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VARIATIONS OF ZORN'S LEMMA, PRINCIPLES OF COFINALITY,
AND HAUSDORFF'S MAXIMAL PRINCIPLE.

PART II: CLASS FORMS

JUDITH M. HARPER and JEAN E. RUBIN

5 By varying the ordering relation, we obtain a large number of maximal
principles. Some are equivalent to the axiom of choice, some are weaker
but do not follow from the axioms of set theory, some are provable from
the other axioms, and the negations of some are provable from the other
axioms. In Part I, [l],* we considered the set forms of maximal principles.
In this paper we consider the class or strong forms. The results for class
forms are similar to those for sets, but frequently the Axiom of Regularity,
AR, is used to insure that at various stages of the proofs sets occur and not
proper classes.

Section 6 of this paper deals with class forms of Zorn's Lemma and
Principles of Cofinality; section 7, class forms of Hausdorff's maximal
principle; and in section 8 we give a list of the statements used in the
paper. The notation used is similar to that used in [1]. For convenience,
we shall repeat some of the definitions here.

5.1 NBG° denotes von Neumann-Bernays-Gδdel set theory excluding the
Axiom of Regularity, AR, and the Axiom of Choice. NBG = NBG° + AR.
All proofs are in NBG° unless specifically stated otherwise.

5.2 If R partially orders a class X, ye X, and S = {ueX: uRy} then S is
called the R-initial segment of X generated by y and is denoted by 3Γ.

5.3 A class X is ramified by a relation R iff R partially orders X such that
every ^-initial segment J" of X is linearly ordered by R.

5.4 A class X is a forest under the relation R iff R partially orders X such
that every .R-initial segment 3Γ of X is well ordered by R.

*The first part of this paper appeared in Notre Dame Journal of Formal Logic,
vol. XVII (1976), pp. 565-588.
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5.5 A class X is a tree under the relation R iff X is a forest and every
finite subset of X has an i?-lower bound.

5.6 A subclass Q of a partially ordered class (X, R) is quasi-cofinal in X
iff Q has no strict upper bound in X. Q is cofinal in X iff Q is linearly
ordered by R and for each y e l there is a £ e Q such that 3?i?>s.

For a class X, let

Wx = {(t, w): t c X & w c ί x t & w well orders t}.

Let / be the relation defined on Wx such that

(t, w) I(t', w')ifftQt'&w = wtn(txt)&tx(t'~t)Q w\

I will be called the initial segment relation and (WX,I), the tree of well
ordered subsets of X.

5.7 Let Ro = 0 , Ra+ι = Ra u /*(Λα) for all ordinals α, and Ra = U #« if a is a

limit ordinal. It is well known that in NBG°, AR is equivalent to V = U Ra.
a € On

Consequently, assuming AR we can define the rank of a set x by p(x) = the
smallest ordinal number a such that ΛΓ C Ra.

5.8 Finally, as in [ l ] , we use the following symbols for types of relations:

A: arbitrary
TR,: transitive
AS: antisymmetric
C: connected
P: partially ordered
W: well ordered
L: linearly ordered
D: directed (upwards)
R: ramified
F: forest
T: tree
AS & C: antisymmetric and connected
TR & C: transitive and connected

Most other symbols and notation used here and not defined above are
defined in [1].

6 Zorn's Lemma and Principles of Cofinality In [ l ] , Z(Q, U) stands for the
statement:

Every non-empty Q-ordered set, in which every U-ordered subset has an
upper bound, has a maximal element.

The natural way to obtain a class (or strong) form of Zorn's Lemma is to
change the word " s e t " to " c l a s s " in both places where it occurs in Z(Q, U).
Thus, we obtain the statement ZC(Q, U):
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Every non-empty Q-ordered class, in which every U-ordered subclass has
an upper bound, has a maximal element.

However, this form is sometimes difficult to work with because it is
difficult to satisfy its hypothesis. (See, for example, Theorem 6.3 and the
dicussion following 6.3.)

Another variation which is considered in [2] is the following, ZS(Q, U):

Every non-empty Q-ordered class, in which every U-ordered subset has an
upper bound, either has a maximal element or contains a U-ordered
subclass which is a proper class.

To see that the second part of the conclusion is necessary, take the
class of ordinal numbers, On, which is well ordered by c. Any subset of
On has its union as least upper bound, and yet On has no maximal element.
Also, any subclass which is a proper class is well ordered and cofinal
in On.

We consider another class form which is a weakening of ZS(Q, U), but
is of interest because of its relationship to a Principle of Cofinality.

ZRS(Q, U): Every non-empty Q-ordered class, in which each initial segment
generated by an element is a set and in which each U-ordered subset has
an upper bound, either has a maximal element or contains a U-ordered
subclass which is a proper class.

Finally we consider

ZRC(Q, U): Every non-empty Q-ordered class, in which each initial
segment generated by an element is a set and in which each U-ordered
subclass has an upper bound, has a maximal element.

However, it turns out that ZRS(Q, U) = ZRC(Q, U).

Lemma 6.1 ZRS(Q, U) = ZRC(Q, U) for all Q and U.

Proof: Clearly, ZRC(Q, U) — ZRS(Q, U). Conversely, suppose ZRS(Q, U)
holds and that X satisfies the hypothesis of ZRC(Q, U). Then, by ZRS(Q, U),
either X has a maximal element or X has a ί/-ordered subclass Y which is
a proper class and has an upper bound b. Clearly, Y Qb. By hypothesis, b
is a set, and F , being a proper class, cannot be a subclass of a set. Thus,
X has a maximal element. Q.E.D.

Consequently, in what follows we shall omit consideration of ZRC(Q, U).

We easily see that for all Q and U

ZC(Q, U) — ZS(Q, U) - ZRS(Q, U) - Z(Qt U).

Therefore, if Z(Q, U) is false in NBG° so is each of the corresponding
class forms. Also, if Q —> U, each of the corresponding class forms is
provable in NBG°. Moreover, as for the set forms, we have the rules:

If Uγ -> U2 then ZT(Q, Uλ) — ZT(Q, U2) for all Q and for T = C, S, or RS.
If Qι —' Q2 then ZT(Q2, U) — ZT(Q1? U) for all Q and for T = C, S, or RS.
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Consequently, we see that each of the following class forms are false in

NBG° ( s e e [ l ] , section 2):

ZC(Q, U) for Q = A, AS, C, or AS &C, and U = TR & C, P, L, D, R, W, F,
or T,

ZC(Q, U) for Q = A or AS, and U = TR, C, or AS & C,
ZC(C, U) for U = AS, TR, or AS &C,
ZC(A, AS),andZC(AS & C , TR).

Similarly for ZS(Q, U), ZRS(Q, U), and Z(Q, U).

The following class forms are provable in NBG°:

ZC(Q, U) for Q = U,

ZC(Q, A) for all Q,
ZC(Q, AS) for Q = AS &C, P, L, D, R, W, F, or T,
ZC(Q, TR) for Q= TR &C, P, L,D, R, W, F, or T,
ZC(Q, C) for Q = AS & C, TR & C, L, or W,
ZC(Q, AS & C) for Q = L, or W,
ZC(Q, TR & C) for Q = L, or W,
ZC(Q, P) for Q= L, D, R, W, F, or T,
ZC(β, L) for Q= W,
ZC(Q, D) for Q= L or W,
ZC(Q, R) for ρ = L, W, F, or T,
ZC(Q, U) for Q = W, F, or T, and U = F or T.

Similarly for ZS(Q, U), ZRS(Q, U) and Z(Q, V).

We see also that ZC(TR., W) is the strongest of the remaining class
forms of Zorn's Lemma. That is, in NBG°, ZC(TR, W) implies each of the
remaining class forms. We shall show next that there is a class form of
the Well Ordering Theorem which implies ZC(TR, W). Let WOS be the
statement:

Each proper class is equipollent to On.

Theorem 6.2 WOS -> ZC(TR, W).

Proof: Let X be a non-empty class and R & transitive relation on X such
that each R -well ordered subclass of X has an i?-upper bound. Suppose
F: On « X. Define a function G on On such that

G(0) = F(0),

G(a) = ίF{0ί) i f ( V β < a){G(β) RF{a))>
\F(0) otherwise.

The range of G is an Λ-well ordered quasi-cofinal subclass of X. Con-
sequently, an Λ-upper bound for the range of G is an ^-maximal element
of X. Q.E.D.

Next, let
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A * = {ZS(Q, U): Q = TR, P, R, F, or T, and U = C, AS & C, TR & C, L, D, or

w},
B* = {ZS(Q, U): Q = L o r R, and U = F o r T; o r Q= L and U= W},
C * = {ZS(Q, R): Q= P or D } ,
D* = {ZS(Q, 17): Q = P or D, and £/ = F or T.},
E * = {ZS(TR, U): U = P or AS},
F * = {ZS(P, £/): *7 = C, AS & C, TR & C, or l_},
G* = {ZS(TR & C, U): U = W, F, o r T},
H* = {ZS(TR & C, U): U = AS, AS & C, P, L, D, or R>,
I* = {ZS(TR, U): U= F o r T},
J* ={ZS(TR, R)}.

Using the same arguments as used for the corresponding set forms, it
is easy to show that each pair of statements in each of the sets B*-J* are
equivalent in NBG°. (The same remark is true if "ZS" is replaced by
"ZC" or "ZRS".)

To show that each pair of statements in A* are equivalent in NBG°, we
show first that the proof that Z(P, L) -* Z(P, W) ([1], Theorem 2.2) can be
modified to show that ZS(P, L) — ZS(P, W).

Theorem 6.3 ZS(P, L) — ZS(P, W).

Proof: Let X be a class partially ordered by R in which every well
ordered subset has an upper bound. Let W= {(s, R/s); s c X & R/s well
orders s}. W is partially ordered by /, the initial segment relation, and
every linearly ordered subset has an upper bound. By ZS(P, L), W has a
maximal element or a linearly ordered subclass which is a proper class.
If W has a maximal element, m, then an upper bound for m is a maximal
element of X. Otherwise, W has a linearly ordered subclass C, which is a
proper class. \j(Jb(C)) is well ordered by R and is a proper class. Thus,
ZS(P, L) -> ZS(P, W). Q.E.D.

Similarly, it can be shown that ZS(TR, C) — ZS(TR, W), ZS(R, L)->
ZS(R, W), ZS(P, D) -> ZS(P, W), and ZS(Q, U) — ZS(TR, W) for Q = R, F, or
T, and U = W, L, C, or D. Consequently, the 30 statements in the set A*
are pairwise equivalent in NBG°. The same statement holds if "ZS" is
replaced by "ZRS". However, the proof of 6.3 cannot be used to prove
ZC(P, L) —» ZC(P, W) because the class Win the proof does not necessarily
satisfy the hypothesis of ZC(P, L). In fact, we do not know whether the
statements in A* with "ZS" replaced by "ZC" are pairwise equivalent in
NBG°. However, we do have the following diagram for these statements:

ZC(T,W) = ZC(T,L) =ZC(T,AS&C) = ZC(T,TR&C) ^ZC(T,C) =ZC(T,D)
III III III III III III

ZC(F,W) = ZC(F,L) =ZC(F,AS&C) =ZC(F,TR&C) =ZC(F,C) =ZC(F,D)

ZC(R,W) -ZC(R.,L) =ZC(R,AS&C) =ZC(R,TR&C) =ZC(R,C) =ZC(R,D)

ZC(P,W) -ZC(P,L) =ZC(P,AS&C) = ZC(P,TR&C) =ZC(P,C) =ZC(P,D)

ZC(TR,W) ->ZC(TR,L) =ZC(TR,AS&C)-ZC(TR,TR&C) =ZC(TR,C)/

^ ^ ^ ^ ^ > ZC(TR,D) ^ ^ ^ ^

Figure 6.1
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Consequently, to prove pairwise equivalence it would be sufficient to
prove that ZC(T, W) -> ZC(TR, W). However, we can prove ZRS(P, L) ->
WOS in NBG, and this is sufficient to prove that each statement in A* with
" Z S " replaced by " Z C " or "ZRS" implies WOS in NBG.

It is easy to see that WOS is equivalent to the statement WOS':

The universe can be well ordered in such a way that each initial segment is
a set.

In [2], Theorem 3.28S, there is a proof that ZS(P, L) -»WOS'. The
axiom of regularity is used in the proof. This proof is easily modified to
show ZRS(P, L) -* WOS'. We can also prove a class form of Theorem 2.7,

[1].

Theorem 6.4 NBG ι-ZRS(D, W) - WOS'.

Proof: Let

A = {(x, w): w c x x x, w well orders x, & (Vs, t)(s ex & p(t) < p(s) -> tex)}.

Since (ZRS(D, W) — Z(D, W) & (Z(D, W) = WO), A is a proper class. Order
A as follows: (x, w) S(xr, w') iff x c χf or (x, w) = {xr, w). S partially orders
A and every initial segment is a set. Moreover, if (x9 w) and (#', w1) are
not S-related then there exists a β such that x u x' Q {u: ρ(u) ^ β}. Let a be
the least such β. Let y = x u x' and order y by w* = w u (wr Π (x* ~ x)2) u
(x x (x' ~ x)). Then (y, w*) eA. Since it could be that x = x' but w Φ w\ we
need to extend y by one more element. So if {u: p(u) < a} ~ y Φ (#, let ur be
an element of this set. Otherwise choose some u' of rank a + 1. Then
y U {u'} ordered by w* u ((y U {w}) x {w}) yields an upper bound for (x, w) and
(xr, w'). Thus A is directed by S. If w = {(^, wα): α < λ} is a well ordered
subset of A, then we can construct an upper bound for w in the following

manner. Let x = U xa For uex let O(w) = the least α such that u is in # α .

Order x as follows: uRv iff O(w) < O(t>) or [O(u) = O(υ) = a &u wav].
Clearly, (x, R) is in A and each xa Q x for α < λ. If for some a, xa = x then
we can extend x by one more appropriately chosen element so that we
surely have an upper bound for w. So by ZRS(D, W), A has a well ordered
subclass, T, which is a proper class. We can now construct a well ordering
of V such that every initial segment is a set using T and a method similar
to that just used to construct an upper bound for w. Q.E.D.

The set form of the principle of cofinality is C(Q, U):

Every Q-ordered set contains a quasi-cofinal U-ordered subset.

We shall consider two class forms of this principle.

CC(Q, U): Every Q-ordered class has a quasi-cofinal U-ordered subclass.

CRS(Q, U): Every Q-ordered class, in which every initial segment generated
by an element is a set, has a quasi-cofinal U-ordered subclass.
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For set forms, a variation of Zorn's Lemma is equivalent to a
corrrsponding principle of cofinality and the situation is similar for class
forms:

Theorem 6.5 If Q is at least a transitive order and U is a property on
classes which holds for any singleton, then

(a) ZC(Q, U) ̂ CC(Q, U),

and

(b) ZRS(Q, U) ̂  CRS(Q, ϋ).

Proof: We will prove (b), the proof of (a) is similar. Assume ZRS(Q, U),
and let X be a Q-ordered class under the relation i? in which every initial
segment is a set. If X has a maximal element m, then {m} is a quasi-
cofinal U-orάereά subset. If X has a U-ordereά subclass Y which is a
proper class, Y must be quasi-co final. For if not, then Y would have an
upper bound, u, and Y Qu. This is impossible since u is a set. The other
possibility is that X has a U-orάereά subset which has no upper bound. In
this caseX has a quasi-cofinal £/-ordered subset. Therefore, ZRS(Q, U) —>
CRS(Q, U).

Assume CRS(Q, 17) and let X ordered by JR satisfy the hypotheses of
ZRS(Q, U). Then X has a quasi-cofinal C7-ordered subclass, Y. If Y is a
set, then Y has an upper bound which is clearly a maximal element. If Y is
a proper class the result clearly follows. Therefore, CRS(Q, U) —>
ZRS(Q, U), and the equivalence is established. Q.E.D.

Next, we shall show that there is a class form of Feigner's Theorem
(2.4, [l]). To do this we use a class form of the order extension principle
OE. Let OES be the statement:

Every partial order of a class can be extended to a linear order,

and let OER be:

Every partial order of a class, such that every initial segment generated by
an element is a set, can be extended to a linear order such that every initial
segment generated by an element {with respect to the extended order) is a
set.

Lemma 6.6 NBG H-OES — OER.

Proof: Let X be a class partially ordered by R in which every y is a set.
Define S(O) = {x: x eX & (p(x) = 0 or (3y)(y e X & p(y) = O & xRy))}. By AR
(and either there are no individuals or the class of individuals is a set) and
every y" is a set, S(O) is a set. By OES there is a linear order iΐ* o n l
which extends R. Let /(0) =R*/S(O). In general, for a > 0, define S(a) =

{xixeX & (p(x) = of or (3y)(yeX & p(y) = a & xRy))} ~ U (S(β)). As for S(O)

each S(a) is a set. Let /(α) be the restriction of R* to S(a). Now define L
on X by: ΛΓL̂  iff (3a)(3β)(xeS(a) by eS(β) & α < β) or (3y)(κ, 3> eS(γ) &
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χf(y)y) L is clearly an extension of R. It is also clear that U (S(a)) = X
αeOn

and {S(a): αeOn} is a disjoint collection. It follows that L is connected on
X.

Now suppose xLy and yLz. Let t(x) = a where a is the unique ordinal
number such that x e S(a).

Case i: t(x) < t(y) < t{z). Then clearly xLz.
Case ii: t{x) < t(y) = t(z) = a, and yf(a)z. Then t{x) < t(z). Therefore, xLz.
Case iii: a = t(x) = t(y) < t(z)land zf(a)y. Then t(x) < t(z). Therefore, xLz.
Case iv: a = t(x) = t(y) = t(z) and xf(a)y and ;y/(α)£. Then xf(a)z by the
transitivity of f(a). Therefore, xLz.

Thus L is transitive on X. It is also clear that L is antisymmetric.

That every J" is a set follows because if %) = a then 3Γ c U (S(β)) which is a
β^a

set. This completes the proof of the lemma. Q.E.D.

Theorem 6.7 NBG + OES hCRS(L, W) - WOSf.

Proof: Let A be as in the proof of Theorem 6.4. (Again, we assume that
there are no individuals or the class of individuals is a set.) In NBG° + OE
we have CRS(L, W) ->C(L, W) and C(L, W) -> AC. Thus, A is a proper
class. Let / be the initial segment relation on A, so that A is a tree as
ordered by /. Let O((x, w)) = the ordinal number of x as well ordered by w.
Let P b e a linear order of A (for instance one which extends =). Define /*
on .4 by: (x,w) I*(x',wr) iff O((x,w)) < Odx^w*)) or [θ((xfw)) = O((x',wf)) &
(x, w) P(xr, w1)]. Now let Q be a linear order of P(y) = V which extends c
and such that every proper initial segment y is a set. This can be done by
using OER. Now define /** on A by: (x, w) /**<#', w*) iff (x = x1 &
(x, w) I*(xr, w )) or xQx\ A ordered by /** is a linearly ordered proper
class such that every proper /**-initial segment *y is a set, and /** extends
/. (That *y is a set follows because 3Γ1S a subset of {(#', w'): x'Qx &w'c
x' x x' & w' well orders x'} where y = (x, w). The set of well orderings of a
set x is dominated by P(x x x) which is a set. This along with every initial
Q-segment S~of P(V) being a set, shows that $~is a set.)

By CRS(L , W), A ordered by /** has a well ordered cofinal subclass W.
Clearly every proper initial /**-segment of W is a set. Therefore, either
W~λ for some λeOn or PF~On. If W is a set we use the method of
Feigner's proof (see [l], Theorem 2.4) to obtain a well ordering of V, and
conclude that V is a set. This is false, so we have that W is a proper class

and W « On. So W = {{xa, Wa): oί e On}. Define s0 = x0 and sa = U ΛΓβ. Note

each sa is a set and also satisfies the formula:

(*) (Vt)(Vu)(tes &p(u)<p{t)-*ues).

This follows because each xa satisfies this property. Define w* = w0, and

w* = wa Π (xa ~ U Xβ] for a > 0. Now define, z;0 = w£, and y α = U % U
\ β«χ I β~«χ
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( U XR x [xa ~ U Xβ)) U w*. Each va is a set and well orders sa. Because
β«x \ β<a I)

sa satisfies (*), for each α, (sa, va) eA. Moreover, by construction, if
β<a, (Sβ,Vβ)I(sa,va). Therefore, {(sa,va): αeOn} is a well ordered

subclass of A. Consider S = U sα as ordered by U va = V*. It is clear
aeOn a (On _̂

that F* well orders S and that every proper initial F*-segment, y, is a set.
Also S is a proper class. Therefore, S contains elements of arbitrarily
high rank. Moreover, because each sa satisfies (*), so does S. Thus, if
z e V, there exists an a such that ρ(z) = a. Now there exists zr e S such that
p(z) < ρ(z'). But this implies z e S by (*). Hence, S = V. Q.E.D.

To complete the analogy between class and set forms of Zorn's
Lemma, we give a class form of Theorem 2.9, [l]. Let ACW0S be the
statement:

There is a choice function on any class X of non-empty sets such that
X~On.

Using a simple modification of the proof of Theorem 2.9, we obtain its
class form:

Theorem 6.8 ZRS(TR & C, P) -> AC W 0 S .

We summarize our results in Figure 6.2. (See also Figure 2.4 in [l].)
Figure 6.2 remains valid if " Z S " is replaced by "ZRS". However, we do
not have the same results for ZC(Q, U) because we were not able to prove
that the statements in A* with "ZS" replaced by " Z C " are pairwise
equivalent in NBG°. But it does follow from the Theorems 6.2 and 6.4 that
these forms are equivalent in NBG. Thus, we have a somewhat weaker
result for variations of Zorn's Lemma of the form ZC(Q, TJ).

A * ^ F * _ « . C * _ _ ^ H * _ ^ A C W O S

4 /
J*-£E*

J L ^ D C G ^ B * 0 E S + AR- A*
A* = {ZS(Q, CO: Q = TR., P, R, F, or T, and ϋ = C, AS & C, TR & C, L, D, or

W},
B* = {ZS(Q, U): Q = L or R, and U = F or T; or Q = L and U = w } ,
C* = {ZS(Q, R): Q = P or D } ,
D* = {ZS(Q, U): Q = P or D, and U = F or T},
E* = {ZS(TR, ϋ): C / = P o r A S } ,
F* = {ZS(P, U): U = C, AS & C, TR & C, or L>,
G* = {ZS(TR & C, CO: ϋ = W, F, or T>,
H* = {ZS(TR & C, CO: U = AS, AS & C, P, L, D, or R},
I* ={ZS(TR, C7): ί / = F o r T},
J * ={ZS(TR, R)}.

Not (NBG° ι-ACW 0 S - H*) NBG° ί-WOS - A*
Not (NBG° i-B* - A*) NBG H A* - WOS

Figure 6.2
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7 Hausdorffs Maximal Principle LetHC(Q, U) denote the statement:

Every Q-ordered class has a Q-maximal TJ-ordered subclass.

We consider the same thirteen possibilities for Q and U as before. As with
the set forms, we are left with 73 variations which are not simply provable
in NBG° or false in NBG°. In fact, exactly the same relationships hold in
NBG° between these 73 class forms as hold between the corresponding set
forms. See Figure 7.1. In each of the sets A-G in Figure 7.1, each pair of
statements are equivalent in NBG°.

,rHC(TR, P) =HC(TR, A S ) - ^ ^ £ D

HC(A, A S ) ^ - - G « ^ ~ ~~~~ - B

<HC(AS, P) = HC(AS, T R ) ^ . ^ ^

HC(C, TR) = HC(C, TR & C ) ^ "

HC(A, A S & C ) - D

HC(A, C ) « C C ^ " ~~ ^ 5 : B

^ ^ H C ( T R , C) =HC(TR, TR & C ) ^
HC(A, TR & C ) - ^ ^ ^

<HC(AS, P) ̂ HC(AS, TR)- ^

HC(TR, P)=HC(TR, A S ) — - ^

<
HC(AS, L) = HC(AS, TR & C ) < ^

• F c C ^

HC(TR, L) = HC(TR, AS & C)<Γ
X B

^ ^ > P - H C ( A S , D ) ^ — - E

HC(A, D ) ^ •F ^ > H C ( P , D) ^C
^^HC(TR, D ) ^ — •D

<HC(AS, R)«^— -E
—*F ^ > H C ( P , R) ^HC(D, R)
HC(TR, R)^^— ^D

B — C—A
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A = {HC(Q, U): Q= F o r T, and U = C, AS & C, TR & C, L, D, or w} ,

B = {HC(Q, U): Q = P o r D, and ϋ = C, AS & C, TR & C, o r L},

C ={HC(R, £/): 17= C, AS & C , TR & C , L, or D } ,
D ={HC(TR &C,U): U = AS, AS & C, P, L, D, or R>,
E ={HC(AS &C,lf): U = TR, TR & C, P, L , D, or R},
F = {HC(C, U): U = P, L, D, or R},
G = {HC(C, AS), HC(C, AS & C), HC(AS, C), HC(AS, AS & C)}.

Figure 7.1

Let FCS be the class form of the principle of finite character:

For every class X and every property P of finite character there exists a
Q-maximal subclass of X with the property P.

As with the set forms,

FCS-> HC(A, U)

for U = AS, TR, AS & C, C, TR & C, P, L, D, and R. Consequently, FCS im-
plies each of the 73 variations of HC(Q, U) given in Figure 7.1.

Lemma 7.1 If Q is at least a partial order and U = I, D, or W then

HC(β, U) ->CC(Q, U).

Proof: A c-maximal £/-ordered subclass of a Q-ordered class is quasi-
cofinal. Q.E.D.

(It is also true that HC(TR & C, AS) -> ZC(TR & C, AS). The proof is
the same as for the set forms. See [l], section 3.)

It was shown in Theorem 6.5(a) that if Q is at least a transitive order
and U holds for every singleton then ZC(Q, U) = CC(Q, U) and it was also
shown above that ZC(Q, ϋ) — WOSf in NBG for Q = TR, P, R, F, or T, and
U = C, AS & C, TR & C, L, D, or W. Therefore, it follows that each state-
ment in the set A in Figure 7.1 implies WOS' in NBG and each statement
given in Figure 7.1 which implies A also implies WOS' in NBG. Moreover,
HC(D, R) -* WOSf in NBG because the class A of Theorem 6.4 ordered by /,
the converse of /, is directed, and if Y is a c-maximal ramified subclass
and y e Y then Z = y Π Y is a quasi-cofinal well ordered subclass in A as
ordered by /. Then U 3>(Z) = V and is well ordered by \J<K(Z) such that
every proper initial segment is a set. (See Theorem 3.5 in [1].)

Next, we shall show that Theorems 3.14 and 3.15 of [l] also have class
forms. Let ACS be the statement:

There is a choice class for each non-empty class of pairwise disjoint
non-empty sets and let ACL 0 S be ACS for a linearly ordered class of
non-empty pairwise disjoint sets.

Then it is clear that we can prove

HC(TR, P ) - ACS,
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and

HC(TR & C , L ) - AC L O S ,

similarly to the proofs of 3.14 and 3.15, respectively. It is shown in [2] that
ACS -* WOS in NBG. We summarize our results for the class forms of
Hausdorff's maximal principle in Figure 7.2. In each of the sets A-M in
Figure 7.2, each pair of statements are equivalent in NBG°.

(We leave it as an exercise for the reader to consider forms of
Hausdorff's maximal principle in which the ordering relation has the
property that each initial segment generated by an element is a set.)

HC(A, AS) HC(A, TR) HC(A, AS & C) HC(A, C) HC(A, TR &C)

H G I J ^ ^ " ^ G ^ K

t\/\ \ / / \ /
ACS D B E D B

HC(A, P) HC(A, L) HC(A, D) HC(A, R)

I F H L F M HC(AS, D) F^HC(TR, D) HC(AS, R) F HC(TR, R)

E D B E D B E HC(P, D) D E HC(P, R) D

C HC(D, R)

ACS A R * WOS HC(D, R) A R > WOS

D - A C L 0 S B^C — A-^-WOS

See Figure 7.1 for the definitions of the sets A-G.

H = {HC(TR, P), HC(TR, AS)}, I = {HC(AS, P), HC(AS, TR)},
J = {HC(C, TR), HC(C, TR & C)}, K = {HC(TR, C), HC(TR, TR & C)},
L = {HC(TR, L), HC(TR, AS & C)}, M = {HC(TR, L), HC(TR, AS & C)}.

Figure 7.2

8. Appendix

The following i s a l is t of s t a tements used in this paper with the
abbrevia t ions used to denote them.

ACS: There is a choice class for each non-empty class of pairwise disjoint
non-empty sets.
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ACLOS: There is a choice class for each non-empty linearly ordered class of

pairwise disjoint non-empty sets.

A Q W O S . There is a choice function on every class X of non-empty sets such that

X - O n .

AR: For each non-empty class X there is a y e X such that y Π X = 0.

CC (Q,U): Every Q-ordered class has a quasi-cofinal U-ordered subclass.

CRS (Q, U): Every Q-ordered class, in which every initial segment generated by an

element is a set, has a quasi-cofinal U-ordered subclass.

FCS: For every class X and every property of finite character P there is a

(Z-maximal subclass of X with the property P.

HC(Q, U): Every Q-ordered class has a <Z-maximal U-ordered subclass.

OER: Every partial order on a class, such that every initial segment generated

by an element is a set, can be extended to a linear order such that every

initial segment generated by an element (with respect to the extended

order) is a set.

OES: Every partial order on a class can be extended to a linear order.

WOS: Each proper class is equipollent to On.

WOS': The universe can be well ordered such that each initial segment is a set.

ZC (Q,U): Every non-empty Q-ordered class, in which every U-ordered subclass

has an upper bound, has a maximal element.

ZRC (Q, U): Every non-empty Q-ordered class, in which each initial segment gener-

ated by an element is a set and in which each U-ordered subclass has an

upper bound, has a maximal element.

ZRS (Q,U): Every non-empty Q-ordered class, in which each initial segment gener-

ated by an element is a set and in which each U-ordered subset has an

upper bound, either has a maximal element or contains a U-ordered

subclass which is a proper class.

ZS (Q,W: Every non-empty Q-ordered class, in which every U-ordered subset has

an upper bound, either has a maximal element or contains a U-ordered

subclass which is a proper class.
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