier algebras In this section we introduce a class of algebras to
be called quantifier algebras,2 which may be viewed as an algebraization of
the first-order predicate calculus without equality. We begin by examining
a special class of quantifier algebras, called quantifier algebras of
formulas. The construction of these algebras has a metalogical character
and extends the well-known method for constructing Boolean algebras from
the propositional calculus.

Let Λ be a first-order language with a sequence (vκ)κ<a of variables,
and let .0 be a theory of Λ. We let Fm(Λ^ designate the set of all the
formulas of Λ, and Fm ̂ /=#, the preceding set modulo the relation F =Θ G

1. The work reported in this paper was done while the author held an NSF Faculty
Fellowship.

2. The term quantifier algebra has been used by several authors in different senses,
all differing from the present one.
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iff Θ hFΦ=>G. We define Boolean operations on Fm(Λ)/=^ by: (F/=) + (G/=) =
FvG/=, (FM - (G/=) = FΛG/=, and -(F/=) = lF/=; 1 designates the class of
all the theorems of θ, and 0 the class of all negations of theorems. It is
known that (Fm ̂ /=Θ9 +, , -, 0, 1) is a Boolean algebra. We define two more
operations on Fm ̂ /=Θ as follows: Sχ(F/=) is the equivalence class of the
formula which results from F by validly replacing each free occurrence of
vκ by vλ; 3K(F/=) is the class of the formula (3vκ)F. Now, <Fm(Λ)/Ξ0, +, ,
-, 0, 1, Sχ, 3κ)/c,λ<α * s called the quantifier algebra of formulas associated
with θ.

The foregoing discussion should help to motivate our general definition:

2.1 Definition By a quantifier algebra of degree of, briefly a QAα, we mean
a system U = <Λ,+, , -,0,1, Sχ9 3κ)κΛ<a where <A, +, -, -, 0, 1) is a Boolean
algebra and S\ and 3K are unary operations having the following properties
for all x, ye A and K, λ, μ < a:

(Qi) Sft-*) = -S£*
(q2) s j u + y) = s;* + sfa
(q3) S^ = id
(q4) Sκ

λSΪ = Sκ

λS
μ

λ

(q5) 3 K ( Λ Γ + y) = 3Kx+ 3Ky

(q6) ΛΓ ̂  3Kx
(q7) S^^Ξ.
(q8) 3KS£ = S£if KΦλ
(q9) S^3 μ = 3μS^ if μ*κ, λ.

We assume throughout, that a ^ 2 .

The operations S£ are called substitutions and the operations 3K are
called quantifiers. We observe that (qi)-(q4) are properties of substitutions,
(q5) and (q6) are properties of quantifiers, and (q7)-(q9) are conditions which
relate substitutions to quantifiers. The metalogical interpretation of these
equations is obvious.

If U is a quantifier algebra, as above, and xeA, then the dimension set
of x is the set

ΔΛΓ= {K < a: 3Kx Φ x}.

In view of (q7) and (q8), Ax is also the set of all K such that S£x Φ x, for any
λ Φ K. 11 is said to be locally finite if it satisfies the condition

(Lf) for every xeA, Axis a finite set.

It is easy to show that every quantifier algebra of formulas is a
quantifier algebra in the sense of Definition 2.1, and is, in fact, locally
finite. Conversely, it is not hard to show that if Si is any locally finite
quantifier algebra, there is a theory θ such that 5ί is (isomorphic with) the
quantifier algebra of formulas associated with θ. Furthermore, adapting a
result by Hoehnke [6], if θ± and 92 are first-order theories, then the
quantifier algebras associated with θx and θ2i respectively, are isomorphic
iff θ1 and θ2 are equivalent by definitions.
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2.2 Lemma If U = (A, +, ., -, 0, 1, Sf, 3κ)K )χ<α is a quantifier algebra, then
the following statements hold for all x, ye A and all K, λ, μ < a:

(i) 3K0 = 0 (iv) SχSμ=SμifμΦ K
(ii) 3 K (x 3Ky) = 3Kx- 3κJ> (v) S^Sί = S ^ if K Φ μ, v and μ Φ λ

(iii) 3 κ 3 λ = 3 λ 3 κ

Proof: We derive, successively, the following statements:

(1) x ^y implies Sχ# ^Sfy.
(2) x ^y implies 3Kx ^3Ky.
(3) S\x ^ 3Kx.

(1) is an immediate consequence of (q2); (2) is an immediate consequence of
(q5). Finally, (3) follows from (1), (q6) and (q7).

(4) 3Kx is the least element of {y e range S\ :y ^-x}, if K Φ λ.

Indeed, by (q7), 3Kxe range $χ and by (q6), 3Kx ^x. Note that if y e range
Sχ, then for some zeA, y = Sχz =3K S^z = 3Ky. Thus, if ye range S^ and
y >x, then by (2), 3Kx < 3Ky = y.

It follows from (4) and Halmos ([2], Theorem 5) that 3 K is a quantifier
(in the sense of Halmos) for each K < a, hence we have (i) and (ii). Next,
using (q7)-(q9) repeatedly, we have, for any μ Φ K, λ,

3 λ 3 κ 3 λ * = 3 λ 3 κ S^3 λ * = 3 λ S^3 κ 3 λ ^ = S*3κ3χ* = 3 κ S^3 λ ^ = 3 κ 3 λ ^ .

Now by (q6) and (2), 3 λ 3 κ # < 3λ3κ3λΛΓ = 3κ3λΛτ; symmetrically, 3 κ 3 λ # <
3λ3κΛr, giving (iii). (iv) follows from (q7) and (q j ; for if μ Φ K, then SχSμ =
Sχ3κSμ = 3κSμ =Sκ

μ. If we let μ = λ in (iv), we get

(5) S£S£=S£.

It remains only to prove (v); first, we need the following:

(6) Let f and g be Boolean endomorphisms such that ff - f and gg - g; if
range f and kernel f are both closed under g, then fg = gf.

From the hypotheses gf(x)e r a n g e / and ff = f, we conclude that fgf(x) =
gf{x). Kovj,gf(x)θfg(x) =fgf(x)θfg(x) =/£•(/(#) Θ*);(Θ is the operation of
symmetric difference). But clearly, f(x) θxe kernel/, hence by hypothesis,
g(f{x) θx)e kernel/, and therefore fg(f(x) θ x) = 0. Thus, gf{x)®> fg(x) = 0,
which proves (6).

(7) If'μ Φ K, λ, v, then range S£ is closed under S\.

Indeed, if μ Φ κy λ, v then S\SΪx = Sx 3μS^Λ: = 3μSχSyXe range S j .

(8) If K Φ μ, v then kernel S{5 is closed under Sχ

Indeed, suppose S ^ = 0; then 3 κ Sί# = 3K0 = 0 by 2.2 (i). Thus, by (q9),
SΪ3κx = 0. But by (3), Sχx < 3Kx, so by (1), S^x ^S^3Kx = 0. It follows
that Sχ#e kernel SjJ. From (5), (6), (7) and (8), we immediately get (v).
Q.E.D.
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(Qβ)> together with 2.2 (i) and (ii), show that the operations 3K are

quantifiers in the sense of Halmos [2] and of Henkin, Monk and Tarski [5].

3. Quantifier algebras and polyadic algebras An extended notion of sub-

stitutions and quantifiers is used in polyadic algebras. Roughly speaking,

(from the metalogical point of view), instead of merely quantifying over a

single variable, one may quantify over an arbitrary set of variables;

similarly, the simultaneous substitution of arbitrarily many variables is

permitted.

In the definition which follows, / is taken to be an arbitrary set.

I1 designates the set of all functions from / into /; if re/ 7 then, in the

metalogical interpretation, ST may be regarded as the operation of

simultaneously replacing each variable vκ by vτ(κ) . For each re I1 and

J Q I, 71J designates the restriction of r to J.

3.1 Definition: An /-polyadic algebra is a system (A, +, , -, 0, 1, Sr,

3j)r6/ί(jς/ where (A, +, , -, 0, 1) is a Boolean algebra and Sτ and 3j are

unary operations which satisfy the following conditions for all x, y e A,

σ, r e / 7 and J,K Q I:

(Pi) Sτ(x + y) = Srx + Sτy (p5) 3jO = 0

(p2) Sr(-x) = Sτ% (p6) x < 3jx

(Ps) S σ S r = Sσr (p7) 3j(x 3jy) = 33x 33y

( p j S .d = id (Pβ) 3 0 = id

(Po) 3 J u K = 3j3K

(Pio) Sσ3j=Sτ3jif σ\l-J=τ\l-J

(Pn) 3jSτ = Sr3r-i(j) if T I T - ^ J ) is injective.

It is customary to write 3K for 3{κ}. A mapping re I1 such that τ(κ) = λ

and τ(μ) = μ for every μ Φ K is called a replacement and is noted by (κ/λ).

We write Sκ

λ for S ( κ / λ ).

The connections between quantifier algebras and polyadic algebras are

easy to describe. Note that we may always identify/ with some ordinal a.

Now, every Qf-polyadic algebra is a quantifier algebra of degree a; more

precisely, if (A, +, , -, 0, 1, SΓ, 3j)T€aaιJCa is a polyadic algebra, then

(A, +, , -, 0, 1, Sλ, 3κ)κ,χ<a is a quantifier algebra. (Another way of saying

this is: a polyadic algebra becomes a quantifier algebra by removing some

of its operations.)

The converse is true for locally finite quantifier algebras of infinite

degree. Indeed, if (A, +, , -, 0, 1, S£, 3 κ) κ ? λ < 0 ! is such an algebra, it is

possible to adjoin extended quantifiers and substitutions as follows: if xeA

and JQ of, we define 33x by

(3.2) 3jx = 3 K i . . . 3Knx, where {κl9 . . . , ϋ = J Π ΔΛΓ.

Furthermore, it has been established in [3] that if re aa and J is a finite

subset of of, then r\j = τx . . . τn\j for some replacements τl9 . . ., τn. Now,

we define Sτx by

(3.3) Sτx = S^1 . . . Sχ>, where T\AX= (κj\d . . . (κn/λn)\Ax.
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B. Galler has proved in [l] that iίa^ω and (A, +, >, -, 0, 1, 5χ, 3 κ ) κ ? λ < α is

an algebra satisfying (qi)-(q9) and (Lf), (together with 2.2 (i)-(v) which

follow from (qi)-(q9)), and if operations 3j and Sr are introduced by (3.2)

and (3.3) respectively, then (A, +, , -, 0, 1, Sτ, 3j)rea

a,jcais a polyadic

algebra. We may paraphrase this as follows: if we adjoin operations Sτ

and 3j to a locally finite quantifier algebra of infinite degree by means of

(3.2) and (3.3), we get a polyadic algebra.

4. Quantifier algebras with equality and cylindric algebras By adjoining

certain distinguished elements to quantifier algebras, we get an algebraiza-

tion of the first-order predicate calculus with equality. In the metalogical

interpretation, the distinguished element eκχ is taken to be the equivalence

class of the formula υκ = v\.

4.1 Definition: A quantifier algebra with equality is an algebra (A, +, , -,

0, 1, SJ, 3K, eκλ)κMa such that (A, +, ., -, 0, 1, S£, 3κ>κ,λ«* i s a quantifier

algebra and eκχ are distinguished elements which satisfy

(qio) Sκ

λeκλ = 1

(Qii) x eκλ^Sχx.

We present, next, a few properties of quantifier algebras with equality.

We let min X designate the least element of X if X is an ordered set having

one.

4.2 L e m m a : If {A% +, , -, 0, 1, 5χ, 3 K , eκχ)κ,χ<a ίs a quantifier algebra with

equality, the following conditions hold for all xeA and K, λ, μ < a:

(i) x eκχ = Sχx - eκχ (vi) eκλ = eχκ

(ii) 3 κ e κ λ = 1 (vii) S£e λ μ= eλμiϊ K Φ λ, μ

(iii) S^x = 3K(x e κ λ) if K Φ λ (viii) Sμeκλ = eμ λif K Φ λ, μ

(iv) e κ λ = min {Λ: : S ^ = 1} (ix) 3K(e λ κ eκ μ) = e λ μ if K Φ λ, μ.

(v) e κ κ = 1

Proof: The proof of (i) is due to Halmos [4]: by (qn), Sχx eκ\ -Λ: ̂ Sχx

5£(-#) = S'X(ΛΓ -ΛΓ) = 0. Thus, Sx^Γ-e^x ^ ^ combining this with (qn) yields

(i). We have seen, in (3) of the proof of 2.2, that S^x < 3Kx; from this fact

and (q10) we immediately get (ii).

Next, 3K{x e κ λ) = 3κ(Sχx eκ λ) by (i)

= 3κ(3κSΛ* eκ λ) by(q8)

= Sλ^ 3 κ e κ λ by 2.2 (ii) and (q8)

= Sκ

λx by(ii).

This proves (iii); (iv) follows immediately from (q10) and (i), and (v) is an

immediate consequence of (iv). Now, by (q3) and (q4), SxS^ = Sχ; thus,

Sχe λ κ = SχS^eλκ = 1, so by (iv), e κ λ ^ e λ κ ; symmetrically, e λ κ < e κ λ , which

proves (vi). To prove (vii), we note that by (q9), S^3κ(-eχμ) = 3κs£(-e λ μ) = 0,

that is, s£[-3 K (-e v ) ] = 1; thus by (iv), eλμ < -3 κ (-e λ μ ) , that is, 3 κ(-e λ μ) <

- e λ μ . Combining this with (q6) gives 3κ(-eχμ) = - e λ μ ; thus by (q7), -S£eλ μ =

S^3κ(-eλ μ) = 3 κ (-e λ μ ) = -e λ μ , that is, S^eλμ = e λ μ .
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To prove (viii), we note that by (q4) and (q1 0), Sμ(S£eκλ) = SμSχeκ λ= 1,
hence by (iv), e λ μ < S£eκ λ; symmetrically, eκλ < S£e λ μ . Thus, Sμeκχ <
SμS*eλ μ = Sμθλ μ = e λ μ , where the last step follows by (vii). Finally, (ix) is
an immediate consequence of (iii) and (viii). Q.E.D.

4.3 Definition: By a cylindric algebra of degree a we mean a system
{A, +, , -, 0, 1, 3K, eκλ)κ?λ<α such that (A, +, , -, 0, l) is a Boolean algebra,
and 3K and eκχ satisfy the following conditions for all xe A and K, λ < a:

(O 3*0 = 0 (C5) e κ κ = 1
(C2) x < 3Kx (C6) eλμ = 3 κ (e λ κ eκμ) if K Φ λ, μ

(C3) 3K(*-3Ky) = 3κX'3κy (C7) 3 κ ( e κ λ . χ ) 3 κ ( e κ λ -Λ:) = 0if/c^λ.
(C4) 3 κ 3 λ = 3 λ 3 κ

Cylindric algebras are equivalent to quantifier algebras with equality.
Let us state this result precisely: if (A, +, , -, 0, 1, 3 K , eκ))Ki\<a is a
cylindric algebra, and if operations S£ are defined by

(4.4) Sχx = x if K = λ; Sχx = 3K(x - eκ λ) if K Φ λ,

then (A, +, , -, 0, 1, S χ, 3 K , eκχ)Kjχ<a is a quantifier algebra with equality.
Indeed, (qi)-(qn) are all theorems of the theory of cylindric algebras; their
proofs may be found in Chapter 1 of [5]. Conversely, if {A, +, , -, 0, 1,
Sλ, 3 K , eκλ>κ,λ<α is a quantifier algebra with equality, then (A, + , - , - , 0, 1,
3 K , eκχ)κ,λ<a is a cylindric algebra. Indeed, this clearly follows from
Lemma 4.2.
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