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Generalized Hardy Fields in Several Variables

LEONARDO PASINI

1 Preliminaries

Definition 1.1 A category C is said to be a smoothness category if the fol-
lowing conditions are satisfied:

M

@)

(3)
(4)

5)
(6)

The objects of C are open subsets of finite dimensional real vector
spaces; the morphisms of C are certain differentiable functions and
the composition law of morphisms is the usual composition of func-
tions.

If 0 is an object of C and V'is a finite dimensional real vector space,
then C(#, V) is a linear subspace of the real vector space C'(6, V) of
all C! functions from 0 to V and contains all constant functions from
fto V.

If Vi,...,V, and W are finite dimensional real vector spaces, then
CV@...® V,, W) contains all multilinear functions.

Let 6, and 6, be open subsets, respectively, of the finite dimensional
real vector spaces V; and V,. A function f: 8; — 6, is in C(0,,0,) if
for any x € 0, there is an open subset 6, < 0,, containing x such that
flo, € €6y, V2).

If f; € C(6,V;) and f, € C(0,V,), then x = (f1(x),/f2(x)) is in
C(0, V) X 1)

If f € @(8,,6,) is a bijection from 6, to 6,, then f~! € C(6,,6,) if
f~lisin C! (or equivalently if Df, is nonsingular for any x € 6,).

From the definition we deduce immediately that C(6,R) is a ring with the
pointwise defined operations. Moreover, for any smoothness category C, it is
possible to prove the implicit function theorem ([5]):

Theorem 1.2  Let 0 be a neighborhood of (X,¥0) in R and let f €
C(6,R) with f(Xy,Y0) = 0 and (6f/6y)(X9,Y0) # 0. Then, there are neighbor-
hoods U of %y in R” and g € C(U,R) with g(%y) = yo and f(X,g(x)) = 0 for
each x € U.

Received February 10, 1986, revised June 12, 1986



194 LEONARDO PASINI

Examples of smoothness categories are: the categories C¥(k = 1,...,)
of C¥ functions; the category G of analytic functions; the Holder categories
Ck+e(k € N*, 0 < a < 1); the Lipschitz categories @¥~; the category C® of
Nash functions. The category @% turns out to be the intersection of all smooth-
ness categories and, moreover, to be differentially stable.

2 C-Hardy fields in several variables Let O be a point of (R")* = R" U
{a}, n € Nt and o & R”, the one point compactification of the euclidean
space R”. Let F be a filter of sets of (R")" with a basis B of open connected
subsets of IR”, which converges to O. We denote by G (F, O) the ring of F-germs
of real-valued functions defined over R”.

Definition 2.1 An element  of G(F O) is said to be of class € if there exists
a function f such that:

1) fey,
(2) f€ C(X,R) for a certain X € F.

Moreover, we said that Y € G(F, O) is semi-algebraic if it contains a semi-
algebraic function ([2], [3]). We denote respectively by GC(F,O) and
GC, , (F,0) the subrings of G(F, O) formed by the elements of class C and by
the semi-algebraic elements of class C.

Definition 2.2 By a “C-field (respectively semi-algebraic C-field) in O for F”
we mean a subfield K of the ring GG (F, O) (respectively GC , (F; O)).

Definition 2.3 By a “C-Hardy field in n-variables in O for F” we mean a
subfield K of the ring GC(F, O) such that: if Y € K, then y; € K, where y; =
[8f/6x;lpfori=1,...,nand f € Y.

In the last case we assume C to be a differentially stable smoothness cat-
egory. In particular, the class of semi-algebraic C-Hardy fields coincides with
the class of C?-Hardy fields. In fact, if K is a semi-algebraic C-Hardy field,
each of its elements is C* semi-algebraic, and hence Nash ([2], [3]).

From now on we denote by K any field belonging to one of the classes
defined above.

Proposition 2.4 The set P = {y € K| there exist f € Y and X € B such that
f(x) > 0 for all x € X} is a total ordering on K.

Proof: Pis obviously closed by sum and product in XK. Let ¢ € K and  # 0; there
will be then y € K'such that Y-y = 1 in K| that is if f€ Yy and g € v, f(X)g(X) =
1 holds identically over an X € B. Hence f(x) # 0 for all X € X. Moreover, we
can choose X such that fis continuous over X.

Since X is a connected subset of R”, one of the two inequalities f(x) > 0
or f(X) < 0 holds identically over X. Hence y € Por —y € P.

Let *RR be an enlargement of R in the sense of nonstandard analysis. We
fix an element £ € (*R)” in the monad m(F) of F: m(F) = N{*X|X € F}.
Such an element exists by the properties of enlargements and the transfer the-
orem. Moreover, by transfer, if ¥ € G(F,0) and f}, f, € ¥, then *f,*f, are
defined and coincide on any X € m(F).
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We define now a function ¢: G(F,O) = *R by: ¢(y) = *f(§), for f€ .
By the transfer theorem ¢ is a homomorphism from G(F,0) to *R and
®|k is an injective order-preserving homomorphism.

3 Theorem on the real closure

Theorem 3.1 There exists a real closed field belonging to the same class of
K and containing K.

We denote by ¢(K) the real closure of ¢(K) in *R. The set of fields L
extending K, and belonging to the class of K such that ¢(L) < ¢(K), is in-
ductive, by Zorn’s Lemma it contains some maximal element M. Theorem 3.1
is then a consequence of the following theorem. (For a similar result about
Hardy fields on real closed fields see [6].)

Theorem 3.2 (M) = ¢(K).

Proof: Let ¢ € $(K) — ¢(M) be algebraic of minimal degree, m, over ¢(M).

We suppose ¢ > 0; c is a zero of a polynomial *P(£,y) = *go(§) +...+
* 1 (E)y™ 1 + y™, with [gi(X)] EMfori=0,...,m. Let Q(x,y) = g,(X) +
28,(%)y +...+ my™ ' and hence *Q(£,y) =*g1(§) +2*e(§)y + ... + my™ L.

For any X where the coefficients are defined Q(X,y) is the derivative of
P(x,y) with respect to y. Since *Q(£,c) # 0 we may suppose *Q(£,c) > 0. Let
dy,...,dy, with d; # d; for i # j, be the distinct roots of *Q(&,y) in ¢(X).
Since deg *Q(£,y) =m — 1, d; € ¢(M), for i = 1,...,k.

Therefore d; = *h;(£), with [A;(X)] € M. Since c is algebraic over ¢(M),
there are [u(x)], [v(x)] € M such that: *u(§) < ¢ < *v(§), *u(£) > 0 and
*hi (&) & ["u(8),"v(&)] fori=1,...,k.

Proposition 3.3

(1) *Q(£,y) > 0 for every y € "R in ["u(£), *v(£)].
(2) *P(£,"u(&)) < 0 and "P(£,"v(£)) > 0.

Proof: (1) Let y, € *R with *Q(£,y,) < 0 and yo € [*u(£),*v(£)]. By the in-
termediate value property, since Q(£,c) > 0 there is z € *R, *u(§) < z < *v(§)
and *Q(£,z) = 0. Since ¢(K) is real closed, z € ¢(K), contrary to the choice
of *u(£) and *v(£). (2) follows from (1); apply the mean value theorem to
*P(£,y), bearing in mind that *P(£,c) = 0.

Proposition 3.4 There exists X € B such that for all X € X:
(1) Q(x,y) > 0 for every real y € [u(x),v(x)].
(2) P(x,u(x)) < 0 and P(x,v(x)) > 0.

ProI?f: (1) Since the roots of *Q(£,y) in ¢(K) are in ¢(M), we have *Q(£,y) =
m[ll (¥ =" ()Y ("ao(§) + a (§)y +. ..+ y") with "ao(§) + "a, (E)y +... +

y" >0 for all y € *R, since it is the pro_duct of monic irreducible polynomials
in ¢(K) [¥]. Then, the coefficients *g:(£) of *Q(£,y) are entire rational expres-
sions of the *A;(£)’s and the *a,(§)’s.
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Hence, there exists X € B such that for all X € X:

k
O oy = ml_Il (¥ — hj(X))9(ao(X) + a;(X)y +...+ y") and
(D) ap(x) + al()?j)y +...+y">0 for any y in R.

_The formula «(2): Vy¥(zo + 21¥ +...+ »" > 0) holds in *R for z, =
*a,(§).

By the quantifier elimination for the theory of real closed fields, there exist
a finite number of finite systems S;(Z) of the form A (p,(Z) = 0 A g,(2) >

u,v

0) with p,(Z) and g,(Z) formal polynomials with integer coefficients such that,
if L is any real closed field, ay,...,a,_; € L, a(ay,...,a,_;) is true in L iff one
of the systems S;(Z) holds at z, = a,.

The proof of (II) follows, then, by noting that a finite system A (p,(*ao

5),...,%a,_1(§)) =0nq,(*ag(§),...,"a,_1(£)) > 0) holds in *R 1uffv there is
X € Bsuch that A (p,(ap(X),...,a,-1(X)) =0Ag,(ap(X),...,a,_(X)) >0)

u,v
holds in R for all ¥ € X. Moreover, we can choose X € B such that for all ¥ € X:

(1)  hj(x) & [u(x),v(X)] withj=1,...,k;
av) QO(x,u(x)) > 0.

If Q(%0,¥0) = 0 for Xy € X and y, € [u(%o),v(Xo)], then Q(Xo,¥,) =0
for some y; € [u(xp),v(xp)]; that is, y; = h;(x) by (I) and (II), contradicting
(I1I).

(2) This follows from Proposition 3.3(2).

Proposition 3.5 There exists only one function y(X) defined over X such that
forall x € X: u(x) < y(x) < v(x) and P(x,y(x)) =0.

Proof: By the intermediate value property and Proposition 3.4(1), there is a
unique y(X¥) € [u(X),v(Xx)] such that P(x,y(x)) = 0.

Then, for any ¥ € X: P(x,y(x)) =0 and (6P/8y)(X%,y(X)) # 0. Hence, by
the implicit function theorem for the category ©, which characterizes the field
K, for any X, € X there are neighborhoods Uz, € X and f € C(Ug,, R) such that
Sf(Xo) = y(Xo) and P(%, f(x)) = 0 for all x € Ug,. Since u(x), v(x), f(X) are
continuous on Uy, bz, = (X € Uz, |u(X) < f(X) < v(X)} is an open subset of
R” containing X, and f(X) = y(X) for all X € 0x,.

Thus }’lo,?o()?) € C(b%,,R) and, by Definition 1.1(4), we have y(x) €
C(X,R).

Since *P(£, y) is irreducible, the smallest subring of G (F, O) containing M
and [y(x)] is a field whose elements are of the form g ([ y(X)]) with g(y) €
M7 y] and deg g(y) < m. The elements of M ([ y(x)]) are then of class C. The
same is true for the semi-algebraic case because of the definition of the func-
tion y(x). If K is a C-Hardy field, M[y(x)] is also differentially stable. Since
y(x) € C*(x,R), for all x € X: (6y/6x;)(X) = —((6P/dx;)(X,y(X))/(6P/5Y)
(X,y(x)); hence [y(X)]; e M([y(x)]), fori=1,...,n.

Since /sy (x)y s an order-preserving embedding, by Propositions 3.3(1)
and 3.5, it follows that ¢([¥(X)]) = c. Since [y(X)] & M, this contradicts the
maximality of M and proves Theorem 3.2.
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4 Characterization of the real closure We denote by GC(F, O) the subring
of G(F,0) of germs of continuous functions, and by C(FEOK the relative alge-
braic closure of K in GC(F,0).

Theorem 4.1 Let M be any real closure of K belonging to the class of K.
Then: M = 6CEOK,

Proof: Obviously M € CCEOK, Let [y(%)] € GC(F,0) and let P(y) € K[y]
be monic, with P([ y(x)]) = 0. Then, there is X € B such that y(X) is continuous
over X and P(%,y(%)) = 0 for all x € X. Since M is real closed and P(y) €
M[yl, X € B can be chosen so that, in addition, the following hold for all
X € X:

k r
P(x,y) = Hl (y = hi(x)¥ Hl (¥ + a;(X)* + b} (®)]
Jj= i=
with pairwise distinct A;(x)’s

bi(x)#0fori=1,...,r.

k
Then for all ¥ € X we have: H (y(%) — hj(x)) =0, and then X < U

Z(y(x) — hj(x)). Since M is ordered by Proposition 2.4, we can choose X e
B so that in addmon Z(y(x) —hi(XNNZ(y(x)—h(x) N X =D forj+1i.
The set Z(y(X) — h;(X)) N X is closed in X, which is connected.

Hence X € Z(y(x) — h;(Xx)) for some j € {1,...,k}, thatis [y(X)] € M.
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