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DISCOURSE BETWEEN PROCESSES

JAN BERGSTRA

Introduction and definitions Let JQ be a countable language. -C contains
a special word START. A discourse over «£ is an infinite sequence
k = (START, kq, k2

a, k
2

q, k
3

a . . . .}, where kι

a = START. The q-components of
k are called questions; the a-components are answers. The word START is
used to initiate the discourse and invokes a first question of the first
speaker. It is assumed that k\ Φ START (i > 1), k*a

+ι Φ START (i > 1). We
denote the set of discourses by D.

Before proceeding it may be useful to note that our considerations will
be meaningful for finite discourses as well; the infinite case, however, is
more general.

Now suppose that by some criterion we established that SD c D
consists of the sensible (meaningful) discourses. We ask the following
question: Is there a set SP of sensible speakers such that:

1. for every ke SD there are px and p2 in SP such that the discourse
determined by pγ and p2 (notation: pL D p2) is just k.

2. for all pL and p2 in SP pιθp2e SD.

Of course we must specify exactly what a speaker can be to make the
problem well-defined. We feel that if SD is to be the set of meaningful
discourses in some sense there must exist a corresponding SP. The more
natural the notion of a speaker is the more the existence of SP is a
requirement for SD if it is to be a set of sensible discourses (in some
sense which remains unspecified).

In this note we define the class of speakers as the class of determin-
istic processes with inputs in «£ and outputs in £' = 4! - {START}.

Definition A process is a function p: -C* -* <£', where -C* is the set of
finite sequences of words in „£. Given processes pγ and p2 we define
Pi α Pi = (START, kq9 k

2

a, kq, . . . .> by means of the following recursion:

ίkι

q = pL ((START))
)k2a = P2((klq))

) 4 + 1 = pι((START, k2

a, . . ., kϊ1))

U j + I = p2((k\, , *j»
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Finally we define for K c P: K DK = {px Πp2\pl9p2e K}.

Theorem For all SD c D there exists SP c P such that SD = SP D SP.

Comment: From the motivation as formulated in the introduction we must
conclude that this is a negative result. It tells that the existence of a subset
SP of P such that SD = SP DSP is a trivial condition. Therefore it cannot
be used to specify, e.g., sets of meaningful discourses.

Proof: We use 5 to denote initial segments of discourses. If ln(s)y the
length of s, is even thenp2 is the next to speak otherwise p±. Let IS be the
class of initial segments of discourses in D. We write s <k if s is an
initial segment of k. Let SIS = {seIS\3keSD s <k}. Let A be a countable
subset of SD such that Vs[(Bke SD s < k) -» (3ke A s<k)]. The existence
of A follows from the fact that there are only countably many initial
segments (although SD may well be uncountable). Let F be a bijective
function from ω, the natural numbers, to A. We define a partial mapping
/ : IS —» A with domain SIS as follows: f(s) = F(n)9 where n is the least m, if
any, such that s < F(m). Now we define for all k, te SD processes p\ p* in
such a way that:

i. Vk, teSDpkΠpteSD

ii. VkeSDpkΠpk= k.

Then we may take SP: {pk\ke SD}.
We will give an algorithmic description of the pk using the following
information: (i) the characteristic function of SIS; (ii) /; and (iii) k. To
present the algorithm we use a self explaining programming language for
processes. Questions are input, answers are output. QUESTION is a word
identifier which always has the value of the last question that has been
received. NEWQUESTION is a statement asking for a new question. The
result is an update of QUESTION. ANSWER(fc) is a statement expressing
that ke -C is answered. We first define ~p\ and ? | such that always ~p\Ώ~p\-k
and ~pιθple SD for k, teSD. The program for p± has four main internal
states: 1, . . ., IV.

I NEWQUESTION
n := 1
if QUESTION"= START then s := (START, kq)

ANSWER (fcj)
GOTO Π

else GOTO IV

fi
(Comment: in state I p-ί receives START, counter n is initialized as
well as s which will denote the initial segment at any stage, n counts
the number of questions that have been received. IV is the state which
collects all errors.)

II NEWQUESTION
n := n + I
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s := s * QUESTION
if s < k then s := s * kq

ANSWER (kn

q)

GOTO Π

else GOTO ΠI

fi
(Comment: as long as s < k p\ answers consistent with k, if its partner
does not follow k any longer a new strategy is followed in ΠI.)

ΠI if s e SIS then s := s * f(s)n

q

ANSWER (f(sfq)
NEWQUESTION
n := n + 1
s := s * QUESTION
GOTO ΠI

else GOTO IV

fi
(Comment: p\ tries to follow f(s) at any stage.)

IV ANSWER^) (Comment: k0 is some fixed element of f.)
NEWQUESTION
GOTO IV

The program for ~p\is quite similar. In state I it only initializes n and s but
does not read. In state II it gives answers of the form k% and in state ΠI of
the form f{s)n

a.
Now we must show for k, te SD:

1. ~p\ Π ~p\ = k. Both pi and ~p\ remain in their respective states II and k
is the resulting discourse.

2. Ί>\ Π pU SD. There are two cases (let h = ~p\ Π pi):

i. pi or pi remains in its state Π, then either k or t must be the
resulting discourse. (Of course k, te SD.)

ii. both pi and ~p[ move to their respective states ΠI after a (finite)
part of the computation of h. Let this be the case after initial
segment s 1 of h. With induction on the length of s <h one proves
se SIS, using that se SIS implies s * f(s)q+]1e SIS if ln(s) = 2n + 1
and s * f(s)a+ι ^ ln(s) = 2w. To see this note that f(s) always
extends s. We claim that in fact h = f(sι). This follows from the
following equalities for s 1 ^ s < h:
f(s) = f(s * f(s)nq+ι) if ln(s) = 2n + 1 and
f(s) = f(s * f(s)T) if ln(s) = 2n.
The reason for these equalities is that f(s) is the minimal
extension of s in SD (in the sense of F) which is clearly equal to
the minimal extension of any longer initial segment of f(s) in SD.

Now pk is simply described as follows: If the first question received is
START then it behaves like pt otherwise like pt This completes the proof
of the theorem.
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Conclusion As mentioned before our method works in the case of finite
discourses too. If we look at games as discourses we can draw the
following conclusion: Let SD be a collection of chess games, then there
exists a collection of strategies SP such that SD = SP D SP.
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