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Partially Generic Formulas in Arithmetic

PER LINDSTROM

Introduction The following problem arose in connection with a question
concerning interpretability (cf. [4]). Let T be a consistent recursively enumer-
able (r.e.) theory containing a sufficient amount of arithmetic. We do not
assume that 7 is L9-sound, i.e., that only true LY sentences are provable in T.
Next, let S be any r.e. theory, set Thr(S) = {¢: 3¢gT I Pr[srql(q_S)}, and let o(x)
be any formula numerating S in 7. Then if ¢ € Th;(S), then T} Pr,(¢). The
problem is now if there is a (L) formula ¢(x) numerating S in T such that
Pr,(x) numerates Th7(S) in 7. (This is, of course, true if T is £9-sound.) As
was shown in [4] (Lemma 2), the answer is affirmative. The proof uses a result
of Guaspari ([1]) on partially conservative sentences. The purpose of this note
is to describe a fairly general method (fixed-point construction) by means of
which a more direct proof can be obtained and to give some examples of appli-
cations of this method including the result of Guaspari just mentioned. This
paper may be compared with Smorynski’s paper ([8]).

1 Preliminaries Let T be a consistent r.e. theory. For simplicity we shall
assume that 7 is an extension of Peano arithmetic P. (Notation and terminol-
ogy not explained here are standard.) Let G be a new predicate. Formulas con-
taining G will be written {(G;X), x(G;X). (Here X is short for xo,...,x,_;.
Similarly we write & for kq, .. .,k,_; and k for k, . ..,k,_;.) For simplicity we
assume that G is monadic. The extension of the results of Sections 2 and 4 to
formulas containing polyadic predicates is perfectly straightforward. If £(x) is
any formula, then {(£;X) is obtained from ¢ by replacing G by £(x) avoiding
clashes of variables in the usual way. To prevent confusion we sometimes use
the notation Ax£(x). In the following we always assume that x is positive in G
in the sense that for any arithmetical formulas £,(x) and &, (x),

PFx(£0:%) AVX(E9(x) = £1(x) = x(§15%).
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T'is either £9,, or 19, . tis T[G] if {(£;%) is T whenever £(x) is PR. If X is
any set (of natural numbers), then X | ¢ = {n € X: n < ¢g}. If X is finite, then
[X]1(x) =\ {x= k: k € X}. (We use =: to denote equality between for-
mulas.) The obvious fact that P+ = [X] (k) for k ¢ X will be used repeatedly
without further comment.

2 x-generic Sformulas Let us say that £(x) is x-generic in T if for all k, if
Tt x(§;k), then there is a g such that T+ x([X ! q]; k) where X is the set
numerated by £(x) in T.

Proposition 1 Suppose x (G;X%) isT'[G] and let X be any r.e. set. There is
then a T' x-generic numeration £(x) of X in T.

Proof: For simplicity suppose r = 1. By Craig’s theorem, we may assume that
T is primitive recursive. Let 7(x) be a PR binumeration of 7" and let x(x,y) be
a PR formula such that X = {k: amP } «(k, m)}.

Case 1. T = X9, ,. Let £,(x) be such that

Pt Eog(x) & 3y(k(x,p) AVzu < x + y(Prf (" x(£052) ' u) =
x(Awav(v + w < 2+ u A k(wW,v)); 2))).

Then
(*) if (a) p is a proof of x(&o;k) in T, then (b)
TEx@y(x+y<k+pnrxy);k).
For suppose (a) holds. Let y(x) =: 3y(x + y < k + p A k(x,»)). Then
P F=x(v(w);k) = (£0(x) > y(x)).
Since x is positive in G, it follows that
PFox(y(w);k) = (x(£03K) = x (v(x);K)).
But, since T F x(&o; k), this implies (b).
Now let £, (x) be a LY numeration of X in T and let
£(x) =: Eo(xX) A &1 (X).

Then, again since x is positive in G, it follows at once from () that for all k,
if TFx(§;k), then there is a g such that T+ x([X ! ¢g];k). Thus to complete
the proof we need only show that £(x) numerates X in 7. To prove this it
suffices to show that for all k, p,

TFPrf,("x(40:K) 7, D) — x(v; k).
But this too follows at once from (*) and so the proof is complete.
Case 2. T =119, ,. Let &,(x) be such that

PF&o(x) < vzu(Prf,("x(40;2) ", u) A
x(Awav(v + w =<z + uAk(w,v));z) >
Y(x+y<z+unk(x,y).

Next let £, (x) be a II{ numeration of X in T and define £(x) as before. The
proof that £(x) is as desired is then almost the same as in Case 1.
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The following variant of Proposition 1 is occasionally useful but will not
be applied in this paper except indirectly via Corollaries 1 and 2. Let us say that
x is decidable in T if x ([ X];X) is (numeralwise) decidable in T for every finite
set X. A set Y is monoconsistent with T if T + ¢ is consistent for every ¢ € Y.
£(x) will be said to be x-generic with respect to Y in T if for all kifx(& k) e
Y, then there is a g such that T+ x([X | ¢]; k) where X is the set numerated
by £(x) in T.

Proposition 2 Let x, T, and X be as in Proposition 1. Suppose x is decid-
able in T and Y is r.e. and monoconsistent with T. There is then a T formula
£(x) numerating X in T and x-generic with respect to Y in T.

Proof: We may assume that Y is closed in the sense thatif ¢ € Yand TF ¢ —
¥, then ¥ € Y. Let u(x,y) be a PR formula such that Y = (k: amP F u(k, m)}.
Now replace Prf,(x,y) by u(x,y) in the proof of Proposition 1 and use the
obvious fact that if Y € Y and ¢ is decidable in T, then T  y.

Propositions 1 and 2 and the relevant notation and terminology can be
generalized in a straightforward way to formulas x (Gy,. . .,G,;X) containing
several new (monadic) predicates and positive in these predicates in the obvious
sense. Moreover we can now easily prove the following corollary to the proof
of Proposition 2.

Corollary 1 Suppose x (G, . . .,Gn; %) is A3[ Gy, . ..,G,] and Y is r.e. and
monoconsistent with T. Let X, . .., X, be a sequence of r.e. sets and suppose
m < n. There are then formulas £;(x) such that £;(x) is £9 for i < m, £;(x) is
Y for m < i < n, &(x) numerates X; in T for i < n, and the sequence
£0(X),...,E,(x) is x-generic with respect to Y in T.

Proof: For simplicity suppose m = n = 1. Let u(x,y) be as in the proof of
Proposition 2 and let «;(x,y) be a PR formula such that X; = {k: am P |
ki (k,/m)}, i = 0,1. Next let £450(x) and £;4(x) be such that

PFEgo(x) < 3y(ko(x,y) AVZU < X + ¥ 8(z,u)),
PlEEp(x) & Vzu(6(z,u) > 3y(x + y < 2 + u Ak (X, ))),

where 6(z,u) =:

/J'(rX(EOONElO;z.)_I’u) -
xMWIv(v+w=<z+unxg(w,v)), \wav(v+ w =<z + u Ak (W,0));2).

Finally let £, (x) and £, (x) be a L and a II{ numeration of X in T, respec-
tively, and let

£i(x) =: Eip(X) A i (x).
Since x is decidable in 7, being AY[G,, ..., G,], the rest of the proof is now
very much the same as the proof of Proposition 2.

We conclude this Section with a result designed to yield Application 4
below.
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Corollary 2 Suppose x(G;x) is AY[G], X and Y are r.e., and Y is
monoconsistent with P. There are then a I1{ formula £,(x) and a £ formula
£1(x) such that

@ PFE(X) > Eo(x),

(ii) if kK € X, then P | £,(k),
(iii) if x(£0;k) € Y, then there is a q such that P+ x([X | q1;k).

Proof: Let k(x,y), u(x,y), and £,(x) be as in the proof of Case 2 of Propo-
sition 2 and let £;(x) =:

3y (k(x,y) AVzu < x + y(p("x(£0;2) ', u) —
x(AMav(v+ w =<z + uAk(w,v));2)).

Then (i) is obvious, (iii) is proved in the same way as before using the fact that
x is decidable in P, and (ii) follows from the proof of (iii).

3 Some applications We can now easily solve the problem mentioned in
the introduction.

Application 1 If S is r.e., then there is a £ numeration o¢(x) of S in T such
that Pr,(x) numerates Thy(S) in T.

Proof: Let x(G;x) =: Prg(x) and apply Proposition 1.
A sentence ¢ is I'-conservative over T if T + ¢ ¢ implies T | ¢ for every
I" sentence y. The following result is due to Guaspari ([1]) (cf. also [3], [7], [8D).

Application 2 To any r.e. set X, there is a I' formula £ (x) such that
(i) if kK € X, then T} £(k),
(i) if k¥ & X, then —£(k) is I'-conservative over T.

Proof: Let I'-true(x) be a I' partial truth-definition for I' sentences and let
x(G;x,y) =: Gx v I'true(y). Then any I' x-generic numeration of X in T is as
desired.

Let £(x) be as in Application 2 with X = {y(x): T+ =y (%)} and let § =:
—£(%). Then T ¥ 0 and 6 is I'-conservative over T. This can be improved as
follows (cf. [1]). (The somewhat stronger results proved in [3] and [8] can be
obtained in a similar way. See also Application 7 below.)

Application 3 There is a II9, ; sentence 6 such that 6 and — are £%, - and
1%, -conservative over T, respectively.

Proof: There is a I' formula I'-sat(x, y) such that for every I' formula v (x),
Pt y(x) < I'sat(x,7).
Let

x0(G;x,p) =: 32(Gz A — I y-sat(z, X)) v L), j-true(y),
x1(G;x,y) =: vz(Ly, -sat(z,x) > Gz) v 119, -true(p).

By Proposition 1, there are a £, formula £,(x) and a I1%,, formula £, (x)
such that £;(x) is a x;-generic numeration of win 7, i = 0,1. Let

0 =: Vx(&(x) = &1(x)).



GENERIC FORMULAS 189

Now let ¢ be a £9,, sentence such that T + 0 F ¢. Then T F xo(£0;&1,9).
Hence there is a g such that T F xo(x < G; £;,¢), whence TFax < g-&(x)v
é. But clearly T+ —3x < §g—¢,(x) and so T | ¢. Thus 8 is 9, ;-conservative
over T. The proof that =0 is II%,,-conservative over T is similar.

The following result is proved in [3] (Lemma 5).

Application 4 Let X and Y be r.e. sets and suppose Y is monoconsistent with
P. There are then a II{ formula £4(x) and a ¢ formula &, (x) such that
B PFE&(x)— &o(x) ~

(i) if k € X, then P | £,(k),
(iii) if ks & X, s < n, then \/ &o(k;) & Y.

s<n
Proof: Let x(G;x) =: 3y < lh(x)G(x),. By Corollary 2, there are a 9 for-
mula £,(x) and a LY formula £, (x) such that (i) and (ii) hold and if x(£0;k) €
Y, then there is a ¢ such that P }- x([X I g];k). But then it is straightforward
to show that (iii) is satisfied, since we may assume that Y is closed.

Let X, and X, be disjoint r.e. sets. It is an old result of Putnam and
Smullyan (cf. [7]) that there is then a £9 formula £(x) such that £/(x) numer-
ates X; in 7, i = 0,1. (Here and in what follows £%(x) =: £(x) and £!(x) =:
—£(x).) This can be improved as follows.

Application 5 Suppose X, and X, are disjoint r.e. sets. There is then a £ for-
mula £(x) such that

() if k € X;, then P+ £/(k), i = 0,1,

(i) if ks & XoU Xy, ks # k, for t <s<n, and f€ "*'2, then TH\/ [/ (k;):
s < nj.

Proof: By a well-known result of Mostowski (cf. [7]), there is a £} formula
w(x) which is independent over 7. Let

Y=U(Th(TU (pf®(k): k<n})):n€w&ge "2},
Then Y is r.e. and monoconsistent with P. Let
x(Go, Gi;x0,x1) =: \/ 3y <Ih(x;)Gi(x;)y.
i=0,1
By Corollary 1, there are a £9 formula £,(x) and a II? formula &, (x) such that
¢;(x) numerates X; in P and £q(x), £;(x) is x-generic with respect to Y in

P. Let p;(x,y) be a PR formula such that X; = {k: 3mP } p;(k,m)} and let
v(x) =: Vy(po(x,¥) = 32 < yp;(x,z)). Finally let

E(x) =: (o(x) v u(x) A (&1(x) Ar(x)).

If kK € X;, then P } »'~/(k) and so (i) holds. To prove (ii), suppose T F
V (£7)(ky): s < n}. Then, by propositional logic, 7+ \/ {£;(k,): i =0,1 &
s<n}v\ ('OKk): s < n}, whence \/ (£;(k;): i =0,1 & s < n} € Y. But
then there is a ¢ such that P+ \/ {[X; ! ¢] (ky): i = 0,1 & s < n}. It follows
that k; € Xy U X, for some s < n. This proves (ii) and so concludes the proof.

There are a number of simple formulas x, in addition to those already men-
tioned, that naturally come to mind. One of them is

x0(G;x) =: 3y(Gy A £5,-sat(x, »)).
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Applying Proposition 1 to this formula we get the case I' = L9, of the fol-
lowing

Application 6 Let X be any r.e. set of I' formulas and let

Y = {k: 3qTH\ {E(k): E(x) e X T q}}.

There is then a I' formula 7(x) such that T+ £(x) — n(x) for every £(x) € X
and n(x) numerates Y in T.

Proof: Case 1. T'=L9,,. Let u(x) be a £, xo-generic numeration of X in T
and let n(x) =: xo(u;x).

Case 2. T =119,,. Let p(x,y) be a PR formula such that X = {k: 3amP |
o (k,m)} and let x; (G;x) =:

vy(Vzu < y(p(z,u) > "II9, -sat(x,z)) — Gy).

Next let »(x) be a II%,, x;-generic numeration of w in T and let 5(x) =:
x1(¥3x).

4 T-generic formulas Let us say that £(x) is I'-generic in T if £(x) is T and
x-generic in T for every I'[G] formula .

Proposition 3 If X is r.e., then there is a I'-generic numeration of X in T.

Proof: There is a I'[ G] formula I'-true(G;x) such that for every I'[G] sentence
¢(G) (not necessarily positive in G) and every arithmetical formula v (x),

Pt ¢(y) < I-true(y; £(G)).

Let x,(G), n = 0,1,2,..., be a primitive recursive enumeration of all I'[ G]
sentences x (G) positive in G and let §(x,y) be a PR formula such that P |-
Vy(8(@,y) < y = X,) for every n. Next let

xr(G;x) =: 3y(6(x,y) A-true(G;y)).

xr is not necessarily positive in G but for every k, xr(G; k) is positive in G and
this is sufficient to show that there is a I' xp-generic numeration £(x) of X in
T (see the proof of Proposition 1). Clearly £(x) is x-generic in T for every I'[ G]
sentence x (G). It follows that £(x) is I'-generic in 7.

Proposition 3 can, of course, be used to give somewhat simplified proofs
of applications of Proposition 1. We illustrate this by proving the following
result which is proved in [8] (Application 4) and is also an immediate conse-
quence of Lemma 3 of [3].

Application 7 Let X, and X, be disjoint r.e. sets. There is then a I1%,, for-
mula &(x) such that

(i) if k € X;, then T+ £/(k), i = 0,1,
(i) if k & X, U X,, then £(k) and —~£(k) are L9, ;- and I1%, ;-conservative over
T, respectively.
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Proof: Let u;(x,y) be a PR formula such that X; = {k: 3mP | u;(k,m)}. Let
£o(x) and &, (x) be a L9, ;- and a IT1%, ;-generic numeration of w in 7, respec-
tively. Finally let £(x) =:

VZ(£0(2) A VY = z27po(x, ) = £1(2) A p1(X,2)).
It is then straightforward to check that £(x) is as claimed.

5 A model-theoretic application Let M be any model of P and let nst(M)
be the set of nonstandard elements of M. We define the sets of I'-isolated and
I'-small elements of M as follows.

I-isol(M) = {a € nst(M): there is a I' formula ~ (x) such that a satisfies
v(X) AVy < x2y(y) in M}, 3
T-small(M) = {a € T-isol(M): a < »b for every b € T'-isol(M)},

where T' is the dual of T'. A set X C nst(M) is coinitial in M if for every a €
nst(M), there is a b € X such that b < j,a. (For results on the existence of mod-
els M in which I'-isol(M) is coinitial see [S] and [6].) Clearly if I'-small(M) #
@, then I'-isol(M) is not coinitial in M and I'-small(M) = &.

Application 8 There is a set B of T" sentences such that 77U B is consistent and
I'-small(M) # & for every model M of T U B.

Proof: Case 1. T' = L9, . Let £(x) be a 1, ;-generic numeration of w in 7 and
let {y5(x): s € w} be a maximal set of I, formulas such that S = TU {3x =
iys(x): m,s € w} is consistent. Finally let

B = {3x(vs(x) A 7£(X)): 5 € w).

Then T U B is consistent. For suppose not. Then there is a p such that T
V Vx(vs(x) - £(x)). But then, since £(x) is 9, \-generic in T, there is a g

<
suzéh that T+ \/ vx(ys(x) = x < g). It follows that S is inconsistent, contrary
Ss<p

to hypothesis. Thus 7°U B is consistent.

Now let M be any model of TU B and let a be the member of M satisfy-
ing = £(x) A Vy < x£(») in M. Then a € nst(M), since M F £(k) for every k.
To show that @ € L9, ;-small(M) suppose b € 119, ;-isol(M). Let 3(x) be a
119, , formula such that b satisfies 8(x) A Vy < x =3(y) in M. Since b is non-
standard, Vy < x =8(») is vs(x) for some s. But then there is a c satisfying
vy <x 8(y) A §(x)in M. Clearly a < pc < psb and so a < y4b. Thusa €
L%, 1-small(M) as was to be shown.

Case 2. T' =119, ,. We may assume that T is not L{-sound. Let 5(x) be a PR
formula such that T F —6(k) for every k and T F3x5(x). Let £(x) be a
r9 ., 1-generic numeration of w in 7 and let {y,(x): s € w} be a maximal set of
£, 1 formulas such that T'U B is consistent where

B = {¥x(y5(x) > 7&(x)): s € w}.
Now let M be any model of T U B. Then for every L2, formula o(x),
(+) if M E =g (k) for every k, then vx(o(x) = —£(x)) € B.
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For suppose Vx(o(x) > —£(x)) &€ B. Then TU B 3x(a(x) A £(x)). But then
there is a g such that TU B | 3x < go(x) and so M F o (k) for some k.

By (+), vx(8(x) » 1£(x)) € B and so M F3x—£(x). Let a be the mem-
ber of M satisfying = £(x) A Vy < x£(y) in M. Then a € 119, ;-isol(M). Suppose
b € LY, -isol(M) and let B(x) be a Y, ; formula such that b satisfies 3(x) A
vy < x—8(y) in M. Then M E =3 (k) for every k and so, by (+), M EVvx(B(x) =
—£(x)). Thus b satisfies = £(x) in M and so a < ,b. It follows that a €
119, ,-small(M) as was to be shown.

Application 8 is a partial refinement of a result of [2] (Theorem 4.2.8). It
can be generalized without difficulty to theories T that are I'-selfbinumerable in
the sense that there is a I' formula 7(x) binumerating T in 7. (Thus we no longer
assume that 7T is r.e.) This result is, of course, derived from a suitable extension
of Proposition 1 to I'-selfbinumerable theories. Adding an argument due to
McAloon ([5] and [6]) it can be shown that if T is I'-selfbinumerable, then T has
a model M in which I'-isol(M) is coinitial but I'-isol(M) is not. Finally, by
repeated applications of the strengthened version of Application 8, we obtain
a set C of sentences such that 7 U C is consistent and if M is any model of
T U C, then L9, ,-small(M) # & for every n. It follows that T has a pointwise
definable nonstandard model M such that for every I', I'-isol(M) is not coini-
tial in M. This is essentially Theorem 3.4 of [6].
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