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A SIMPLIFIED SEMANTICS FOR MODAL LOGIC

L. F. GOBLE

1. Until recently, philosophers could object to modal logic on the grounds
that there were no known semantics for the many modal calculuses. To be
sure, there were some isolated interpretations for individual systems, but
there was no general theory which would apply to the many different
systems, and which would give an account, from a semantical point of view,
of the relations between them. With the work of Kripke, Hintikka, Kanger,
Lemmon, and others, that has, of course, changed.

Kripke's semantics for modal logic begins with the idea of a model
structure, (G, K, R), where K is a nonempty set (intuitively, of possible
worlds), R is a relation on K (a relation of relative possibility or alterna-
tiveness), and GeK. Truth-functional propositions are evaluated with
respect to possible worlds (members of K) in the usual ways, and proposi-
tions of the sort, necessarily B, are said to be true in a world H in K if and
only if B is true in every world, Hr, in K such that HRHT. A formula is
valid if it is true in G for every appropriate model structure, (G, K, R). By
stipulating different properties for R (e.g. reflexivity, reflexivity and
transitivity, etc.) different model structures are defined which validate
different classes of formulas corresponding to the different modal cal-
culuses. Thus, e.g., all and only formulas provable in S4 are valid in all
model structures in which R is both reflexive and transitive. With some
minor modifications this account can be generalized to provide semantics
for most all the standard systems of modal logic. (Cf. [11] and [12].)
Similar moves are made by Hintikka in [8] and Kanger [9]. Lemmon
develops analogous devices in his algebraic semantics for the systems in
[13] and [14].

Nevertheless, while the mathematical problem of developing an ade-
quate semantical theory of the modalities may have been solved in this way,
philosophers critical of modal logic might still object that since these
accounts depend on a notion of a possible world, which is an obscure as the
original concepts of possibility and necessity, no real clarification of these
modalities has been achieved by these interpretations. Moreover, these
critics might also object to the introduction of the relations, R, between
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these supposed possible worlds. For, it might be argued, while the notion
of a possible world itself is at least well entrenched in the history of
philosophy, and maybe even common sense, the idea of a relation of
Relative possibility' (Kripke) or 'alternativeness' (Hintikka) between worlds
is essentially new and has little or no intuitive appeal.1

Hintikka says, "The relation will be called the relation of alternative-
ness, and the sets [worlds] bearing it to some given set, μ, will be called
the alternatives to μ. Intuitively, they are partial descriptions of those
states of affairs which could have been realized instead of the one de-
scribed by μ." ([8], p. 66; my italics.) But how should one understand
this? What considerations should lead one to say that one world is an
alternative to (could have been realized instead of) a given world, but that
another is not?

In this paper I shall show a way in which these questions may be
attacked, by developing a general semantical theory for modal logic which
is simplified in one important direction. With this semantics one can see
how, on the basis of one explication of a possible world', it is possible to
extract definitions of all the relations and related concepts necessary to
establish interpretations of the modalities which are adequate and valid for
most of the standard calculuses. As a result, it is not necessary to posit
relations of 'relative possibility' among the primitives of the semantics for
modal logic.

Most of this paper will be devoted to defining the basic concepts of the
simplified semantics and to establishing weak completeness theorems for a
wide variety of systems. I shall not at this time argue that the conception
of a possible world offered here is a natural one, nor shall I discuss
philosophical applications of some of the interpretations defined, or
reasons why one might prefer certain systems to others. In what follows I
will limit my attention to propositional modal logics; I do not anticipate any
new problems when quantifiers are added. Much of the ground to be
covered here has been thoroughly explored by others. It is necessary for
me to go over it once more in order to show that the present methods are
as rich as those of the more familiar accounts. In the later sections I do
propose semantics for some families of systems which, so far as I know,
have not been discussed in the literature.

2. According to standard accounts, to say that a proposition, P, is possible
or possibly true in a given world, is to say that P is true in some world
which is a possible alternative to the given world. While this analysis may
be substantially correct, as intimated above I believe it leaves some
important questions unanswered. Let us instead say, roughly, that a

1. From a mathematical point of view, of course, these criticisms are beside the
point. K could be any set whatever, and R any relation on K satisfying the speci-
fied conditions.
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proposition, P, is possible in a given world just in case it is consistent with,
what I shall call, the fundamental postulates of that world. Similarly, one
might call one world, w] , a possible alternative to another, W{, just in case
all propositions true of Wj are consistent with the fundamental postulates of
Wi. Thus, to paraphrase Hintikka, a possible alternative to a given world is
a world which could, consistently, have been realized given the fundamental
postulates of the given world. This idea forms the foundation of the
semantical theory to follow.2

This proposal presupposes that, if we think of a world as constituted by
a set of propositions, certain of these should be designated fundamental
postulates. For example, if we think of a world as what is described by a
general scientific theory together with a set of initial conditions, and their
deductive consequences, one might associate the fundamental postulates of
the world with the basic laws of the theory. Any alternative possible world
would then have to satisfy at least these same laws, though it might differ
in initial conditions. Or, to look at the matter differently, suppose one
wants to interpret 'it is possible that P9 to mean 'for all I know, P'; one
might then identify the fundamental postulates (of one's own world) with 'all
I know'. It is not necessary now to decide how the class of fundamental
postulates should be defined, but we might observe that with different
construals of 'fundamental postulate' different senses of possibility are
thereby characterized.

Let us use ' P , ' to designate the set of funamental postulates of a world
wi9 and ζBi9 to designate, roughly, the set of all truths of w{. It is natural
to suppose that well behaved worlds are all consistent, in the sense that all
their fundamental postulates are true, i.e. that P, c Bi. When this is the
case, I will say that the world Wi is normal; for the moment I will confine
my attention to normal worlds.

To say that a world, Wj, is possible relative to another, Wi, then is to
say that all the members of Bj are consistent with the members of P f .
Since, we may suppose, Bj (and Bi as well, of course) is a complete and
consistent set of propositions, this is equivalent to saying that P, c Bj.
Notice that if a world is normal, it is related to itself in this way. Thus,
among normal worlds, the defined relation is reflexive. This relation
provides the foundation for the semantics for the system T (or M) of
Gbdel-Feys-von Wright.

Alternatively, one might desire a stronger relation to hold between
alternative possible worlds; one might, for example, require for Wj to be a
possible alternative to w{, not only that all the fundamental postulates of Wi
are true in Wj, but also that they are all fundamental postulates of Wj, that
Pi c Pj. This second relation is not only reflexive but transitive as well.
It provides the basis for the semantics for S4. If one required yet a

2. This basic idea, and some of those derived from it, were originally developed in
conversation with J. Michael Dunn; he preferred a slightly different version of a
possible world to that which will be used here, however.
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stronger relation, that Pi be the very same as P7 for W{ to be related to Wj,

one obtains a relation which is reflexive, transitive and also symmetric,

and thus is suited for S5. Finally, to round out the picture, the relation

which obtains when both P{ c Bj and Pj c B{ is reflexive and symmetric

and can be used in the semantics for the Brouwerische system, B,

introduced by Kripke.

All of these notions will be put more precisely in the next section. The

close connections between this approach and Kripke's should, however,

already be apparent. There is, nevertheless, a fundamental difference in

the two accounts, besides the fact that here we specify a certain sort of

structure to count as a possible world, and then define the relations of

relative possibility in such a way that the formal properties of the

relations, which Kripke must assume, are consequences of the definitions.

For, where Kripke must introduce a different kind of model structure,

(G, K, R) for the semantics for each of the systems T, S4, B and S5, we can

use just one basic kind of structure (defined below) for all of these

systems. But, while Kripke can get by with one method for evaluating

formulas, given any model structure, we must apply different evaluation

functions, corresponding to the different relations, for each of the different

systems.

3. In this section, the ideas introduced above are made more precise, and

it is shown how they provide the basis of a semantics adequate for the

normal Lewis modal systems T (M), S4, B, and S5.

It is supposed that these systems—and all other systems discussed

below—are expressed in a language containing atomic formulas, p, q, r,

etc., the usual truth-functional connectives, e.g., & (conjunction), v (dis-

junction), - (negation), etc., and the modal operators, N (necessity) and

M (possibility), governed by the usual grammatical rules. So long as we

are working with classically based systems, we may suppose that conjunc-

tion, negation and necessity are the only primitive connectives, the others

being defined in terms of these three in the familiar ways. Letters Ά', CB\
ζC9, etc. are used as variables for well-formed formulas. And Church's

conventions for the elimination of parentheses are used throughout. The

systems are generated from among the following axiom schemata:

A.O axioms which, together with R.I, are adequate for the classical

propositional calculus.

A.I NA =>A

A .2 N(A 3 B) 3 .NA o NB

A.3 NA^NNA
A.4 A^ N - N - A
A.5 -NA Ό N - NA

with the rule schemata:

R.I modus ponens: from A and A D B, to infer B

R.2 necessitation: if \~A, then \-NA.
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The system T is defined by A.O, A.I, and A.2 with R.I and R.2. S4 is the
result of adding A.3 to T; B the result of adding A.4 to T; and S5 is the
result of adding A.5 (or both A.3 and A. 4) to T.

To construct corresponding theories of necessity from a semantical
point of view, we introduce the concept of a world-frame to answer to the
informal notion of a possible world discussed in section 2. A world-frame
(or world, for short), wi9 is the pair <Pt , Bt), where P{ is a set of formulas
(in the language assumed above), and B{ is a consistent and complete set of
formulas (i.e., for every formula in the language, either it or its denial, but
not both, is a member of B{). Intuitively, P{ is the set of fundamental
postulates of wi9 while B{ includes these and also all contingent atomic
truths of Wi.

Other similar definitions of a world-frame could have been given.
Thus, we could have dropped the requirement of completeness for B{ and
instead imposed appropriate closure conditions on the sets; we would then
have structures similar to Hintikka's model-sets. This would simplify the
definition of 0 given below. Or, we could let B{ and P t be sets of atomic
formulas or their denials, which would make a world-frame more like a
Carnapian state-description. Equivalently, one could define a world-frame
as a pair (P, B), where P and B are functions assigning truth values to
atomic formulas, B a complete function and P a partial function. This is
the approach preferred by Dunn; on its basis he first announced complete-
ness results for the four systems T—S5, though not necessarily with proofs
like those given below. However, the present proposal has the advantage of
allowing more manipulation and hence greater generality. It will be seen
later, for example, that in some cases it is desirable to allow P, to be an
inconsistent set. Such a world would be difficult to describe in the language
of assignment functions.

A world, w{ = (P{, B{) is normal if and only if P f c J5t . For the re-
mainder of this section, it will be presumed that all worlds discussed are
normal. As indicated in section 2, we can define relations, R, of relative
possibility between worlds on the basis of relations between their sets P
and B. When w{ = (Pi, B{) and Wj = <P; , Bj), let us say:

Wi Ri Wj iff Pi c Bj
Wi Rz Wj iff Pi c Pj and Pi c Bj3

Wi R3 Wj iff Pi c Bj and Pj c B{

Wi R4 Wj iff Pi = Pj and Pi c Bj and Pj c ft.3

For normal worlds, obviously, Rι is reflexive, R2 is reflexive and
transitive, R3 is reflexive and symmetric, and R4 is an equivalence
relation.

Let us define a (normal) model, μ, as the pair (wQ, W)9 where W is a
set of (normal) world-frames and woe W. Intuitively, 'wQ' may be thought

3. For normal worlds these last conjuncts are redundant; they become important
later on.
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to designate the actual world for μ. Given μ = (w0, W), the evaluation

function on μ, φμ(A, iV{), is defined as follows for formulas, A, and each

world, Wi, in W\

(a) If A is an atomic formula, φμ(A, ιι\) = T iff Ae Be,

Supposing that φμ(B, Wi) and φμ(C, w;) are defined for all uueW ,

(b) φμ(B & C,Wi) = T iff φμ(B, Wi) = T = φμ(C, w{)

(c) 0μ(-C, Wi) = Ύiίϊφμ(C, Wi) ΦΎ

(d) φμ(NB, wi) = T iff Φμ(B, WJ) = T, for every WJ in W such that

Wi R Wj.

Let 0μ(A, w^ = F if 0μ(A, w, ) * T by (a)-(d). This definition of 0 is, of

course, ambiguous; what must actually be defined are four functions,

01, 02, 03, and 04, according as the relation R mentioned in clause (d) is Rl9

Rz, R3, or R4. In what follows, I will continue to use 'R' (and ζφ') without

indices when what is being said applies equally to all relations (or

functions).

Given μ = (w0, W), a formula, A, is true on μ by Rx (R2, R^, R4) if and

only if 0j/2'3'4)(A, w0) = T. And A is T (S4, B, S5)-valid iff A is true on

every (normal) model, μ, by Ry (R2, R3, β 4 ) . The semantical consistency of

the systems T - S5 can easily be established on this basis.

Theorem 1. If A is provable in T (S4, B, S5), then A is T (S4, B, S5)-valid.

This follows as a consequence of Kripke's consistency theorems, since

any β(=(wo,W)) coupled with Rλ {R2, R3, fl4) is a T (S4, B, S5) model

structure in Kripke's sense. It can also be easily established directly that

all the axioms of these systems are valid in the present sense, and that the

rules preserve this property.

To prove the completeness theorems, I shall adopt methods based on

those of Henkin [6], thus avoiding the need for semantic tableaux. A

similar proof is sketched by Kaplan [10], and Thomason [16J has applied

related methods to Intuitionistic logic.

We begin by stating some general results which apply to all the

systems considered in this paper.

Theorem 2. (Due to Kripke [12] p. 206) If X is any calculus containing the

theorem schemata A D (A& . . . &A) and (A& . . . &A) D A, and if modus

ponens is admissible in X, then X can be recursively axίomatized with

modus ponens as the sole rule of inference.

This theorem facilitates proofs of later lemmas. When appropriate it

will, henceforth, be tacitly assumed that the systems discussed have been

so re-axiomatized.

Lemma 1. The well-formed formulas of a system X are enumerable.

Lemma 2. If X is any consistent system containing all the theorems of the

classical (or intuitionistic) propositional calculus, then if -A is not provable

in X, then the system X\ which results from the addition of A as an axiom

to X, is consistent. (See, e.g., Mendelson [15], p. 63).
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As a corollary to lemma 2, we see that if X is a consistent extension
of the classical propositional calculus, then if not K4 in Xthen the result of
adding -A to X is likewise consistent.

Every consistent classically based system has a complete and con-
sistent extension which, given some non-theorem, can be defined to
determine a counter-model for that formula. (Cf. Mendelson [15], p. 64.)
There is, however, a more general result which is applicable to the
intuitionistically based systems of sections 7 and 8, as well as to the
classical systems now under consideration. Let us say, with Curry, that a
system X has the alternation property if and only if whenever \-C v D in X
then \-C in X or \-D in X and conversely. This next lemma is similar to one
of Thomason's [16]; it is here proved in a slightly different way.

Lemma 3. If X is a consistent extension of the intuitionistic propositional
calculus, and if not \-A in X, then there is a system, Y, which is a consistent
extension of X with the alternation property {or ACE of X, for short), and
not\-A in X.

Proof: Let X be axiomatized as in theorem 2, and suppose that not \-A in X.
Let Bι . . . . B{, Bi+1 . . . be an enumeration of the well-formed formulas of
X (lemma 1). We now define a sequence of systems Yo . . . Ff . . . induc-
tively as follows: (a) Yo = X. Suppose that F, has been defined, (b) If
\--Bi+1 in Yi9 then Yi+1 = F, otherwise, if not I—B i + ι in Yi9 let C be the first
wff (in the enumeration) such thatKB f + 1 v C in Ft- then if it is not the case
that Bi+1\-A in Yi9 let Yi+1 be the result of adding Bi+1 as an axiom to Fz .
But, if Bί+ι\-A in Yi9 let Yi+1 be the result of adding C as an axiom to Y{.
Finally, let Y be the union of all these Ff .

(1) It is obvious that Y is an extension of X. (2) To show that A is not
provable in Y it suffices to show that A is not provable in any of the F t . A
is not provable in Yo (=X) by hypothesis. Suppose that nothA in Y{; then if
Yi+1 = Yi9 then not \-A in Yi+i. If F / + 1 = F, plus Bi+l9 then not Bi+ι\-A in F t

but if A were provable in F ί + 1 , then it would be that Bi+1v-A in F, ; so A is
not provable in F / + 1 . On the other hand, if Bi+1\-A in Yi9 and if Yi+1 = F,
plus C, where C is the first formula such that KB i + 1vC in Yi9 then if \-A in
Ft+i, C\-A in Yi9 from which it would follow that f-A in F, (by the principle
that if KBvC and B\-A and C K A , then h-A) contrary to the inductive
hypothesis; hence A is not provable in F / + 1 . This completes the induction;
A is provable in no Y{, so A is not provable in Y itself.

(3) That F is consistent follows from the fact that A is not provable in
F (since Y-B z>. -B ^ A); it could also be established directly by induction on
i, as in (2).

To prove (4) that F has the alternation property, suppose that hC v D in
F. C = £ ; + 1 and D = £ / + i , for some z and j . Since KB/+1 v J5/+1 in F, there is
a least number k such that >jB ί + 1 VJBJ+1 in F&. Let m = maχ(i, j , k): so
\-Bi+ιvBj+ι in F w . Now, either κB f + 1 in F t + 1 or ,Bt +ihA in F, . If ^ 5 / + 1 in
F + 1 , then κ B ί + 1 in F, i.e.h-C in F, and we are done. Otherwise, J5t + 1 hA in
Ym. Similarly, either KB; + 1 in F ; + 1 or £ ; + ihA in F ; . If ι-5; + 1 in F / + i , then
HJ3y+i in F, i.e. hZ) in F, and we are done. Otherwise, 5 ; + 1 h A in F w .
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However, since \-Bi+1vBj+1 in Ym, it could not be that both Bi+1\-A in Ym

and Bj+1 \-A in Ym, since that would imply that \-A in Ym and hence \-A in Y,
contrary to what was established in (2) above. Therefore, either hC in Y or
v-D in Y.

Since the law of the excluded middle— B v -B, for all J5—is provable in
any extension of the classical propositional calculus, it follows as an
immediate corollary to lemma 3, that if X is a consistent, classically based
system in which A is not provable, there is a complete and consistent
extension (CCE) of X in which A is not provable. We are now in a position
to show how any non-theorem of any of these systems can be falsified.

Let K be any consistent extension of one of the systems T, S4, B or S5,
(except where mentioned I shall consider these four cases as one), in which
both R.I and R.2 are admissible, and suppose that some formula, A, is not
provable in K. We let K define a model which falsifies A as follows:

Let M be any ACE of K. Let the world-frame determined by M, wMy be
the pair (PM, BM), where PM is the set of all formulas B such that \-NB in M,
and BfΛ is the set of all formulas B such that v-B in M. Let L be an ACE of
K in which (the above mentioned) A is not provable (lemma 3), with WL the
world-frame determined by L. Finally, let μ κ = (wL, W), where W is the
set of all worlds determined by ACE's of K.

Since all these systems M are consistent, and since they all contain the
law of the excluded middle, and so are complete (they are all CCE's of K),
all the sets BM are complete and consistent. Moreover, all members, wM,
of W are normal—PM c BM— since if [-NB in M, then KB in M, by A.I.
Clearly, wLe W. Hence, μκ is an appropriate model by which to evaluate
formulas in these systems. Before showing how μκ must falsify A, we
prove an intermediate lemma.

Lemma 4. If M is any ACE of K, then there is a system N such that (a) KB
in N if and only if\-NB in M, for any B, (b) N is a consistent extension of K,
and (c) the world wN* determined by any ACE, JV*, of N is such that
wM R wN*.

Proof: Suppose that M is axiomatized as in theorem 2. Let the axioms of
N be all and only those formulas, B, such that hNB in M. We note that
modus ponens is admissible in N, since A.2 is derivable in M. This
suffices to establish (a). That JV is an extension of K can be seen from the
fact that if v-B in K, then HV£ in K, by R .2, and so v-NB in M, which entails
that \-B in JV. Moreover, if JV were inconsistent then for some B, \-NB in M
and t-JV - B in M, which would imply that KB in M and I—B in M, contrary to
the assumed consistency of M. This proves (b).

There are four cases necessary to prove (c) according as (i) R is Rλ

and K is an extension of Γ; (ii) R is R2 and K is an extension of S4; (iii) R is
# 3 and K is an extension of B; and (iv) R is β 4 and K is an extension of S5.

(i) It is trivial that PM c BN*, for if BePM,\-NB in M; so B in JV and
B in JV* which implies that Be BN*. Therefore wM Rλ w^*. (This argument

applies to all the later cases as well.)
(ii) To see that PM c PN* (under the conditions of this case), observe
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that if \~NB in M, hNNB in M (by A .3), so if B e P M , \-NB in JV* and BePN* .
Hence wM R2 wN*.

(iii) Suppose that BePN*, i.e., that μJVJS in JV*; it cannot be the case
that \--NB in JV (by the consistency of AT*), and so not μJV - NB in M. But if
not hJV - ΛΓ£ in M, then h-JV - NB in M (by \-N - NB v-N - NB in M and the
alternation property); but, in that case KB in M (by A.4) and so BeBM.
Therefore, wM R3 wN*.

(iv) This case is proved by combining the arguments of (i)-(iii) and by
applying A.5 to show that P^* c P ^ .

Given μκ as defined above we can now prove:

Lemma 5. For all wM e W, φμκ(B, wM) = T if and only if KB in M.

Proof'. By induction of B. (a) If B is an atomic formula, then v-B in M iff
Be BM (by definition) iff φμκ(B, wM) = T (by definition). Suppose then that the
lemma holds for formulas C and D. (b) If B = C&D, then \-C&D in M iff i-C
in M and KD in M, iff 0 μ κ (C, wM) = T and 0μκ(Z), wM) = T (inductive hy-
pothesis), iff φμκ(C&D, wM) = T. (c) If B = -C, then if h-C in M, then not
hC in M (by the consistency of A/), and so φμκ(C, wM) Φ T (inductive
hypothesis), in which case φμκ(-C, wM) = T. But if it be given that
Φμκ(-C, wM) = T, then φμκ(C, wM) Φ T, and so not \-C in M. Now in this
case if not hC in M, then h -C in M (by the completeness of M). (d) Sup-
pose 5 = NC. If h-iVC in M, then Ce P M . Let JV be any ACE of K (so wNeW)
such that ^ M β ^N Since PAJ C BN? ^ e .BΛ/. Hence, i-C in JV and so, by the
inductive hypothesis, φμκ(C, wN) = T. This is sufficient to show that
φμκ(NC, wM) = T. If φμκ(NC, wM) = T, then for all wN in W such that
wM R wN, φμκ(C, wN) = T. But if NC were not provable in M, there would be
a system JV, as described in lemma 4, which is a consistent extension of K
and not hC in JV; let N* be an ACE (CCE) of JV such that not hC in JV*
(lemma 3). wN*e W, obviously, and wM R wN* (lemma 4). If follows that if
φμκ(NC, wM) = T, then φμκ(C, wN*) = T, and so \~C in JV*, contrary to the
specification of JV*. Hence, if φμκ(NC, wM) = T, then f-JVC in M. This
completes the proof of lemma 5.

Semantical completeness theorems for the four normal systems now
follow immediately from this lemma.

Theorem 3. If A is T (S4, B, Sb)-valid, then A is provable in T (S4, B, S5).

For, if A were not provable, there would be a model μκ = (wL, W),
defined as for lemma 5 letting K be T (S4, B, S5), such that A is not true in
MK by β x (R2, R3, R4), since it is stipulated that A is not provable in L and
so 0μ κ(A, wL) Φ T (lemma 5).

4. We now begin to examine some non-normal systems of modal logic, that
is, systems which are not closed under R.2. This section is devoted to the,
so called, epistemic systems, in which no formulas of the form NA are
provable. The formulations of the systems below are those of Lemmon [14]
or very close to his.

The system E2 is defined by the principles A.O, A.I, A.2, and R.I of
section 3, but in place of R .2 it has
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R.2* Ify-A z> B, then \-NA => NB.

The system E3 is formed by adding the axiom schema

A .2' N(A 3 B) D N(NA z> j\ί£)

to E2. If E2 is extended by the axiom

A.6 NT -3NNT,

where T is some designated tautology, such as (p^>p), the system ET
results. To form E4 add A.6 to E3; one could also add A.3to E2 to form
an equivalent system. The epistemic version of B, EB, is formed by adding

A. 4' NB z> .AΏ N - N- A

to ET; while if this axiom be added to E4, the system E5 is obtained.
Equivalently, one could define E5 by extending ET with the axiom schema

A.5* NB D .-NA 3 N - NA,

or by extending E2 with the schema

A.5" NB -DN('NA => N - NA).

In an important sense, each of these systems is an epistemic analogue
of one of the normal systems discussed in section 3. No formula of the
form NA is provable in any of these systems, but if the formula N(p z> p) is
added as an axiom to ET (E4, EB, E5), the system so formed is equivalent
to T (S4, B, S5). Similarly, if N{p D p) be added to E2 (E3) and the extended
system is closed under R.2\ the system so formed is also equivalent to
T (S4). If, however, R.21 is restricted to formulas provable in the
unextended system—that is, if E2 (E3) is re-axiomatized with modus ponens
as the sole rule of inference (theorem 2), and then extended by the addition
of N(p z> p) as an axiom—the resultant system is equivalent to S2 (S3)
discussed below.

It is easily shown that if a formula, A, is provable in one of these six
E-systems, then NA is provable in the corresponding S-system. Hence, of
course, each E-system is properly contained in the corresponding S-
system. It is also known that if A is provable in one of the systems S2-S5,
then N(p^ p) ^ A is provable in E2-E5. (Cf. Lemmon [14], p. 200, 213.)

When trying to develop semantics for these systems E2-E5, along the
lines presented in section 3, keeping all basic semantical concepts the
same as defined there, a complication arises. As mentioned, in the
epistemic systems no formula of the form NA is provable. Accordingly, no
such formula should be valid on interpretation. Certain formulas, however,
such as p 3 p, being tautologies, are true in every world, and so would be
true in every world related by R to w0 in any model μ = (w0, W). Following
the definition of 0 presented above, this would make, e.g., N(p^ p) true in
such a w0 and hence valid.

The key to avoiding this problem, as observed by Kripke, lies in
deploying the notion of the normality of worlds. A non-normal world—a
world, Wi, in which P{ ςL Bi— is, so to speak, an impossible possible world.
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In such a world it is natural to think that no proposition whatever is
necessary. Or, to say the same thing, we should require that for a
proposition of the form NA to be true in a world, that that world must be
normal.

Accordingly, we modify clause (d) in the definition of the evaluation
function 0 on μ to read:

φμ(NB, Wi) = T iff wι is normal and φμ(B, Wj) = T, for all Wj e W such
that Wi R wj.

This emmedation is redundant for the sorts of models considered in
section 3, for it was supposed there that all worlds were normal. But we
now freely allow for models μ = (w0, W) in which some or all members of
W are non-normal. A model, μ, in which every world in W is normal will
be called a normal model. One in which at least w0 is normal will be called
a semi-normal model. (These become important later.) Theorems 1 and 3
of section 3 should now be understood as saying that a formula is provable
if and only if it is true in all normal models.

Definitions of truth in a model and validity are as before. For E2 and
E3 we evaluate formulas on arbitrary models using R1 and R2. Thus, we
should say that A is E2 (E3)-valid iff A is true on all (arbitrary) models, μ,
by Ri (R2). Notice, in this regard, that R2 remains transitive and both
relations are reflexive on the set of normal worlds; i.e. Wi R w{ iff wι is
normal.

To interpret formulas in ET-E5 some additions are necessary. In
order to validate A.6, NT D NNT, it is necessary to insure that if a normal
world, wi9 is related to Wj by R, then Wj is also normal. We can accomplish
this in two ways. We could introduce the notion of an E-normal model as a
model, μ = (w0, W), for which every member of W, except for perhaps w0,
is normal, and then use Rλ - R4 as before. Or we could simply stipulate the
normality of Wj when u\ R wj. To simplify some later proofs, I shall now
adopt the latter course. (Later we shall see how the former can be
applied.) Thus, let us say:

Wi R5 Wj iff w{ Rί Wj and Wj is normal

Wi R6 WJ iff Wi R2 Wj and Wj is normal

Wi RΊ Wj iff Wi R3 Wj and Wj is normal

Wi R8 Wj iff w{ R4 Wj and Wj is normal.

A formula, A, is ET (E4, EB, E5)-valid if and only if A is true on all
(arbitrary) models, μ, by R5 (R6, RΊ, R8). Given these bases we can now
extend the semantical consistency and completeness theorems of section 3
to all the E-systems:

Theorem 4. If A is provable in E2 (E3, ET, E4, EB, E5), then A is

E2 (E3, ET, E4, EB, E5)-valid.

I leave to the reader the task of verifying that all the axioms of these
systems and R.I are valid, in the appropriate senses. To see that R.21 is
also valid, suppose that A ^ B is valid, but that NA ^ NB is not—i.e., that
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there is a μ = (w0, W), such that φμ(NA 3 iV£, w0) Φ T. If ψμ(iVA 3 JVJ3, H*,) *
T, φμ(NA, w0) = T and so w0 is normal, and φμ(NB, w0) Φ T. Since w0 is
normal, there must be a world ^ e W for which w0 R w{ and φμ(B, w{) Φ T.
Since φμ{NA, wQ) = T and w0 R w{, φμ(A, w{) = T. It follows that φμ(A 3 5,
wf ) Φ T. Let μ* be the model (wiyW) with the same W as for μ. By the

Lemma. // μ = {w0, W) and μ* = (wi9 W), then φμ{A, wj) = φμ*(A, wj)

it follows that φμ*(A 3 #, #;,-) * T, contrary to the assumption that A^B
was valid. (Cf. Kripke [12], p. 214.) A similar argument validates R.2 on
all normal models.

To establish the semantical completeness of these epistemic systems,
it is necessary to modify slightly the methods of section 3. (Theorem 2 and
lemmas 1, 2, and 3, however, carry over without alteration.) Let K be any
extension of one of the systems E2-E5 which is closed under RΛ and R.2,r

and let L, M, N, etc. be ACE's of K. We define wM, the world-frame
determined by M, now as the pair (PM, BM), where BM is, as before, the set
of formulas provable in M, and PM is the set of formulas, B, such that
N(p D p) D NB is provable in M.

If A is a formula not provable in #, we want a model which will falsify
A. Let μx be (^L>W)> as before, where W is the set of all world-frames
determined by ACE's of K and wL is a world determined by an ACE of K, I ,
in which A is not provable (lemma 3). With μκ defined, lemma 5 can now
be proved. However, to establish case (d), two more small lemmas and a
minor modification of lemma 4 are required.

Lemma 6. If there is any formula, B, such that \-NB in M, then WM is

normal.

Proof: Suppose that h-NB in M, and suppose that C EPM. NB D N(p D p) is a
theorem of K and so a theorem of M. Hence, N(p 3 />) is provable in M. If
C ePM, then t-JV(/> => p) o NC in M; hence \-NC in M. But then hC in M, and
so C e BM This shows that PM £ ^M and ̂ M is normal.

Lemma 7. If wM is normal, then \-N(p op) in M.

Proof: Suppose that wM is normal, but that N(p 3 p) is not provable in M.
By the completeness of M, it follows that -N(p 3 p) is provable in M.
-iV(/> 3 p) 3 . JV(/> D p) ONB and -iV(/> D />) D ^ ( P 3 />) 3 iV - 5 are also both
provable in M. Consequently, hiV(/> ^ p) o NB in M and hN(/> o p) D N - B
in M. So £ePM and -EePM. Since, by hypothesis, PM QBM,BeBM and
-Be PM, which is to say KB in M and h-i? in M, contrary to the consistency
of M. Hence, N(p 3 />) must be provable in M.

In order to apply lemma 4 to these systems, with the revised definition
of PM, it is necessary to add to it the condition that N(p 3 p) be provable in
M; thus lemma 4 should now read:

If M is an ACE of K and if \-N(p 3 p) in M, then there is a system N, such

that . . . . etc.
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This added condition has, by lemma 6, the effect of requiring wM to be
normal. Under this condition the set PM defined as above is the same as
the set of formulas, B, such that \-NB in M, which was how PM was defined
in section 3. The proof of lemma 4 can now go through as before, but with
these modifications to part (c):
(1) Case (i) in which R is Rλ and K is an extension of E2 is unchanged.
(2) For case (ii) in which R is R2 and K is an extension of E3, we cannot
appeal to A.3 as before. However, to show that PM c PN*, it is sufficient to
show that if hNC in M, then \-N(p D p) ^ NC in JV*. NC D N(N(p D p) D NC)
is a theorem of E3; so N(N(p^p) D NC) is provable in M, from which it
follows that N(p D p) D NC is provable in JV and thus in iV*.
(3) For case (v) ((vi), (vii), (viii)) in which R is R5 (β6, Rly RQ) and K is
from ET (E4, EB, E5), it is necessary to know that ws* is normal (in
addition to knowing that the requisite relations between PM and PN* and B^*
obtain). This follows by lemma 6 and the fact that \-N(p Dp) in JV*, since
y-N{p^p) ^NN{p^p) in M, so \-NN(p^p) in M which implies that
\-N{p^>p) in AT*.

The proof of lemma 5, that φμκ(B, wM) = T iff \-B in M, now proceeds as
before. For case (d), in which B has the form NC, if i-JVC in M, then wM is
normal, by lemma 6; we then argue as in section 3 to show that
φμκ(NC, wM) = T. If, on the other hand, it is given that φμκ(NC, wM) = T,
then wM must be normal. So, \-N(p Dp) in M, by lemma 7. Lemma 4 is then
applicable, and it can be shown that NC must be provable in M as in
section 3. This guarantees the semantical completeness of the systems
E2-E5:

Theorem 5. If A is E2 (E3, ET, E4, EB, E5)-valid then A is provable in
E2 (E3, ET, E4, EB, E5).

5. Lewis' own favorite systems of modal logic, S2 and S3, are like the
epistemic systems just discussed in failing to satisfy R.2. They do have
theorems of the formiVA, but none of the form NNA, however. The systems
52 and S3 are defined (following Lemmon [14]) by taking strict forms of the
axioms of E2 and E3 respectively. Thus, given the axiom A. 1, for example,
let NA.l be the result of prefixing it with JV; similarly for the other
postulates. The axioms of S2 are then NA.O, NA.l, NA.2, and, of course,
A.I itself. R.I continues to hold, as does this strict version of R.2T:

R.2" 7/HJV(ΛD B),thenv-N{NA^NB).

53 results from the addition of NA.2f to S2. (R.2ft is thus redundant in S3.)
As mentioned earlier, if a formula, A, is provable in E2 (E3), then NA

is provable in S2 (S3). This is readily proved by induction on the proof of A
in E2 (E3). Hence E2 (E3) is contained in S2 (S3). S2 and S3 are them-
selves, obviously, contained in the systems T and S4 respectively. Fur-
more, just as the addition of N(p D p) to E2 and E3 produces S2 and S3, so
the addition of NN(p D p) to S2 and S3 results in T and S4, if the extended
systems are closed under R.2".

To develop S2 and S3 from a semantical point of view, we employ the



164 L. F. GOBLE

class of semi-normal models mentioned in the preceding section. A model,
μ = (w0, W), is semi-normal if and only if w0 is normal (though some, or
all, other members of W might be non-normal). Using the same definitions
of Rλ and R2 and of φ as were used in section 4, let us say that a formula,
A, is S2 (S3)-valid if and only if A is true on every semi-normal model, μ,
by R, (R2).

Theorem 6. If A is provable in S2 (S3), then A is S2 (S3)-valid.

The reader may verify for himself the validity of all the axioms and
rules of these systems.

Rather than trying to establish the completeness of these systems
directly as was done in the preceding sections, we can reduce the problem
to the results already established for E2 and E3.

Lemma 8. If A is S2 (SZ)-valid, then N(p ^ p) ^A is E2 (E3)-valid.

Proof: Suppose that A is S2 (S3)-valid, i.e. that A is true on all semi-
normal models by Rλ (R2)> We show that for any arbitrary model, μ =
(wo,W), that if φμ(N(p^p), w0) = T, then 0μ(A, w0) = T. If φμ(N(p^p), w0) =
T, then w0 must be normal. So this μ is semi-normal. So φμ(A, w0) = T,
from the supposition of S2 (S3)-validity of A. From this it follows that:

Theorem 7. If A is S2 (S3)-valid, then A is provable in S2 (S3).

For, if A is true on all semi-normal models, then N(p => p) ^ A is true on
all (arbitrary) models, by lemma 8. By theorem 5, this implies that
N(p^p) ^A is provable in E2 (E3). Since E2 is contained in S2 (and E3
contained in S3), N(p^p) D A is thus provable in S2 (S3). N(p^p) is
provable in these systems; hence, A is provable in S2 (S3).

This argument also suggests an alternate characterization of the
systems T, S4, B and S5. For we could evaluate formulas in these systems
using semi-normal models and β5, R6, R7, and R8 respectively. An argu-
ment similar to the above would then prove:

Theorem 8. A is true on all semi-mormal models by R5 (R6, R7, R8) if and
only if A is provable in T (S4, B, S5).

Four related systems should be mentioned at this point. These are the
systems S2.B and S3.5 and their epistemic analogues E2.B and E3.5. S2.B
and E2.B are defined by the addition of A.4': NB D. A ~D N - N - A, to S2
and E2 respectively. S3.5 and E3.5 are formed by adding A.5': NB 3. -NA D
N - NA, to S3 and E3. S2.B and E2.B were first introduced by Lemmon in
[14]. (He called them S2(S) and E2(S).) S3.5 is due to Aqvist [l] and was
discussed from a semantical point of view by Cresswell [3], using Kripkean
model structures, as well as by Lemmon [14] who also considered E3.5
there. These systems are interesting in that they stand to S2 (E2) and
S3 (E3) as B (EB) and S5 (E5) stand to T (ET) and S4 (E4). Thus, for
example, S2.B and S3.5 become B and S5 when closed under R.2; E2.B and
E3.5 become EB and E5 when extended by the addition of A.6.

Thus far, these four systems have proved recalcitrant when their
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semantics is approached with the present methods. It would be natural to
think that for S2.B we could evaluate formulas using R3 on semi-normal
models and for S3.5 using R4 on semi-normal models. (Similarly for E2.B
and E3.5 on arbitrary models.) However, the proof of lemma 4 breaks down
for the case with R3 when we cannot appeal to the derivability of NN(p ^ p)
in the system M when N(p ^ p) is derivable. β 4 as defined is identical with
R8, so that manner of evaluation validates all formulas of S5 (E5). I leave
it an open problem to develop an adequate semantics for these systems
within the present framework.

6. In this section, the basic ideas of the semantics so far developed are
adapted to apply to deontic varients of all the systems discussed above.
These systems are characterized by the failure of A.I, NA ^A, to be
derivable. If N is interpreted now not as necessity but as obligation, it
would be inappropriate to infer from the fact that something was obligatory
(NA) that it occur (A). It would, however, be in order to infer that it was
permissible, or that its denial was not obligatory (-N -A). Accordingly, in
place of A.I, the deontic systems have

AΛ' NA-D-N-A.

Where X is any of the modal systems E2-S5 considered in sections 3, 4
and 5, let its deontic counterpart, DX, be the result of replacing A.I with
A.V. In addition it is necessary to postulate for DS2 the strict version of
A.lr, NA.l', i.e., N(NA => -N -A), in place of NA.l, and also the 'material*
axioms A.O and A.2, since these are no longer derivable from NA.O and
NA.2 through A.I and R.I. DS3 results from the addition of A.2r and
NA.2' to DS2.

One curious fact results from this way of defining the deontic systems.
DB is not contained in DS5 as one would expect. For, A z> N - N - A is
derivable in DB, but not in DS5. If it were derivable in DS5, then A.I would
be a theorem of that system.4 N(A ^ N - N - A) is, however, provable in
DS5 without trouble. (Similar remarks apply to the systems DEB and DE5.)
This disparity between DB and DS5 is unfortunate, but unavoidable given the
present approach. Shortly I will present another system, closely related to
DB which is properly contained in DS5.

Most of these deontic systems, DX, are new. DE2 was examined by
Lemmon in [13] under the name 'D2'. DT, DS4, and DB are not the same as
Hanson's systems bearing the same names [5], for his systems all contain
the thesis N(NA D A ) , which is not provable in the systems defined here.
DT is the same as Hanson's D, and, since N(NA D A) is derivable in DS5,

4. Thus: 1. ϊ-A-DN-N-A hypothesis
2. I—N-NA DA from 1, substituting -A for A
3. h-NA Z)NNA A.3
4. Y-NNA D -N-NA A.V
5. \~NA D -N-NA 3, 4 transitivity
6. i-NA ^A 2, 5 transitivity
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that system is the same as his DS5. (Shortly I will consider some other
systems in which this formula, N{NA ^ A), is a theorem.) DT, DS4 and
DS5 are the same as Fitch's DM, DS4 and DS5 in [4]; however, in his DB
A^N-N-A is not provable, although N(A 3 N - N - A) is, as is N(NA =)
A).

The basic change required for the semantics of these systems is in the
notion of normality. If a proposition, P, is necessary (obligatory) in a
world iff P is true in every world related by R to the given world, one
should not want to demand that that world be related to itself lest A. 1 be
validated. Rather, one should require only that there be some world related
to the given world. This ensures the validity of A.2'. Let us, therefore,
say that for μ = (wθ9 W), a world, w{, in W is d-normal in μ if and only if
there is a world, Wj, in W such that w{ R Wj. (Notice that, unlike the
original notion of normality, d-normality is only defined with respect to a
model μ.) For these deontic systems, the definition of the evaluation
function 0 on μ should now be modified so that clause (d) reads:

(df) Φμ(NB, Wi) = T iff W{ is d-normal in μ and φμ(B, Wj) = T for every
Wj e W such that w{ R WJ.

Let us say that a model, μ = (w0, W)9 is d-normal iff every member of
W is d-normal in μ; μ is d-semi-normal iff w0 is d-normal in μ. A
formula, A, is DT (DS4, DB, DS5)-valid iff A is true on all d-normal
models by Rλ (R^, fl3, β4). A is DS2 (DS3)-valid iff A is true on all d-semi-
normal models by Rλ (R2). A is DE2 (DE3)-valid iff A is true on all
(arbitrary) models by Rλ (Rz). Validity for DET-DE5 requires special
attention and will be considered momentarily.

Theorem 9. A is DX-υalid iff A is provable in DX (where X is one of
E2, E3, S2-S5).

Semantical consistency can be proved directly without difficulty. To
prove completeness we must adapt the arguments of the preceding sections
to suit the deontic systems.

If A is a non-theorem of K [K any extension on any of DE2, DE3,
DT-DS5, closed under the rules), the model μ κ to falsify A is defined
exactly as in section 4. Lemma 4 holds without modification. The analogue
of lemma 7, that if wM is d-normal in μκ, then t-N(p ^p) in M, can be
proved in much the same way as lemma 7 was originally proved. It is of
course trivial for extensions of DT-DS5; hence, we need only consider the
case in which K is an extension of DE2 or DE3. Suppose that wM is
d-normal in μ^. This means that there is a world, wN, such that wM R wN,
which entails inter .alia that for such an N, PM c BN. So, suppose that not
\-N(p =>/>) in M; then I—N(p ^ p) in M by the completeness of M. It follows
(by -A ^ . A ^B) that \-N(p => p) D NB in M and \-N(p 3 p) => N - B in M, so
that BePfΛ and -B ePM. But then BeBN and -Be BN, which is to say, KB in
N and I—B in N, contrary to the consistency of N. Hence, \-N(p ^ p) in M.

The analogue of lemma 6, that if \-NB in M, for any B, then wM is
d-normal in μκ, cannot be proved directly as it was in section 4, for that
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argument depended on the derivability of A.I. However, this lemma does
follow immediately from lemma 4. If \-N(p ^ p) in M, then there is a
system JV* which is an ACE of K such that wM R w^*. Hence, if t-N(p ^ p) in
M, then wM must be d-normal in μκ. Since NB ^ N(p n> p) is provable in M,
if \-NB in Λf, then \-N(p D />) in M, which assures the lemma. This also
guarantees that if K is an extension of DT, DS4, DB or DS5, then μκ is a
d-normal model as required.

Given these versions of lemmas 4, 6 and 7, the argument for lemma 5,
that φμκ(B, wM) = T iff KB in M, proceeds exactly as in section 4. This is
sufficient to prove the semantical completeness of the systems DE2, DE3,
DT-DS5.

The reduction of the completeness problem for DS2 and DS3 to that of
DE2 and DE3 follows the argument of section 5. Lemma 8 carries over
unmodified. It is only necessary to show that DE2 c DS2 and DE3 c DS3.
This follows from

Lemma 9. // B is provable in DE2 (DE3), then both B and NB are provable

in DS2 (DS3).

The proof is left to the reader.
I have deliberately excluded the systems DET-DE5 from the preceding

discussion, for these systems demand more modification of the methods
previously developed. In section 4 formulas in ET-E5 were evaluated on
arbitrary models using R5-R8. These relations contain aspects of nor-
mality, as is appropriate for those systems. For their deontic counter-
parts, it would be natural to replace regular normality with d-normality in
the definitions of the R, so that we would say, for example, that w{R5 Wj iff
WiRLWj and Wj is d-normal in μ. However, since the definition of
d-normality presupposes antecedent definitions of the relations R, this
cannot be done. In place of using relations like R5-R8 for formulas in DET-
DE5, we can, however, use Rx-R4 as for DT-DS5, applying them to, what I
shall call, d-E-normal models. A model, μ = (ιvo,W), is d-E-normal iff
every member of W, except for perhaps wQ, is d-normal in μ. A formula is
DET (DE4, DEB, DE5)-valid iff A is true on all d-E-normal models by
Ri (#2> β3> ^ J T n i s allows us to state

Theorem 10. A is DET (DE4, DEB, ΌE5)-valid if and only if A is provable
inΏEΎ (DE4, DEB, DE5).

Proving the consistency of these systems presents no new problems.
Semantical completeness does present one additional difficulty. To prove
the falsifiability of any non-theorem—through lemma 5—it is necessary to
define a model μκ in such a way as to guarantee that it is a d-E-normal
model.

Suppose that A is the formula not provable in K (from DET-DE5) which
we seek to falsify. Select a system L which is an ACE of K such that A is
not provable in L (lemma 3). Then if N(p D p) is not provable in L, let
μ<κ = (WL> WL})> Otherwise, if \-N(p D p) in L, then the system K' obtained
by adding N(p => p) as an axiom to K is consistent; so let μκ = (ιvL, W),
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where W is the set of all world-frames determined by ACE's of K\
including wL. Every member of this set is also a world determined by an
ACE of K. If μκ is defined by the first procedure, it is normal d-E-
even though wL itself is not d-normal in μκ. If μκ is defined by the second
method, then N(p ^ p) is provable in every system M such that wM is in W\
hence, every w^ is d-normal in μκ (lemma 6) and μκ is d-E-normal;
indeed, μκ is d-normal.

The proofs of lemmas 4,6, and 7 are unaffected by these modifications
in the way of defining μκ. In the proof of lemma 5, one must consider the
two ways of defining μκ. If μκ is defined by the second procedure, then μκ

is d-normal and one would argue for lemma 5 as one argued it for the
systems DT-DS5. (Note that K' is an extension of DT-DS5 as K is an
extension of DET-DE5). If, on the other hand, μκ is defined by the first of
the two methods, so that μκ = (w^, {w^}), then no world in the Universe' of
μκ is d-normal in μκ (by lemma 7 and the fact that N(p ^> p) is not provable
in L), so no proposition of the form NC could be true in any such world. By
the same token, since N(p 3 p) is not provable in any system determining
worlds in this universe, no proposition of the form JVC is provable.
Consequently, case (d) in the proof of lemma 5 becomes inapplicable when
μκ is defined in this way. Hence, the proof of lemma 5 can go through as
before. Thus the semantical completeness of the systems DET-DE5 is
guaranteed.

A similar argument could be applied to show that we can adequately
evaluate formulas in ET-E5 using Rλ-R4 on E-normal models (models,
μ = (w0, W), in which every member of W, except for perhaps w0, is
normal), thus obviating the need for R5-R8 altogether. R5-R8 are, however,
helpful in evaluating formulas in a family of systems I shall call D + -
systems, When DX is one of the deontic systems discussed above, but
especially one of DET-DE5 or DT-DS5, let DX+ be the result of adding

A.7 NB^.N(NA^A)

as an axiom to DX. And for DB+ and DEB+ let the axiom A.4 or A.4' be
replaced by NB D . N(A => N - N - A).

The systems DT+, DS4+, DB+ and DS5+ are equivalent to Hanson's
systems DM, DS4, DB and DS5 [5]. DET + -DE5 + are, to my knowledge, new.
A.7 is redundant in DS5+ and DE5+ so these systems are equivalent to DS5
and DE5 respectively. We should also note that DB+ c DS5+ and DEB+ c
DE5+. A.7 says, in effect, that NA ^ A holds in every world related to a
d-normal (actual) world, so that every such world is itself normal, even
though the actual world might not be. If we were to speak of alternate
permissible worlds (instead of alternate possible worlds), this says that
every alternate permissible world to our actual world is a perfect world, a
world in which everything which ought to happen, does happen.

The effect of this condition on the relation of 'alternate permissibility'
is achieved through the use of R5-R8 as they were defined in section 4.
Thus, we may say that a formula, A, is DET+ (DE4+, DEB+, DE5+)-valid if
and only if A is true on all (arbitrary) models by R5 (R6, RΊ, β 8), using φ as
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defined for the deontic systems above, and that a formula. A, is DT + (DS4+,
DB+, DS5+)-valid iff A is true on all d-semi-normal models by R5 (β 6 , R7,
R8). The proofs of all earlier lemmas go through unimpeded for these
systems, so we conclude:

Theorem 11. A is DET+ (DE4+, DEB+, ΌE5+)-valid if and only if A is
provable in DET + (DE4+, DEB+, DE5+);

Theorem 12. A is DT + (DS4+, DB+, DS5+)-valid iff A is provable in DT +

(DS4+, DB+, DS5+).

(We note that the equivalence of DS5 and DS5+ and of DE5 and DE5+ is
reflected in the identity of RA and R8.)

Another approach to the D+-systems, more in line with Hanson's
account, would be to define a class of d+-models, μ = (wo,W), for which
every member of W, except for perhaps w0 is normal, and d+-normal
models as those d+-models, μ, for which w0 is d-normal in μ. We could
then evaluate formulas in DET+-DE5+ using R^-R^ on all d+-models, and
evaluate formulas in DT+-DS5+ using Rι~R4 on all d+-normal models.
(Unhappily, A D N-N-A, and NB D. A D N-N-A become valid for DB+(DEB+)
when they are approached in this way. Since these formulas are not
derivable in DB+ and DEB+ as originally defined, they would have to be
reintroduced as postulates if these systems are to prove complete on this
interpretation.)

7. Exploiting known analogies between intuitionistic logic and Lewis'
system S4, Kripke has shown how a semantics for intuitionistic logic can be
constructed on the basis of what are essentially S4 model structures
(G, Ky R). In this section I show how a similar course can be followed
within the present framework to determine a semantics for the intuitionistic
propositional calculus, IPC. In the next section, I show how this account
can be extended to some modal extensions of this system.

I shall presume some standard axiomatization of the intuitionistic
propositional calculus, such as given by Heyting [7], expressed in the same
propositional language as before. Now, however, the connectives, ^ and v,
must be regarded as primitives along with & and -. The outstanding
difference between IPC and the classical propositional calculus is, of
course, the failure of the law of the excluded middle, Av-A, to be derivable
in the former system. Semantically this difference may be expressed by
weakening the definition of a world so that the set B, while consistent, need
not be complete. (Since we can ignore the role ofP in a world-frame for
now, I will now change terminology slightly in order to avoid confusion.)

Let a model, i, be a pair (d0, D), where D is a set of sets of formulas
such that for each di in D, di is a consistent, but not necessarily complete,
set of formulas, and doeD.

Given such a model, i = {d0, D), we can define an evaluation function,
φL(A, d{) for each formula A and each di e D.

(a) If A is an atomic formula, then φL(A, di) = T iff Ae di.
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Suppose that φL(B, di) and φL(C, di) are defined for every d% e D.

(b) φt(B&C, di) = T iff φL(B, di) = T = φt(C, di)
(c) (/)£(£vC, di) = T iff φL(B, di) = T or 0 t(C, rff ) = T;
(d) 0 t (5 z> C, rft ) = T iff for every dj eD such that d{ c rf; , if 0,(5, rf; ) =

T, then 0 t(C, dj) = T;
(e) φt(-B, di) = T iff for every dj eD such that d{ c d; , 0,(5, d; ) * T .

And, if 0t(A, <fc) Φ T by (a)-(e), let us say that 0t(A, rf, ) = F. What is
distinctive in this manner of evaluating formulas can, of course, be seen in
clauses (d) and (e). A formula, A, is IPC-valid iff φL(A, d0) = T, for all
models i - (d0, D).

Theorem 13. A is IPC-valid if and only if A is provable in IPC.

Proof of semantical consistency is left to the reader.
Enough machinery has already been mobilized, in section 3, to prove

the semantical completeness of the calculus. Suppose that K is any
consistent extension of IPC and suppose that A is some formula not
provable in K which we want to falsify. Let a model ικ be defined as the
pair (dL, D), where D is the set of all theorems of all systems, M, which
are consistent extensions of K having the alternation property (ACE's of K);
dL is the set of theorems of I , an ACE of K in which the given formula, A,
is not provable (lemma 3).

We now establish the principal lemma leading toward completeness,
the analogue of lemma 5, that φLK(B, dM) = T iff \-B in M, for every system
M such that d^ 6 D. The proof is by induction of B. The cases in which B is
an atomic formula or of the form C&D or C vD are trivial. Supposing that
the lemma holds for formulas C and D, we show it for C ^ D and -C.

If \-C 3 D in M, then C 3 De dM, by definition; hence, for any N such
that dM c dN, C =) DedN, which is to say, \-C D D in N. For such an N, if
φtκ(C, dN) = T, given the inductive hypothesis, \-C in N; so\-D in N, by
modus ponens, and φLK(D,dN) = T, by the inductive hypothesis again. This
shows that φiκ(C => D, dM) = T. Suppose it be given that φLκ(C D D, dM) = T,
but suppose not \-C D D i n M . This implies that not C \-D in M. Now either
(--C in M or not h-C in M. If μ-C in M, then by -A =>. A => 5 , h-C => D in M
contrary to the assumption; so not \--C in M. The system, N, obtained by
adding C as an axiom to M is therefore consistent (lemma 2). iV is an
extension of K. D is not provable in AT, for otherwise D would be derivable
from C in M. Hence there is a system, N*, which is an ACE of N is which
D is not provable (lemma 3). Let dN* be the set of theorems of JV*; du*eD,
since AT* is an ACE of an extension of K. dM c dN*, since iV* is an extension
of an extension of M. Given that φiκ{C => A <iM) = T, if 06 κ(C, dN*) = T, then
φLκ(D, dN*) = T. Since kC in N*, by the inductive hypothesis, φtκ(C, dN*) = T;
so, φtκ{D, dN*) = T. But then, again by the inductive hypothesis,\-D in AT*,
contrary to the specification of JV*. So we must conclude that \-C ^ D in M.

If h-C in M, then l— C in N for any iV such that dN e D and dM c dN.
Hence, nothC in N, by the consistency of N, so φίκ(C, dN) Φ T, for any such
N. Therefore, 0 ί κ (-C, dM) = T. Suppose now that φiκ(-C, dM) = T, but that
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not \--C in M. It follows that the system N obtained by adding C as an axiom

to M is consistent (lemma 2). Hence, N has an ACE, N*9 (lemma 3) such

that dN*eD and dM c dN . Given that φlκ(-C, dM) = T, φικ(C, dN*) Φ T. It

follows, by the inductive hypothesis, that not \-C in N*. But C is an axiom
of N*. So -C must be provable in M.

This establishes the lemma; from it completeness follows directly.
Suppose that A is some formula not provable in IPC. Let K be IPC.
0ιχ(A, dL) ^ T , since by stipulation A is not provable in L, an ACE of K.
Therefore, if A is not provable in IPC, A is not true on ικ. If A is IPC-
valid, A must be provable in IPC.

8. We can now combine this approach to intuitionistic logic with the
preceding account of the modalities to provide semnatics for some intui-
tionistically based modal systems. These systems are developed in a
direction suggested by a system of Bull [2], which is, in a sense, an
intuitionistic counterpart to S5.

One of the prime advantages of Lemmon's formulations of the modal
calculuses, which have been followed in this paper, is that they make
manifest how the modal systems can be based on a foundation of classical
logic. We obtain intuitionistic analogues of these systems by changing that
basis: Where X is any of the modal systems discussed above, let IX be the
result of replacing A.0, the set of axioms for classical logic, byA.0r a set
of axioms which, with R.I, generates the intuitionistic propositional
calculus, IPC. In addition, we postulate for these systems the axiom
schema

A. 8 NAv-NA.

This postulate is somewhat unfaithful to the spirit of the intuitionistic
enterprise. With it, the systems say, in effect, that while propositions in
general may obey intuitionistic principles, necessitative propositions—
those provably equivalent to propositions of the form NB—obey classical
laws. However, the semantical principles given below seem to require the
presence of this postulate.5

Semantics for these systems, IX, can be developed with only minor
adaptations of methods proposed for X. Let a world, wi? be the pair (Pi9 Bt)
as before, except now Bi need not be a complete set. Thus the B{ will work
like the di of section 7. As before, a model, μ, will be a pair (wθ9 W) where
Wis a set of worlds, ιvi9 as described, and ivoe W. Let Rl9 RZ9 R39 and R4

be defined as in section 3. (We shall ignore R5-R8; for the systems
IET-IE5, we shall instead make use of E-normali models along the lines

5. One consequence of having A.8 derivable in IX, which simplifies discussion, is
that it allows us to define possibility in terms of necessity and negation. From a
more genuinely intuitionistic point of view, the possibility operator should be
treated as a primitive, not equivalent to - N - , just as the existential quantifier
cannot be defined in terms of the universal quantifier and negation in the intui-
tionistic predicate calculus.
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suggested in section 6.) For the evaluation of formulas of the sort -A and
A => B, we introduce a relation, S, such that

Wi S Wj iff Pi = Pj, and B{ c 5/.

This is just an elaboration on the relation, c , as used in section 7.
Let us say that a world, wiy is normalj in μ (μ = (w0, WO) if and only if

Pj Q Bj, for every world, WJ, in W such that «;/ S Wj. This is a strong
condition; in effect, it requires that for a world to be normal not only must
it be related by R to itself, but also that every world 'contained' in it must
be related by R to itself. (For classical worlds which were normal in the
original sense, this condition was automatically met, since the only world
Wj such that Wj S W{ was Wi itself.) For deontic systems this is weakened,
as it was in section 6, to d-normalityi: a world, Wj, is d-normali in μ iff
for every Wj in W such that Wj S Wi, there is a world, wk, in W such that
Wj R Wk

A model, μ = (ιv0, W), is normal] iff every world in W is normali in μ.
μ is semi-normali iff w0 is normali in μ. μ is E-normali iff every world
in W, except for perhaps w0, is normali in μ. Similarly, for d-normali,
d-semi-normali, d-E-normali models, but with d-normalityi replacing
normal normalityi. A model, μ, is d+-normali iff μ is E-normali and w0 is
d-normali in μ. (We could also speak of d+-E-normali models, but these
would just be E-normali models.)

Given a model, μ = (w0, W), we define the evaluation function, φμ as
before. If A is an atomic formula or of the form B&C or Bv C, φμ(A, W{) is
defined exactly as in section 7, with Bi in place of d{. If A has the form
B^C, then φμ(A, w{) = T iff for every Wj in W such that tin S Wj, if
φμ(B, wj) = T, then 0μ(C, Wj) = T. Similarly, if A has the form -B,
Φμ(A, Wi) = T iff φμ(B, Wj) Φ T, for every Wj in W such that Wi S Wj. If A
has the form NB, then φμ(A, Wj) = T iff W{ is normali in μ and φμ(B, Wj) = T,
for every Wj in W such that Wj R Wj. (It is understood that for deontic
systems normalityi in this definition is to be replaced by d-normalityi.)

A formula, A is IT (IS4, IB, IS5)-valid iff A is true on every normal!
model by Rλ (R2, R3, R4). A is IS2 (IS3)-valid iff A is true on every semi-
normali model by Rι (R2). A is IE2 (IE3)-valid iff A is true on every model
by βx (β 2), and finally, A is IET (IE4, IEB, IE5)-valid iff A is true on every
E-normali model by Rλ (β 2 , R3, R4). We define validity for the ID and ID+

systems similarly, replacing each type of model by its d or d+ counterpart,
and using the definition of 0 adapted for deontic interpretations.

Theorem 14. A formula, A, is IX-υalid iff A is provable in IX {ivhere IX is
any of the above mentioned systems).

The semantical consistency of these systems can be shown without
difficulty. It is, however, helpful to know these facts:
(1) If Wi is normal (d-normali) in μ and Wj S Wi, then Wj is normali
(d-normali) in μ.
(2) If Wi is normal (d-normali) in μ and Wj S Wi and φμ{A, Wj) = T, then
φμ(A, w\) = T.
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(3) If μ = (w09 W) and μ* = (wi9W) (same W), then φμ(A, wf) = φμ*(A, Wj),
for every Wj in W.

To prove the semantical completeness of these systems, IX, let μ κ be
defined as in section 4 (with the modifications of section 6 for IET-IE5 and
their deontic variants). Then the proof of lemma 5 that φμκ(B, wM) = T iff
\-B in M, where M is any ACE of K, can go through as in sections 4 and 8.
However, to establish the cases in which B is of the form C z> D or -C, it is
necessary to have

Lemma 10. // M and N are ACE's of K and if N is an extension of M, then
WM S WN.

Proof: That BM c BN is trivial. Similarly, if CePM, then CSPN Suppose
that CeP^; i.e. \-N(p ̂  p) z> NC in N. Since M has the alternation property
and \-N(p ̂  p)v -N(p => />) in M, HVfa ^/)) in I or h-JV(/> D />) in M. If
HV(p z> />) in M, then hN(p D />) in iV, so hAΓC in N. Then, if not \-NC in M,
again with A.8 and the alternation property, I—NC in M, in which case
I—NC in N, violating the consistency of N. Hence \-NC in M, so \-N(p D />) D
iVC in M and Ce PM. If, on the other hand, \--N(p o p) in M, then hiV(/) =) p) Z)
AΓC in M (by -A z>. A D 5) and Ce PAI. Thus, PN c P M J and so PM = P N . This
shows that wM S wN. This lemma is necessary to guarantee that the worlds
determined by the systems described for these cases in section 7 stand in
the requisite relation S.

The proof of lemma 7 goes through without modification for these
intuitionistically based systems, given the reflexivity of S and given A.Sand
the fact that the systems determining worlds in W all have the alternation
property.

To re-establish lemma 6, that if [-NB in M, then ^ M is normalj in \±κ,
we must show that if h-NB in M, then for every wN such that wN S wM ,
PN c BN. Suppose that \-NB in M; it follows that \-N(p^p) in M. It also
follows that, if wN S wM, γ-N{p^> p) in N; for if not \-N(p Z) p) in N, then
I—N(p Z) />) in AT, by A.8 and the alternation property, which would mean that
I—N(ρ z> p) in M, contrary to the consistency of that system. So, for any C,
if CePN, i.e. iϊh-N(p^p) ^ NC iniV, then \~NC inN. So hC inN, by A.I and
thus CeBu- Hence, PN c B^. (For the deontic systems one would argue as
above that if \-NB in M, then \-N(p z> p) in iV, after which lemma 4 can be
brought to bear, as in section 6, to show that there is a world, wp such that
wN R wP.)

With these variations on lemmas 6 and 7, the proof of lemma 5 for the
case in which B has the form NC can be carried out exactly as in section 4.
It follows that the systems IX are all semantically complete with respect to
the specified interpretations.6

6. The role played by A.8 in the foregoing discussion is so central that, at this
time, I see no way of dispensing with this postulate to form modal extensions of
IPC which are truer to the intuitionistic point of view while remaining within the
present framework.
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