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Church’s Thesis and Cognitive Science

R. J. NELSON*

1 Introduction Although Church’s Thesis (CT) has been central to the theory
of effective decidability for fifty years, the question of its epistemological sta-
tus is still an open one. My own view, which is prompted by a naturalistic atti-
tude toward such questions in mathematics as elsewhere, is that the thesis is an
empirical statement of cognitive science, which is open to confirmation, amend-
ment, or discard, and which, on the current evidence, appears to be true.
Naturalism, although not to be identified with any of the classical schools of phi-
losophy of mathematics, including the historicism of Webb [65], is hardly new;
and if pushed to its Quinean limits would have to insist that mathematical episte-
mology is in principle a part of psychology. However in this paper I wish only
to advocate the limited metathesis that CT is empirical, yet mathematical. I leave
defense of the wider claim to others.

This interpretation of CT is quite naturally suggested by one of the stan-
dard arguments for a mechanist theory of the mind, which CT supports. That
argument, which I will review in more detail below, is this: Human cognitive
processes are effective; by the thesis it follows they are recursive relations. This
justifies defining the mind gua cognizing as a system of recursive rules, i.e., as
a machine of some kind. Considerations in defense of mechanism thus tend to
support CT much as empirical findings and low level laws in the physical and
biological sciences tend to confirm or disconfirm relevant hypothetical gener-
alizations. In my opinion much of this support is likely to come from cognitive
science.! Likewise, putative refutations of mechanism threaten CT and are
likely to stem from empirical findings.

*I have benefited from many discussions of Church’s Thesis with William Thomas and
Judson Webb. I do not want to suggest, however, that either one would wholly agree
with the position expressed in this article. I also wish to thank David Helman and
Stewart Shapiro for their helpful comments
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However, the empirical content of CT can be appreciated independently
of any mechanist considerations by logical analysis of the meanings of ‘effec-
tive’, ‘computable’, etc. When this has been done it is relatively easy to defeat
many arguments against CT since they deal with it on too superficial a level. So
a secondary thesis of this paper is that failure to analyze CT down to its empir-
ical roots has generated misunderstanding of its full significance.

Prima facie this viewpoint seems wrong. Church himself ([12], p. 100)
refers to his thesis as a definition: he defines

(1) the notion . . . of an effectively calculable function of the positive [or non-
negative] integers by identifying it with the notion of a recursive function
of positive integers. . . .

Construed thus as a definition, CT presumably has no synthetic content; the
notions in it are identical, by convention.?

Moreover it evidently expresses a relation between mathematical objects
and is not explicitly about mental entities at all, except for the intuitionist. For
the latter, mathematical objects are indeed conceptual; but I doubt any in-
tuitionist would grant that cognitive science has the slightest relevance to the
mathematical character or significance of certain cognitions (intuitions of one-
twoness, construction of choice sequences, e.g.) in which mathematical rea-
sonings and concepts are intuitionistically rooted. At any rate CT is widely
recognized as a proposition of mathematics, not of ordinary empirical psy-
chology.

Again, many critics have seriously questioned the truth or adequacy of CT.
For instance, fairly good arguments can be set out suggesting that some effec-
tively computable functions are not recursive or conversely, or maintaining that
the arguments both a priori and empirical meant to uphold the thesis are without
respectable standing measured by the usual canons of mathematical and scientific
inquiry (see Thomas [58]). Post [45] and Rogers [49] following him have used
CT as an informal rule of inference: “from ‘A is a generated set’ to infer ‘4 is
recursively enumerable’” or “from ‘f'is effectively computable’ to infer ¢fis recur-
sive’”. Considered so, CT is neither a true nor false statement, but a kind of
directive.

So there is an initial presumption, shared by many, that CT is neither
empirical nor true.

Arguing to the contrary, in Section 2 I will defend an empirical interpre-
tation of CT based on an analysis that centers on the meaning of ‘effective’. In
Section 3 I review a few arguments against CT and show that they fail on points
that can be settled only empirically. These include intuitionist arguments, and
objections to CT that have been raised by Kalmar, and objections to mechanism
of Lucas and Benacerraf based on Godel theorems that indirectly threaten CT.
Section 4 reviews certain Turing machine models of sundry cognitive processes
and shows that the models satisfy various empirical adequacy conditions. I like
to think of this work as a continuation of Turing’s own defense of his version
of CT, in which he showed that his machines model the primitive operations per-
formed by an idealized human computist following algorithms ([60], p. 136f).
The upshot of Section 4 is that such arguments as well as many developments
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in artificial intelligence and cognitive psychology provide strong empirical sup-
port for CT.

2 Analysis of Church’s thesis The question whether or not CT is empirical
(cf. [62], pp. 87-89) resurrects a host of questions that might better remain
entombed with logical empiricism. As noted, Church himself refers to CT as a
“definition”. But this can hardly be meant in the sense of “abbreviational” or
“reductive” definition; it is a convention or a proposal, as Rogers ([49], p. 20)
terms it. If all definitions are analytic, the thesis is certainly not a definition. For
it is not an instance of a tautology —its negation is not self-contradictory; and
it is not analytic in the sense that it holds in virtue of the meanings of the terms
occurring in it ([64], p. 453).3

For familiar reasons it is better to think of CT as an explication (Carnap,
[6], p. 5ff.). The extension of ‘effectively computable’ is vague and the expli-
cans ‘recursive’ sharpens it, which is the main reason CT is important and was
introduced by Church in the first place. On the other hand, the concept of ana-
Iytic statement, if legitimacy still attaches to it outside of pure logic, certainly
presupposes precision in the expressions to which it applies. Minimal clarity
requires, therefore, making a distinction between definitions that relate two
antecedently precise concepts (such as the real number § and the set of rationals
less than {) from those that do not (such as effective computability and recur-
siveness).

Assuming it is agreed that CT is an explication of mathematical terms, how
can it be plausibly construed as empirical? In answer, let us take note of five
grades of a prioricity of definitions in the domain of mathematics.

First, there are strictly notational definitions such as “let ‘R.E. set’ abbrevi-
ate ‘recursively enumerable set’”. Such definitions might be the only purely ana-
Iytic definitions there are. They are a priori by fiat (cf. [47], p. 26).

Second, there are nominal definitions such as “‘a < b’ for ‘there is a ¢ such
that @ + ¢ = b’, a, b, c, natural numbers”. This is analytic a priori if any math-
ematical statement is; anyone who understands the meanings of the definiens
and definiendum would accept it as necessarily true.

Third, there are reductive definitions such as “‘1 . for ‘the set of frac-
tions less than 3 40nat, Which are analytic in the sense that the definiens is inter-
changeable salva veritate with the definiendum mutatis mutandis in all contexts
in real analysis where ‘] ,” occurs, and insofar forth is a priori.

Fourth, there are explications such as the definition of ‘continuous real
function’ which analyze the intuitive idea of a continuous (functional) curve. It
cannot be said that the explication is a priori in the third sense above inasmuch
as ‘continuous real function’ is not synonymous with ‘continuous curve [in the
intuitive sense]’ throughout the latter’s vague extension ([47], p. 25). Such defi-
nitions might be said to be empirical in point of the manner of justifying them.
They are ‘fruitful’, ‘simple’, ‘lend coherence to the theory’, ‘hold in all cases
examined’, and insofar forth are “true” or mathematically acceptable. They are
justified on nondeductive, heuristic, pragmatic, i.e., dialectical grounds. In a
weak sense they are empirical [49], not because the content is material but
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because they are warranted by reasonings similar to those one would ordinar-
ily associate with choices of definitions and hypotheses in natural science.

Fifth, and finally, there are explications warranted empirically in the fol-
lowing strong sense: their acceptability stems in part from bearing verifiable
material content. Explication veers over into explanation. Examples don’t come
to mind easily, but CT is one. That CT has empirical content is especially clear
in Turing’s version, as we shall see. Another example is the definition of ‘scale’
in measurement theory [55] which explicates the notion of scale by way of an
empirical assumption of the existence of homomorphisms of natural relational
structures, such as the ordered pair consisting of a set of lumps of metal and
the relation heavier than to a structure of the nonnegative reals and greater than.

The point of making these distinctions is epistemological. CT is not true
a priori, yet it is mathematical from the point of view of the practicing mathema-
tician, and is a priori in a methodological sense. As every one knows, it is fun-
damental to decidability theory in formal logic and nearly indispensable for
practical reasons (as so elegantly illustrated in Rogers’s [49]) in the pursuit of
recursion theory. It indeed has the status of an axiom. Nevertheless it is an expli-
cation, as it supplies “previously intuitive terms . . . with . . . precise meanings”
(p- 20).

Epistemologically it is a posteriori or, in the above classification, a priori
in the lowest grade; i.e. it is empirical in both the fourth and fifth senses of a
prioricity just delineated, depending on what you are after. If you are interested
in abstract functions, the same sort of dialectic you would employ to warrant
acceptance of the usual definition of ‘continuity’ would obtain for CT. In that
case a suitable reading of Church’s Thesis would be

(2) Al effectively computable functions are recursive.*

On the other hand, if you are interested in the nature of effectiveness and algo-
rithms, CT is empirical in the stronger sense: you would read it as a statement
about computists and algorithms relative to certain classes of functions. A suit-
able reading from such a standpoint might be

(2) Any function whose values can be algorithmically generated by a com-
putist is recursive.’

(2) is an elliptical reading of (2’); (2’) unpacks the antecedent of (2).

I claim no novelty for the distinction, as it just reflects two rather differ-
ent classes of argument that have been used in recent years in support of CT.
For instance, the argument that no computable function has been found that
is nonrecursive directly supports (2), insofar as it has any force. Of course it sup-
ports (2) as well. But the point is, such reasoning does not deliberately heed
questions of what computists can do, whether anyone knows an algorithm (even
though one exists), and the like. Similarly the argument from the invariance of
the known explications of ‘effective computability’, namely, that recursiveness,
N-definability, program computability, Turing computability, Markov algorithm
computability, etc., characterize one and the same set of functions in different
ways, applies directly to (2). That argument simply says that if mathematicians
strongly believe ‘if P then Q,’, ‘if P then Q,’,... and believe ‘Q;, Q,, ..., are
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equivalent’, then they are justified in believing the statements ‘if P then Q,’.
This is a kind of nondeductive argument and is completely indifferent to the
analysis suggested by (2'), although intuitive feelings about computists and the
algorithms they might realize would probably have something to do with the
strength of belief in the several versions of the conditional.

Moreover, if it appeals to one to adapt a Kuhnian view of science to math-
ematical logic, it is an impressive fact that the accumulated results of recursion
theory, construed precisely as the formal counterpart of informal notions about
effective processes, enjoys enormous professional acceptance. The theory is “nor-
mal” mathematical logic indeed! Kleene and Vesley ([27], p. 2) mention dozens
of contributors to recursion theory with the obvious intent of heralding the pro-
fessional acceptance of Church’s Thesis “whether or not one accepts the thesis
[as true]. . . .”

All of these arguments are empirical in exactly the same sense as those that
favor other mathematical explications such as that of ‘continuity’ or of ‘area
under a curve’. The only difference I can see is that in times past mathemati-
cians have not been as self-critical of their epistemic presuppositions as mod-
ern logicians have been. So I count CT, when defended by such standards, as
of grade four in my classification and read it in the usual way, (2).

But the so-called ‘direct’ arguments, such as Turing’s ([60] and Post’s [44])
are obviously aimed at a reading such as (2’), which is of the fifth grade of
aprioricity (i.e., are a posteriori). Turing argues that in getting values of func-
tions algorithmically, computists display certain abilities and powers that are
totally captured by Turing machine rules. Similarly, to establish the “full gener-
ality [of normal systems], a complete analysis would have to be made of all the
possible ways in which the human mind could set up finite processes for gen-
erating sequences” ([44], p. 408). For both Turing and Post, support of a the-
sis equivalent to CT is a matter of showing, in principle, that certain cognitive
abilities are matched by idealized systems of computational rules. The princi-
ple being defended is an empirical one best expressed in something like (2')
where, in strictness, ‘recursive’ should be replaced by “Turing computable’, or
‘Post generable’, as the case may be.°

The vagueness of (2) is perhaps traceable to ‘effectively’. Quite clearly com-
putability is a property of functions, but effectiveness seems to have a rather
mixed reference. Church’s discussion ([12], p. 89), which is in terms of several
mathematical examples, scarcely gives a clue, although elsewhere he writes of
effectiveness of formulas ([131, p. 50). In (2) ‘effectively’ is an adverb that mod-
ifies ‘computable’. It restricts the abstract set of tuples denoted by ‘computable
function’. But in (2’) the concept is replaced by a notion of a computist produc-
ing function values via algorithm. (2’) already suggests that ‘effectively’ does not
apply directly to computable functions as abstract mathematical objects, but to
descriptions of functions and to symbol manipulations by agents. Indeed, ‘effec-
tive’, turns out to be adequately interpreted only as a predicate of expressions
or other concrete objects.

Shapiro [52] seems to be the first person to have deliberately applied the
distinctions most careful philosophers would use in studying linguistic reference
to this area of philosophy of mathematics. Functions, he rightly insists, must
be distinguished from presentations of functions. A function is an abstract set
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of ordered tuples. A presentation of a function, on the other hand, is a linguistic
expression that describes the function. For instance ‘Ax[x + 1]’ is a presenta-
tion of the set of ordered pairs (x, x + 1), for natural numbers, x. Similarly,
‘the least integer greater than the number of hickory railway ties laid in region
r in the United States between January 1, 1887 and January 1, 1900 divided by
Euler’s constant’ is a presentation of a finite function of r, r ranging over labels
0, 1, 2,...,m, of disjoint geographical regions, linearly ordered in some way.
Presentations are not limited to effectively computable functions, as one example
is definitely of that class while the other is not. Of course the concept applies
to recursive (Turing computable, etc.) functions; for instance primitive recur-
sive functions are defined by the familiar equation-pair presentations.

This distinction opens the way for an appropriate explication of ‘effective’
as an attribute of presentations, not functions. We shall see that there are two
concepts of presentation we must heed, one pertaining to computists following
algorithms and the other to computists embodying algorithms, a distinction that
is roughly analogous to the familiar one between a programmable computer,
which follows algorithms, and a computer circuit such as a parallel adder, which
incorporates an algorithm in its very structure. We shall see that this distinction
leads to a further split of (2°) into two readings, one of them expressing precisely
Turing’s version of CT.

As to the first, keeping in mind the received sense of ‘algorithm’, a (unary)
computable function f of natural numbers is one such that there is an algorithm
for determining f(x) from x for any x in the domain. As such it is an abstract
set of ordered pairs; and computability is a property of functions. A presenta-
tion of fis “an interpreted linguistic expression that denotes f” (Shapiro [52],
p. 210). A presentation of fis effective if it suggests (to a computist) an algo-
rithm for determining f(x) from x (p. 211); effectiveness is a property of presen-
tations. The first of the above examples is a computable function, and its
presentation is surely effective. The second is also computable since it is finite;
however its presentation is not effective.’

We now say that an effectively computable function fis a computable func-
tion having an effective presentation, whence CT in version (2’) may be alter-
natively read:

(3) Any computable function f having an effective presentation is recursive.

The quantifier implicit in ‘having an’ should be read classically.

The somewhat indefinite idea in (2’) expressed by ‘can be algorithmically
generated’ has now been replaced by that of a presentation of a function that
suggests an algorithm to a computist.®

Next I will introduce a notion related to presentation that calls not for
denotation of a function, but rather for denotation of a processor of a function.
Quite roughly, the idea is this. One can think of an algorithm as a list of in-
structions a computist follows; or alternatively, as a structure such as a special
purpose Turing machine or a human agent, the computist, which embodies in-
structions. For comparison, a presentation of the successor function, as above,
might be ‘Ax[x + 1]’. And this presentation suggests an algorithm that could
be written into a computer program. On the other hand a processor structure
for that function might be the sequential machine denoted by
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y(0)=0
yt+1)=—x() vy
Z(t) = = (x(®) vy@) v (x(2) Ay(1)).

This pair of recursion equations denotes (in fact, algorithmically translates into)
a binary circuit, provided that we understand x, y, z (input, next state and out-
put, respectively) as variable propositional functions of time and the v and A
operations as the usual logic connectives. It is easy to verify that the circuit,
which is equivalent to a one-way tape Turing machine, computes the successor
function. It does not “suggest” an algorithm to be followed by a processor, but
indeed is a processor and embodies an algorithm.

This second kind of presentation is to special Turing machines roughly as
Shapiro’s original concept of presentation is to universal machines or program-
mable computers. The distinction apparently is not very clear to many writers
who talk of finite automata or Turing machine “programs”, as if an automa-
ton or Turing table (set of quadruples or quintuples) were such. Of course a
universal Turing machine follows a program consisting of encoded quadruples
of a simulated machine in virtue of itself having a certain processor structure;
i.e., of embodying (being) a set of quadruples that enables it to follow the prob-
lem. But following and embodying are significantly different in import, as we
shall see.

An example from psychology is language translation. One who knows but
little Russian might be able to translate sentences into English using a list of
grammatical rules, assuming a complete, effective set were known for Russian.
From the mathematical point of view, the translator would use presentations to
get an algorithm for computing a map from Russian to English. But a fluent
speaker of both Russian and English would effect the translation directly, mak-
ing no explicit appeal to rules. The required instructions will have been inter-
nalized or “built in” to his cognitive repertoire.

The example of the successor processor is already, as I said, essentially a
Turing machine. However it must be emphasized that function processors as well
as function presentations are not to be limited to effective functions. ‘Proces-
sor structure’ should be taken in a suitably vague way to include beating hearts,
cracking plants, and robot controls just as long as they are ‘discrete state’ and
their inputs construable as numerals or strings on finite sets of objects of some
sort. In other words, processors are computer-like, but need not be effective.
We shall need to say more about processors in Section 4.

More precisely, let x, ¥, and z be strings (see Note 7), and let us take the
idea of structure or “black box” with inputs and outputs as primitive. A proces-
sor is a structure that produces output y from input x; if it produces z from x,
then y = z. In other words a processor is functional. By specifying that a proces-
sor “produce” an output we allow the possibility that a processor be nondeter-
ministic; it might have more than one way of producing a function value. The
function f computed by a processor is the set of ordered pairs of strings (x,y)
such that x produces y; i.e., f(x) = y. A computable function is the function
computed by a processor. An effective processor is one that embodies an algo-
rithm for determining f(x) from x where fis the function computed. ‘Embod-
ies’ is perhaps not crystal clear, but examples should suffice to make the meaning
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plain. A Turing machine embodies an algorithm, as does a finite automaton,
a McCulloch-Pitts ([33] or Kleene [25]) nerve network, a brain neural network
(on the mechanist hypothesis, at any rate), an automatic dishwasher control, and
a Coke machine that makes change. An effectively computable function is the
function computed by an effective processor.

(2’) might now be read using this second meaning of ‘presentation’, viz.
‘processor’:

(4) Any function computed by an effective processor is recursive.

There is a good reason, inessential for logic or recursion theory but impor-
tant for the broad defense of CT, for replacing ‘recursive’ in (4) by ‘Turing com-
putable’:

(4’) Any function computed by an effective processor is Turing computable.

Definitions of ‘recursive function’ refer to sequences of functions to which cer-
tain schemes may be applied ([26}], p. 275). Clearly recursive functions are thus
presented by interpreted expressions in a kind of formalism that indeed suggests
a computational procedure. That a function is Turing computable, however,
means there is a machine that computes it, not by following a routine suggested
by a verbal presentation (except for universal or programmable machines) but
by tacitly following built-in instructions that inform its structure. If we are to
think of recursive processes as models of effective processes, which seems to be
demanded by mechanism, then (4’) is the more natural rendering of CT when
read as an assertion about processors rather than presentations.

Although the distinction between (3) and (4) is of no theoretical moment
from the point of view of a worker in recursion theory, it does highlight for us
the role of computists and the distinction between expressly following a pre-
scribed routine and having one built in. It is worth stressing that ‘presentation’
in my sense of ‘processor’ is psychologically the more fundamental notion. To
formulate an algorithm as suggested by a presentation and to follow it in an
actual computation clearly itself requires built-in, tacit, largely unconscious, cog-
nitive processes which are themselves, by the mechanist hypothesis, operations
for underlying computable functions. For instance, recognition of a symbol as
a token of an input type (a power uncritically assumed for Turing machines)
seems to demand computation of a characteristic function of a symbol type.
Indeed, all computations from presentations necessarily depend on the presence
of subprocesses of some sort (more on this in later sections).

To summarize the results of this analysis, CT is an explication of ‘effec-
tively computable function’, is methodologically a priori for the working math-
ematical logician, and yet is empirical in the sense that (a) it is supported by
nonmathematical dialectical arguments much as those that support explications
of ‘continuity’, when it is read as relating abstract entities (2), and (b) it asserts
that actual procedures of following algorithms, (3), or embodying algorithms,
(4) and (4'), can be modeled by recursive functions or automata, when it is read
as an assertion about computists.

Despite what I believe to be the compelling evidence, mainly to follow, that
CT is empirical, there is no lack of arguments that it is not. I will consider three.
The first shows the epistemic importance of our distinction between (3) and (4).
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Thomas ([57], pp. 21-22) has argued against the empirical interpretation
on the grounds that we could not falsify, by any conceivable experiment, the
proposition that a given physical object processes a partial recursive function
only. We could never carry out the required infinite number of input experiments
to check whether a computable function is recursive.

Perhaps we could follow him and make out a case against CT as an empir-
ical statement along these lines if we persisted in reading it in style (3). For sup-
pose it is known that a physical object effectively processes input that by coding
is homomorphic to a natural number input or a string of a free semigroup. Then
the problem is whether or not the process is recursive. Unless the object in ques-
tion were a human computist or a digital computer (which of course would give
the whole game away!) it simply would not suffice to display a presentation of
a nonrecursive function and claim the object computed from that. Some kind
of verificational experiment would have to be performed. However, the func-
tion would have an infinite domain; and it would seem “that at no time # would
we be able to say ‘the machine M has computed the nonrecursive function . . . ’”
(p. 22). For, assuming each step of computation would take a finite time, how-
ever small, one could never establish computability over anything except a finite
domain in which case we could conclude only that the function is recursive.

However, even if we accept this argument, it overlooks the possibility of
establishing the nonrecursiveness of a function computed by a machine or other
object via examination of machine structures, what we are terming “processors”.
There is no known reason for believing that a processor for computing nonrecur-
sive functions, which is at least a logical possibility, would consist of the embodi-
ment of anything but a finite set of relations. For its operations would have to
be effective or neither the thesis nor its denial would be relevant. As Wang has
suggested, anything a “physical object can do reliably and systematically would
seem to be effective” ([63], p. 87). So sticking to Turing machine embodiments,
it would seem to be always possible in principle to see whether the process is
governed by a finite set of quadruple rules or the equivalent, or not. I conclude
that CT read fully as in (4) is falsifiable in principle.

A similar argument has been advanced that ‘effective computability’ as ana-
lyzed by Turing is not ‘human computability’ on grounds that Turing wants to
allow computations of all finite length as effective ([57], p. 65). Of course this
judgment would also apply to digital computers or other material objects in this
finite universe. A related point ([53], p. 362) is that the converse of CT is hardly
“trivially” true since recursiveness is unlike actual computability, which is lim-
ited to bounded input. Recursive functions are not actually computable, as the
arguments from the relevant domains are coded in arbitrarily long strings.
Again, many authors express the idea that parts of recursion theory “idealize”
human memory capacities by imagining infinite resources. Benacerraf ([1], p.
19) writes of “the simplifying assumption that humans internalize certain (infi-
nite) recursive devices”, as if the finitude of the brain meant that modeling by
Turing machines would be problematic. The upshot of these observations is that
CT has no relevance to empirical objects such as humans.

Arguments of this kind are mistaken. A function fis computable if there
is an algorithm for computing f(x) from x for any input x. The algorithm must
be uniform: i.e., independent of any input and in particular of its length,
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bounded or not. The definition does not say that for each input one can find
some procedure or other. . . . If so, it might be the case that the length would
have something to do with computability. But it does not.

It is true that the length of tape has a subtle relationship to the class of
functions computable by the machines of a certain family. For some classes of
automata, tape serves both for input and auxiliary memory.® For instance, the
linear bounded automata— Turing machines whose maximal tape length in a
computation is a linear function of the input —cannot compute all of the primi-
tive recursive functions (Myhill [36]). But what limits these automata is the rule
structure (automaton table), which includes special symbols that block
unbounded tape use. As is true of all Turing machines, their tables are finite col-
lections of rules.!©

It is entirely possible that human beings as well as other empirical objects
could compute any effectively computable function in the (correct) sense that
they could master a presentation suggesting an algorithm or otherwise embody
a processor structure for doing the same. Running out of “tape”, if and when
they do, has nothing whatsoever to do with what they can do.

In answer to Benacerraf, what we suppose humans internalize, if anything,
are finite systems of rules. The only infinity assumption needed is that humans
be given unbounded time and limitless stacks of pencil and paper.

Still another way of answering these objections as to the empirical stand-
ing of CT is to insist that computing power is dispositional. In all aspects of the
theory of computability, what interests the investigator is what a computist could
do if it were provided with arbitrary input. The concern here is with competence,
not performance.!! As Boolos and Jeffrey remark ([2], p. 19), one of the essen-
tial requirements of the theory is to be able to “use this notion [computability]
to prove that certain functions are not computable . . . even if physical limita-
tions on time, speed, and amount of material could somehow be overcome”.

An entirely different line of argument stems from intuitionism. It is an
interesting possibility that CT is an a priori mathematical proposition after all,
even though it does make essential reference to computists and their mental
powers, somewhat as in (4). Intuitionism already takes all mathematical objects
as creations of the mind. It is grounded essentially in a conceptualist psychology.
The very idea of a proof or computation entails that of a prover or computist.
For instance ‘there is an x’ intuitionistically means ‘any competent mathemat-
ician can find or show he could find an x, in accordance with intuitionistic
principles of constructive reasoning’. Similarly, the idea of an intuitionistically
definable function of natural numbers already ascribes certain constructivist
powers to the mind. So perhaps there is a suitable formulation of CT as a prin-
ciple of intuitionistic mathematics. One might interpret our notion of proces-
sor intuitionistically: the structure or presentation underlying computational
thought is whatever a full-blown intuitionistic theory of mathematical mental-
ity says it is; and this structure could be identified in CT with Turing rules or
recursive equations.

In fact in [28] (p. 145) Georg Kreisel attempts to express CT as a formula
of intuitionistic first-order arithmetic with added function variables as follows:

5) vfaxvy[3uT(x,y,u) & {x}(¥) =f(»)]
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where ‘f’ ranges over certain constructive functions of natural numbers, ‘7" is
the Kleene T-predicate and {x} is the indexed recursive function whose value for
yis {x}(»).

This appears to succeed in capturing the Thesis in a formalized part of
intuitionistic mathematics in something like the way we have suggested. In par-
ticular, the f’s are constructive functions, a concept that already comprehends
the notion of a mathematical mind endowed with certain illative powers. Kreisel
[29] has even gone further and suggested that by taking CT as an axiom for an
intuitionistic system one might be able to develop a precise theory of construc-
tivity and related concepts.

But if ‘/’ is meant to range over intuitionistic entities, it cannot also be con-
sistently intended to range over effectively computable functions, for reasons
discussed in the next section (I shall be arguing that the effective functions and
the constructive ones in the sense of intuitionism are different classes or at best
have irreducibly different presentations). Moreover, if these functions are con-
structive, expression (5) involves a circularity ([63], p. 96): the quantifiers x
(ranging over indexes of systems of equations or Turing machines) and u (over
derivations or Turing computations) must be constructive in some appropriate
intuitive sense that seemingly involves CT itself. On the other hand, if (5) is inter-
preted classically it is false.

3 Arguments against Church’s Thesis This is no place to canvass all of the
arguments that have been mustered against CT during the past fifty years.
Except for the indirect arguments that hinge on the use of Gddel’s theorems,
most of them have turned out to be unconvincing to most logicians, if not to
their authors. I do, however, want to examine a small selection from among
them for the additional light that might be shed on the empirical character of
CT. The discussion falls into three parts: (a) arguments against the positive argu-
ments for CT; (b) arguments to the effect that CT is false; (c) indirect arguments
against mechanism, which presupposes CT.

(a) William Thomas [58] maintains that any of the arguments meant to
support Church’s Thesis as a mathematical thesis carry very little conviction,
even that they are not arguments that mathematicians, who are otherwise the
exemplars of good reasoning, should be proud of. Every argument including that
from the equivalence of recursiveness, lambda-definability, etc., alluded to
above, ultimately reduces to showing that all of the effectively calculable func-
tions so far encountered turn out to be recursive. This is a kind of empirical
induction of the weakest sort. Strictly speaking he is right; such arguments have
little standing as mathematics. But neither do many other arguments which are
meant to support mathematical explications. Nondeductive, roughly empirical,
dialectical arguments are all that are available for any mathematical concepts
in what we have called the fourth and fifth grades of aprioricity, in particular
for explications.

(b) An obvious test of the Thesis would be to search for an effectively com-
putable function that is not recursive. To my knowledge all such attempts have
failed, and this fact in itself has been held to be a kind of confirmation of CT
as just urged. However, let us consider two of them to see what goes wrong.
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There are two intuitionistic arguments I know of, one of which leads to a
denial of (5). Since I already have doubts about (5) as an expression of CT, I
don’t have anything to add to the rather extensive commentary on this assault
on CT. Another argument seeks to establish that the class of intuitionistically
computable functions properly includes the recursive functions. If this is
intended as grounds for a refutation of CT it must establish some kind of con-
nection between the vague notion of an effectively computable function and the
equally vague notion of a constructive function.

From a certain intuitionistic choice principle ([27], p. 14) one can show that
any subset of the set of natural numbers you choose is intuitionistically enumer-
able. This principle, expressed in an appropriately intuitionistic language includ-
ing function variables, is as follows:

6) VxIfA(x,[f) = AfVxA[xX, N\ (X, )]

where A (x, f) is any formula in which x is free for f. Now let 4 be any subset
of the set of natural numbers. Then one can show constructively that

vx3if[(x € A) « W (f(y) # 0)]

holds, from Kripke’s principle [30], (Troelstra, [59]). From the choice principle,
it follows that

3fvx[(x € A) « Y (f(Kx,»)) # 0)].

Thus f enumerates A4: i.e., A = {x|3pf(x,¥)) # 0). So A is intuitionistically
enumerable.!'? But it is not true that any subset of the natural numbers is recur-
sively enumerable. Hence it is said that the general recursive functions are a
proper subset of the intuitionistically computable functions.!® So there is a non-
recursive effectively computable function.

But to count this as a refutation of Church’s Thesis one would have to
assume that ‘effectively computable function’ is interpretable in a suitably intui-
tionistic way. However, according to Kreisel this is not quite straightforward as
the axioms of an intuitionistic logic suitable for the formalization of Church’s
Thesis are not “especially evident” (recall (5) and attending discussion) unless
‘effectively computable’ is interpreted as ‘constructive’ in a “more general sense
of constructive definability” ([28], pp. 144-145).

If you were to replace the antecedent of the Thesis with this more general
concept and the consequent with that of intuitionistic computability you would
no longer have Church’s Thesis but rather a new thesis expressing the relation
between a novel informal notion of effective computability and intuitionistic
computability. An argument for or against that thesis might be of some slight
interest, but cannot be our topic here. Both propositions could be true, one of
the classicist’s (Church’s) preanalytic concept of computability, and the other
of the intuitionist’s.

Of course it might be argued that the relatively vague idea of constructivity
is more general than that of the equally vague idea of effectiveness in the sense
that the former comprehends the latter. Assuming that it makes any sense at all
to talk of one indefinite class comprehending another, perhaps this is what
Kreisel means when he suggests ‘constructive’ in a “more general sense of con-
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structive definability”. But in my opinion this possibility is precluded following
close scrutiny of the underlying sense of the respective concepts. Constructivity,
if that concept is to have significance for intuitionism, connotes a mathemati-
cal method each step of which is validated by primitive intuitions including those
that freely construct or exhibit mathematical objects. Effective computability,
on the other hand, connotes presentations that suggest or embody algorithms
that prescribe processes fixed in advance of calculation, requiring no mathemat-
ical insight, no validation of a mental act save that it follow a prescribed rule;
it connotes clerical process.

This point can be made more concisely using the idea of presentation. Let
a ‘constructive presentation’ be an interpreted linguistic expression that denotes
a function and suggests an intuitionistically constructive method of computing
that function. Then although it might be shown that computable functions (in
extension) are constructive, it is not obviously the case that effective presenta-
tions are constructive presentations, nor perhaps even true. If there were to be
any hope of showing overlap or inclusion of such concepts, nothing short of
deep empirical inquiry into the psychological nature of the processes would be
necessary. A subthesis of mechanism might be that informal intuitionist reason-
ing is a form of recursive computation —but no one is in sight of showing any
such thing. Nor the opposite. Intuitionistic reasoning is conscious and deliber-
ate of necessity; but checking through an algorithm need not be—witness
machine computation or subconscious cognitive process such as recognition of
the grammaticalness of sentences in a natural language. It seems to me that any
proposal to formalize the notions of computability, constructivity, intuitionis-
tic definability, etc., within some version of intuitionistic logic —especially if it
is to take care in observing the distinction between functions and presenta-
tions —in order to understand the interrelationships (Kreisel [29]) is totally out
of the question —short of obtaining more knowledge of cognitive processes than
we have available today.

I conclude that the argument from the intuitionist choice principle is largely
irrelevant to the standing of Church’s Thesis, given our present state of igno-
rance about cognitive processes of reasoning and computation.

A widely discussed argument of Kalmar’s [23] purports to show that CT
(3) is “unplausible”. He presents a nonrecursive function g, and argues it is rea-
sonable to believe that g is effectively computable.

Given a certain general recursive function f of two variables, define

the least y such that f(x,y) = 0, if there is a y,
g(x) = i .
0, if there is no ).

g is nonrecursive (Kleene, [26], p. 324). By CT (3) it follows that g is not effec-
tively computable.

To the contrary, Kalmar argues, there is an algorithm for computing g(a)
for any argument « as follows: Compute f(a,0), f(a,1), etc., in turn and at the
same time try to prove “not in the frame of some fixed postulate system but by
means of arbitrary —of course, correct —arguments that no b exists such that
f(a,b) = 0. Since fis recursive we can either execute the computation for each
natural number ¢ in turn seeking a b such that f(a,b) = 0, or otherwise by the
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method of proof indicated determine in a finite number of steps that there is no
such number b. Now if g were not effectively computable we should have to
infer the existence of a natural number @ for which there is no b with f(a,b) =
0; and yet this fact could “not be proved by any correct means”. So it is implau-
sible that g is not effectively computable.

But there is no end of trouble here, some of it concerning what it is that
Kalmar has really proved, and some concerning the algorithmic character, or
lack of it, of “arbitrary but correct methods of proof”. For Kalmar to draw an
implausibility conclusion he must derive, if not an outright contradiction, some-
thing more than a vague intimation that his proof method involves a kind of
computation. Keeping (3) or (4) in mind, it is quite evident that Kalmar’s dis-
cussion does not suggest an algorithm. The finiteness of the method is not
enough, for there are many kinds of cognition that consist of disciplined dis-
crete steps (or that so might be construed) such as the yogi’s steps to samadhi.
Other conditions must be satisfied. There is no algorithm specified since Kalmar
calls for a correct (perhaps different) proof procedure for each value of x, rather
than the other way around (cf. Moschovakis [35]); as previously remarked, to
be algorithmic a proof method must be uniform, at the very least. Mendelson
has pointed out that Kalmar’s method assumes there is a recursive enumeration
of classes of “correct proofs” (Mendelson [34]).!4 But even so, the proofs in-
cluded in a class of an enumeration need not suggest algorithms (i.e., be effec-
tive) even if correct. The fact that there are proof procedures for first-order logic
provides us with a standard for the algorithmiticity of a proof. But Kalmar does
not suggest a proof procedure since his “correct means” is not in the “frame of
a fixed postulate system”. Hence it is hard to see that a presentation of his
method would suggest an algorithm of any sort. So the result is not implausi-
ble. There could perfectly well be a proof by some correct means of nonexis-
tence of a least b, while at the same time be no effective presentation of any
kind. Kalmar’s methodological viewpoint is essentially that the possibility of a
vague, “premathematical” notion of proof is sufficient to show the implausibility
of a necessarily vague principle, which CT is. But ‘effectively computable’ is not
that vague, not so much so that the concepts of algorithm and effectiveness are
totally without structure.

(c) Arguments against mechanism that use Godel’s Theorems apply in-
directly to Church’s Thesis. For the sake of argument, let us assume all human
cognitive functions are executed by underlying effective processes. Then by
CT—(4) or (4’)—they are recursive or Turing computable, or other: the mind
is a machine. Now if mechanism is false, but there is still evidence that the
hypothesis of underlying effective processes is true, then CT must be false. Argu-
ments of this kind bring issues to mind that have been pretty thoroughly dis-
cussed over the past thirty-five years, and I am not going to trace them out again
except to bring front and center the principled view that they are guilty of assum-
ing far more about the capacities of the mind and less about the resources of
recursion and machine theory than is available, and ultimately reduce to empir-
ical questions about cognitive powers, minds, and machines.

Suppose you are a Platonist (or conceptualist), and one of your favorite
themes is that the mind is able to apprehend universals directly. If this theory
is true then mechanism must be false. For, the true Platonist would argue, a
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machine might be able to prove the existence of a universal (say a property), but
it could never get a direct grasp of it except in the trivial sense of replacing a
quantified variable with a name. Hence if a direct grasp is effective, Church’s
Thesis must be false. Could intuitive “grasps” be effective?

Here is an argument to the effect that grasping universals is effective in pre-
cisely the sense relevant to the antecedent of CT (4”). Suppose you are to fol-
low an algorithm which has the present instruction: ‘read the symbol next to the
mark # and determine whether it is an instance of the type x; if it is, do so and
so; else do something else’. Interpretation and execution of this instruction
depend on an underlying cognitive process, as observed earlier. Reading ‘x’ and
determining it to be an instance of a type is a computation of a function, and
it is effective. The function here is a characteristic function for the symbol type
X (a universal); the determination is a computation, for it tacitly follows an algo-
rithm embodied in the mind that matches the instance with a universal. So grasp-
ing universals is an effectively computable procedure.

On the other hand, it is claimed, the function is not Turing computable,
for instantiations of Turing machines manipulate concrete symbols, not types;
and they don’t grasp types to match against tokens. To the objection that com-
puters recognize symbols every day, the conceptualist would reply that computers
do not recognize anything; they react causally to physical input. The user inter-
prets them as recognizing symbols. I will answer this argument in Section 4.

Of more direct relevance to Godelian arguments, the Platonist (or concep-
tualist) might argue that the mind can intuitively grasp true interpretations of
formal arithmetics, but no machine could. Again, inasmuch as a machine is a
syntactical system it could not really be minded (Searle [51]): it could not have
beliefs or grasp meanings.

The first two arguments attribute capacities to humans they are not known
to have or even suspected to have on any naturalistic grounds I know of; and
the third assumes that grasp of meanings requires mental abilities which are inex-
plicable in purely mechanistic terms. Assuming anyone defending such a view
has a respectable theory about grasping meanings, this is not necessarily true
even in the face of the fact that semantics in formal metamathematics cannot
be reduced to syntax.

I wish to comment below on the second negative argument, which Lucas
[31] among others has advanced. Then in Section 4 I will consider the argument
about symbol types as an exhibit of an empirical question that favors CT, which
is of course my ultimate concern. I assume the reader is familiar with Lucas-type
arguments to the effect that we can see-to-be-true certain Godelian formulas that
are not provable in an adequate arithmetical logic.

Now an objection to Lucas’s line is that such a formula S can be proved
in another formal system. But then, says Lucas, still another formula S’ of the
new system will be seen to be true by the mind, but is not provable in the new
system, and so on. The mind, he says, can always “go one better” and “always
has the last word”. At any stage it can perceive the truth of a formula the
mechanical system cannot prove. So the mind is not a machine.

There is a direct answer to this argument based on the idea of a universal
Turing machine. Suppose the formulas in question are S, S’, S”, S, etc. Sup-
pose that W is the set of theorems provable by the formal system M, W’ by M’,
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W” by M”, W” by M”, etc. These formal systems can all be considered to be
Turing machines. Now it is agreed that although S & W, S € W’; moreover
S e W”, 8" € W”, etc. Since each W is a recursively enumerable set it can be
generated by one and the same machine, i.e., a universal Turing machine. So
it is false that the mind can always “go one better” (cf. Dennett [16]).

Now it might be objected the machine has to be programmed in order to
simulate any other given machine. But programs can be stored. There is no evi-
dence that Lucas’s seeing-to-be-true is anything other than “pulling out” a pro-
gram from the store. In fact this is close to the idea of mechanical mind he seeks
to lay low.

Another possible rejoinder is that the infinite union of the sets W computa-
ble by the universal machine can be imagined to be the output of some sort of
logic having a Godel sentence S which the machine cannot prove. But to say one
could “produce as true” such a sentence is nonsense.

Putnam pointed out long ago [46] that arguments of Lucas’s sort are based
on a misunderstanding of Godel’s theorem. Given a machine M, all Lucas or
anyone else can prove is that for an undecidable formula S, if M is consistent,
then S is true. So even in my response above there is a hidden assumption that
the systems in question are consistent, unless all of us engaging in the argument
have some transcendent gift of seeing the truth of S absolutely. So let us imagine
that Lucas means to “produce as true” the statement that M is consistent. Then
if one can indeed produce the required consistency, S can be seen to be true even
though M can’t prove it.

Chihara [7] has commented that Lucas’s reasons for convincing himself of
the consistency of M amount to little more than a disinclination to live with
inconsistency. Again, it is questionable whether a mathematician could come up
with a respectable consistency proof method for arbitrary adequate formal arith-
metics. So Lucas-type arguments amount to attribution of somewhat doubtful
intellectual powers to persons and then denying them of machines (Nelson [39]).
At any rate, the issues don’t boil down to questions that can be settled a priori
by appeal to any philosopher’s intuitions.

There remains the possibility of reformulating Lucas’s argument in care-
ful enough manner to withstand the sort of objections just reviewed. What 1
have in mind is Benacerraf’s [1] interesting reconstruction of Lucas’s argument.
Although it flushes the vagueness out of the argument it still places mechanism,
and along with it CT, in an unfavorable light as it casts a shadow of doubt on
the possibility of cognitive psychology as a science, if mechanism is true. But
this argument, too, boils things down to an empirical residue. What at first
appears to be a compelling a priori argument about the very possibility of psy-
chology turns out at best to indicate possible limitations on psychology, to its
impossibility —a result which I regard to be the most telling of plausible conse-
quences of Godelian arguments against mechanism, if we accept Benacerraf’s
premises.

Benacerraf’s treatment depends on some fairly plausible assumptions
needed to make the argument from Godel technically unobjectionable. These
are about relationships between what a person can prove and what machines can
prove and are as follows:

Let S be the set of statements B (Benacerraf or you or me) correctly proves;
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let S* be the deductive closure of S under first-order logic with identity. Let O
be the theorems of an adequate arithmetical logic; and let W, be the recursively
enumerable set of theorems proved by the xth Turing machine M, where there
is an effective map from the set of indexed machines to machine “programs”,
i.e. tables. Now suppose there is a W, such that

(a) (Q c I/ij = S*
(b) ‘W,cS*es*
© S*cWw,.

These assumptions are meant to capture the essence of Lucas’s attack on mech-
anism, viz, that B can prove (‘B can prove p’ means that p is in S*) that the
machine M; can prove the theorems of Q; that B can prove that B can prove
the machine output; and that B’s output is included in the machine’s: (c) says
that B is (deductively) a machine.

From these assumptions, using G6del’s theorems, Benacerraf derives a con-
tradiction. Assuming that S* actually follows by first-order logic with identity
from S (what it means to follow by first-order logic from what B can correctly
prove is far from clear (Chihara [7])), this means it is false there is a W, with
properties (a)-(c). But, Benacerraf argues, this by no means defeats mechanism,
which is expressed by (c). All we can conclude is that for any W}, at least one
of (a)-(c) is false. Certainly (a) is plausible; and if (¢) is assumed to be true, we
are left with the conclusion that although W, might indeed be included in S*,
B can’t prove it. Although by (c) he is a machine, he might not be able to ascer-
tain which one. He might not know the index j by which to recover the machine
table, nor have other means. One can even make the stronger statement that [if
knowing the machine table is a necessary and sufficient condition for proving
‘W; < 8*’], B categorically cannot know W)’s table, and by (c) cannot know his
own. Indeed, “Psychology as we know it might be impossible”. “I might be
barred by my very nature from obeying Socrates’ profound philosophic injunc-
tion: Know thyself” (p. 30). If this is correct there is an a priori block resting
on Godel’s theorems to knowing oneself. As many writers have pointed out this
does not rule out the possibility of others knowing B by empirical means (unless,
of course, Wj is the same for all persons!'?).

There is a way of rescuing mechanism from this impasse based on recur-
sive function theory itself. Assume that B realizes a universal machine U (cf.
[65]1, pp. 222-229). This requires no more idealization than assuming B is any
other kind of Turing machine.'® Let us also continue to suppose there is a W},
the output of a Turing machine M; that U could simulate, which satisfies
(a)-(c). I will argue that: (i) U(= B) can know itself; (ii) Benacerraf’s contradic-
tion derived from (a)-(c) and Godel’s theorems still obtains and is consistent with
U’s self knowledge; (iii) assuming that (a) and (c) hold, it remains false that
‘W, < §* € 8%, although it is quite possible that ‘W, < S*’ be a part of the out-
put of U.

(i) Now as to self-description, it was shown by Lee [31] and Thatcher [56]
that there is a universal self-describing machine U* whose output O(U?®) in-
cludes a coded representation of itself printed on tape. Briefly (Rogers [49],
p. 189), let f be an injective map from Turing machines to strings on machine
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alphabets, the value of f for M, being M,’s table in an admissible code. Let the
expression ‘M(x,y)’ mean that machine M with input x halts with output y on
its tape, where x and y are strings on M’s alphabet. Now let / be the total recur-
sive function chosen so that M}, is the machine that prints f(M,) symbol-by-
symbol from the empty tape, A; i.e., My, (A, f(M,)). Let ¢, be the partial
function computed by M,,. By the recursion theorem (Kleene, [26]; Rogers,
[48], p. 280), ¢,, = ¢4(ny for any recursive function g, in particular for 4 just
defined. Consequently, M,, = M}, ,,. So M, (A, f(M,)), which means that M,
is able to print out its own table in code computing from empty input.

Finally it is a straightforward exercise from this result to show there is a
universal self-describing Turing machine U, Starting from an encodement on
tape of an arbitrary machine and an input x, it prints out symbol-by-symbol the
value of the function computed by that machine and its own, that is U’s, code
script. Let U = U”.

(ii) There is no change in Benacerraf’s result: a contradiction derives from
(a)~(c) taken together with Godel’s theorems. It is conceivable that by taking W;
to be O(U*®) this result would not obtain. But then (b) would be false a priori
and we should not succeed in reproducing Lucas. We wish to find the worst that
would follow from such arguments. Here’s the reason O(U®) would be the
wrong set to take:

S is B’s deductive output and S* its first-order closure. The output O(U¥)
of U* is everything B could prove given an eternal life, interaction with an envi-
ronment, unlimited stacks of paper and piles of pencils. O(U?) includes all
recursively enumerable sets, results of heuristic procedures which might include
nonrecursively enumerable sets ([40], p. 104), the outputs of semi-algorithms,
its self-description and more (cf. [7], p. 513; [24], pp. 439f). No one knows the
details, but at any rate O(U) & S*. Consequently since B’s output S is correct,
so is §*, and (c) must be false. Therefore we take W}, which is some recursively
enumerable set generated by a nonuniversal Turing machine M.

(iii) However, since the contradiction goes through, it is false that ‘W; <
S*’is an element of S*, assuming that (a) and (c) are true. But what this means
is just that the identity of the program for W; is unknowable by B with deduc-
tive powers limited to S*. It is quite likely that B qua realizing the universal
machine U* could prove ‘W, < S*’, but we’ll leave the question open here.

The proper conclusion to be drawn is that Lucas’s argument as regimented
by Benacerraf does not threaten mechanism, hence does not threaten CT, and
does not threaten the possibility of cognitive psychology. It does suggest that
if humans realize universal machines — which in the end is an empirical question
that cannot be settled a priori —there might be mental processes that cannot be
fully understood; in our logico-mathematical jargon, we might not be able to
prove that certain programs have outputs in a certain recursively enumerable
class. But this, again, is not to be settled by intuitions as to what one can “pro-
duce as true”, or by a priori impossibility arguments. Prima facie, man can know
himself in the relevant sense; witness contemporary genetics, the logic
of which, as Burks [5] and Stahl [52], have discussed, is underwritten by the very
theory we have sketched above. A human also would appear to be universal, as
given the time, patience, and enough paper, etc., he could compute any partial
recursive function.
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4 Mechanism Returning to positive arguments for CT, let us pick up the
empirical line initiated by Post and Turing, which was represented in our analysis
by the full readings (3) and (4). Our idea is to focus on specific cognitive func-
tions and show they are recursive by empirical methods, essentially by model-
ing. The procedure I have in mind can be understood in two different ways,
which come down to about the same thing. To fix ideas, consider the example
of symbol recognition already alluded to twice in this paper. Let us continue to
assume that recognizing a symbol (or any other sensible property type) as a token
of a type is an effective process. The first procedure says to apply CT and
thereby conclude that the process is recursive, contrary to our Platonistic pro-
tagonist of the previous section. This method treats CT as an empirical hypoth-
esis. By experimental means or other considerations of cognitive theory, it is then
disconfirmed or perhaps in the long run confirmed, that recognition is indeed
Turing (or whatever kind of model we choose) computable. Such an application
of CT supports mechanism and adds to the accumulated evidence for CT itself
as well by much the same rationale as other empirical hypotheses are sustained.
In a way the procedure is reminiscent of Rogers’s use of CT since it applies the
thesis as an inferential instrument. And just as Rogers’s claim that a function
is recursive on CT grounds is verifiable by an appropriate recursive derivation,
so the claim that recognition is recursive is subject to other, in this case psycho-
logical or neurophysiological, tests.

The second procedure accepts the Platonist’s assurances that recognition
is an effective process and establishes a recognition model, either a program or
a processor—a Turing machine perhaps— which it advances as evidence that
recognition is a recursive process. This claim is then supported by demonstrating
that the model satisfies empirical adequacy conditions. In our example, these
conditions must include a universality requirement: that an adequate model must
be able to recognize all tokens of a type that a human could, and must be able
to discriminate among a large number of types (tell an occurrence of an g from
a b, etc.). If the adequacy conditions are satisfied the method then concludes,
for each cognitive trait it takes up, to a specialization of CT, in this case to
recognition. Of course the approach also supports mechanism insofar as it suc-
ceeds in establishing specific cognitive functions to be recursive, one by one.!”
Ultimately, adequacy of the models (or equivalent ones) must be validated by
scientific practice in order to attain long standing. The arguments are at best
“plausibility” arguments.

In the remainder of this section I will follow the second procedure and
exhibit a model for recognition or, more in keeping with terminology in the liter-
ature, for type-acceptance.'® 1 will then indicate a half dozen adequacy condi-
tions the model should satisfy and sketch an adequacy demonstration. The
exercise will be at once an argument for a specialization of CT: all acceptance
computations are Turing computable; and an argument for mechanism: mind
qua type acceptor (intuiter of universals) is a system of recursive rules.

Basically there are two modeling options: write programs that simulate type
acceptance, or construct processor models. A computer running under a pro-
gram, given some widely accepted idealizations, is essentially a universal Tur-
ing machine and thus, other things being equal, might demonstrate Turing
computability. Processor models could be special Turing machines, sequential
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circuits, finite automata, systems of production rules or the like. The construc-
tion of any model of this class is a demonstration that the phenomenon at hand
is recursive. Satisfaction of the adequacy conditions tends to show the model
is relevant, that it captures crucial properties of the subject.!®

These options are of course suggested by the distinction between presen-
tations that suggest algorithms to be followed and processors that embody algo-
rithms, a distinction we proposed in the analysis of CT and are reflected in (4)
and (4'). For reasons taken up in the Postscript, I opt for automaton modeling.
Not to put the reader off completely, the main reason for the choice (there are
others) is that automaton construction is far more amenable to demonstration
of adequacy conditions than programs are (Nelson [41]). Another is that if the
mind is a recursive processor in any sense, i.e., if mechanism is true, it must
embody, not only follow, algorithms at some point on pain of courting infinite
regress otherwise. For if there are program-like cognitive functions that are actu-
alized, there must be an underlying process that executes the instructions. Exe-
cution, in turn, must either occur in virtue of another algorithm-following
program (as in microprogramming) or of an algorithm-embodying structure (a
CPU). Ultimately there must be an embodying structure or nothing will ever get
done. So in a sense processors, not programs, are basic.2°

It is now time to rewrite CT once again as an assertion about processors
and automata. Recalling the definitions in Section 2, a processor is a structure
that produces input from output. The function computed by a processor is a set
of ordered pairs of the usual kind. An effective processor is one that embod-
ies an algorithm for determining f(x) from x. And an effectively computable
function is the function computed by an effective processor. A Turing comput-
able function is the function computed by a Turing machine; i.e., a processor
structure defined by a quadruple table (Davis [15]). In the following I will use
‘automaton’ as a generic expression to include Turing machines, finite automata,
serial and parallel compositions (i.e. direct products) of automata, pushdown
automata, universal machines, self-reproducing automata, and so forth. Under
this convention, a function is Turing computable if it is the function computed
by an automaton. Processor input is to include any finite, nonempty sets of dis-
criminable individuals including multidimensional arrays ([25], p. 372) and par-
allel inputs. The intention is to include stimulus inputs of all kinds (under
suitable codings), so long as they are discrete, to the cognitive machinery.

Consider

(6) Every effective processor is an automaton.

This is just another way of expressing version (4’) of CT; for, by the foregoing
definitions, if fis effectively computable, then it is equal to the function com-
puted by an effective processor, which by (6) is an automaton; and the function
computed by an automaton is Turing computable.

Proceeding with the example, I take it as an established working hypoth-
esis of cognitive theory that human intelligent functions are effectively comput-
able, i.e., are string functions (“processes”) computed by effective processors?!
in the brain or realized by the brain. So recognition is effective, as our Platonist
agrees. We have to show that a sufficiently elaborate automaton or composi-



CHURCH’S THESIS AND COGNITIVE SCIENCE 601

tion of automata is adequate to the task. First, I will indicate adequacy condi-
tions and second present the relevant automaton constructions in enough detail
to convey the sense of the procedure, assuming the reader is acquainted with the
basics. The reader who is not familiar with automata and Turing machine theory
will probably get most benefit by skipping over the technical details (they are
sketchy at best, anyway) and turning to the commentary that follows. A detailed
exposition can be found in Nelson [38], [40]. If the reader wants them, details
about automata structures can be found in Hartmanis and Stearns [19] and Nel-
son [37].

It should be clear from my preliminary discussion of the example in Sec-
tion 3 that the central question is whether or not an automaton qua system of
computational rules can possibly exhibit intentionality, or only have intention-
ality ascribed to it by a human being. The Platonist (he’s not the only one!)
maintains that computers do not type-accept, but that we ascribe acceptance to
them only.??> My reply is, it is possible to capture what we mean by ‘intention-
ality’ in the aforesaid adequacy conditions. If there are automata that satisfy the
conditions, we shall have shown, I claim, that intentionality can be a feature of
a very complex automaton structure. Of course there are deep philosophical
questions about the completeness of any conditions one might be moved to write
down, and even about the possibility of expressing linguistically what it means
for a cognitive attitude to be intentional. I will comment further on these ques-
tions after describing the models.

The objects-to-be-type-accepted in this exercise include twenty-six Roman
capital letters of some font. Tokens of a single type vary quite greatly in size and
level of degradedness and might be presented to the acceptor upside down,
rotated any number of degrees, and other nonstandard positions. Standard print-
ing is in black ink, but other colors might occur. There are also other objects
that appear to observation as identical individuals but are tokens of other than
the Roman types (see conditions II and IV).

Here are the conditions:

(1) Universality and discrimination. The model must be able to accept par-
ticulars from an indefinitely large class as instances of universal types. It must
be able to discriminate among at least the twenty-six types and maybe more.

(II) Recognition of many types in one set of tokens. The model must be
able to assign more than one distinct type to a single set of tokens. Examples
are gestalt patterns. Tokens of one and the same set of ‘A’s’ might be accepted
as instances of a picture of an A frame house or of the letter type A. The exam-
ple is a bit strained. Better, but more complex, are the Necker Cube and
Duck/Rabbit phenomena. In music, an example is the first three notes of ‘the
First Noel”’ which could be heard as the beginning of ‘Three Blind Mice’. This
phenomenon is analogous to that of terms in a language which have a common
extension but different intensions.

(II1) Recognition of one type in qualitatively disjoint sets of tokens. It must
be able to accept individuals having deviant properties as being of a normal type.
It should accept a blue ‘B’ as a B even though the standard tokens are black.
A better example is from music: to recognize a Bach B-flat Chorale played by
a brass band in A-flat.
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(IV) Recognition of degraded tokens. It must be able on some occasions
depending on context and expectations to recognize ill-defined, degraded charac-
ters, for instance a degraded B as an instance of the symbol type B.

(V) De dicto acceptance. It must be possible for the model on occasion to
accept the null object as of some type it expects. A human might expect to see
an ‘A’ on a paper ground where there is nothing but a blank and still see an ‘A’.
(It must be possible for it to hallucinate or engage in wishful perception.)

(VI) Nonveridicality of acceptance. It must be possible for the model to
accept a degraded input x as a type p when it is false that x is p.

(VII) Failure of substitutivity. It must be possible for the model to accept
a degraded x as a p and not accept y as p, although x and y be qualitatively iden-
tical strings.

The first four conditions are jointly gestalt conditions which observation
shows are satisfied by most humans. The last three conditions are intentional-
ity conditions proper, and are suggested by the familiar properties of intentional
sentences in natural languages (Chisholm [8], p. 170; Nelson [40], pp. 254f).

It happens that the model for condition (IV) includes a definition of ‘taking’
and ‘expectation’ ([8], pp. 182f). This model, which is not fully described here,
thus also satisfies conditions on taking objects to be such and such, and fulfill-
ment and disruption of expectations, all of which are intentionality concepts.

As to the model(s), basically there must be twenty-six automata, one
for each Roman letter type. We assume there is a common automaton vocabu-
lary, (s€) S, and an infinite set of strings (x &) §* , on S including the null
string, A. The automaton structures (next state and output maps) are at most
pushdown automata, as some of the procedures require telling in advance
whether certain computations will end up in accepting states. This is equivalent
to a solution of the halting problem, which is solvable up through the subrecur-
sive hierarchy only as far as pushdown automaton. We think of the elements
of the vocabulary as basic code components and of each of the twenty-six types
as instantiated by an enumerable set of distinct patterns of the components. S*
is the union of all these sets plus more. Thus in simple cases think of the set $*
as partitioned twenty-seven-fold. This includes the case of strings accepted by
no automaton.

Each of the automata computes a string function, which is the characteristic
function, of a single type. The accepting automaton adequate for condition (I)
is the direct product of all twenty-six. Suppose for the sake of a reasonably
straightforward exposition that all automata are finite state. Let <S, Q;,gio,
M;,K;) be the ith automaton where S is the vocabulary common to all twenty-
six automata, Q; is the set of states, q;o is the initial state, M; the transition
function and K; the accepting states. The direct product is ¢S, Q,qo,M,K),
where Q is the 26-fold cartesian product of states of the component automata,
qo is likewise a product of the initial states, K of the accepting states, and M is
given by

M(q,S) = (Ml(qlss)a QI ’M26(QZ6aS»-

The function M is then extended to M’ (g, x) by extending the component func-
tions M/ in the usual way. Thus we have for x € $*

Ml(qax) = (M],(qhx)a R ’M2,6(q26’x))'
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This simply says in effect that an input string is processed simultaneously by all
automata. In general the set of strings accepted by the ith automaton is infinite,
and acceptance of any string is in fact identification of that string as of the ith
Roman symbol type. Since S* is partitioned, any string will be accepted as of
at most one type. So the device discriminates. The partitioning convention is
lifted in IV. Note that this is a mechanist attempt at explaining how a mind could
abstract universals from particulars and discriminate among diverse universals.

As to (II) (keeping in mind an arbitrary one of the acceptors) we assume
that different partial recursive functions on one and the same domain correspond
to different types, as follows. Suppose f and g are any two partial string func-
tions on domain D < S*. We assume that the computation of two different
functions on the same domain models differential responses to the same set of
stimuli—in the example given in the statement of Condition (II), f, say, is the
function corresponding to letter type A and g the function corresponding to A-
frame house depictions. Now we convert the Turing machines that compute f
and g to acceptors by suppressing output and defining halting states as final
states.?? This procedure defines two “characteristic functions”?* —the functions
computed by the modified Turing machines —that are extensionally identical but
intensionally other. The processor for each is an acceptor, one that embodies
an algorithm derived from the Turing machine for computing f, and the other
that embodies an algorithm for computing g. I claim this construction captures
the gestalt phenomenon of “seeing” two distinct patterns in a single physical
complex, for the phenomenal experiences themselves must depend on dissimi-
lar underling neural processes. So this shows that acceptance of a set of tokens
of more than one type is computationally possible. Of course if such scheme
were to be realized, technical means would have to be provided to enable just
one of the automata on a recognition occasion.

For (I1I), assume for simplicity (but with no loss of generality up to push-
down automata) that all automata are finite state acceptors. Choose a set of gen-
erators S’ (a vocabulary) disjoint from S but of the same cardinality and define
a bijective map ¢ from S to S’. Extend ¢ to an isomorphism from S* to (S’)*
by ¢(xs) = ¢(x)o(s). Let I =S, Q,qo, M, K) be an automaton for an arbitrary
one of our types and let I’ = (S’,Q’,q3,M’,K’) be an isomorphic automaton;
specifically let 6 be a bijective map from Q to Q’ that satisfies 0M(q,s) =
M’ (0(q),o(s)) and such that g € K iff ¢’ € K’. Then keeping in mind that
d(xs) = d(x)p(s), it is easy to show that 6 (M(q,xs) = M'(6(q),d(xs)), where
the latter expression entails that I accepts a string xs = y if and only if I’ accepts
¢(xs) = y’. Inasmuch as the strings correspond under an isomorphism it is plau-
sible to assert that I and I’ accept the same types in the sense relevant to (III).
They follow the same accepting algorithm applied to disparate primitives, just
as one can see the same face in a painting and in a photograph.

(IV) Calls for a complex construction employing the notion of a self-
describing automaton. The basic idea we wish to emulate is that of a human
being who might under certain circumstances take an object that vaguely resem-
bles an object of type p he expects to see (or hear, etc.) to be of type p. The basic
ingredients of the model in addition to standard automata are three: (a) a finite
set B of elements disjoint from S; these are undefined for all twenty-six auto-
mata and model the idea of vagueness or degradedness. In the example think
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of them as partially broken tokens of the twenty-six types, tokens of a differ-
ent font, and so forth; (b) the concept of a winner or expecting state: a state g
of an automaton is a winner if there is a string x € S* such that M(q,x) € K.
Note that if an automaton is in an expecting state it “expects” input that would
take it to a recognizing state. However this condition does not imply that the
actual input during a computation will drive it to a recognizing state or will not
drive it to a recognizing state. (If experience leads you to expect an event of a
certain kind to occur there is no guarantee such an event will occur, nor that it
will not occur.) In general, if W is the set of winners, K C W C Q; (¢) an
algorithm —embodied in a sufficiently powerful Turing machine — for deciding
whether an arbitrary state of an automaton is a winner (this is the point at which
it is required that our basic accepting automata be no more than pushdown auto-
mata as the winner decision problem is recursively unsolvable for Turing ma-
chines in general); (d) the table of each accepting automaton stored in coded
form in a superautomaton that includes provision for comparing states.

Such a system operates as follows, supposing now that all strings up for
acceptance are elements of (S U B)*, which models corrupt input (a). Whenever
an automaton receives standard input it transits to the next state defined by its
table. However if it gets input from B (as part of a string x), the transition is
undefined. In this eventuality the superautomaton checks whether the current
state of the subject acceptor is a winner (b,c). If not, the input is rejected. If it
is a winner, the superautomaton finds the current state in the coded table (d)
and sets the subject acceptor to any one of the winning states, which accord-
ing to the coded table the current state would transit to if it had legal input.
(Ties can be broken in many computable ways.) The system then continues its
computation and will accept or reject the string according as its tail from the
undefined symbol on to the end of the string (which of course might included
other undefined elements) drives the machine to a recognizing or nonrecognizing
state.

This construction indicates that a strictly Turing-computational device can
account for type-acceptance of degraded or ill-defined strings containing ele-
ments that are not in the machine vocabulary.? Since this is a feature of gestalt
perception animals are capable of, it is a reasonable hypothesis that they, too,
realize self-describing structures —a favorite theme of mechanism (Hofstadter
[20]; Johnson-Laird [22]; Webb, [65]) but not heretofore applied outside of
genetics, so far as I know.

Owing to the capacity of the model to take input in the manner described,
it is easy to see that the intentionality conditions (V)-(VII) are satisfied. I omit
specific discussion of these conditions (cf. Nelson, [40], pp. 254f), except for
the following remark. It might conceivably be objected that the model satisfies
(V)-(VIII) simply because it is a machine that makes mistakes; and this is hardly
what anyone means by having intentions. However faking something to be in
virtue of being in a winning or an expecting state (even if my definition of a ‘win-
ner’ does not really explicate ‘expect’ in an entirely satisfactory way) certainly
must be differentiated from error. Construing phenomena in such a way as to
satisfy expectations may be epistemically nonveridical but hardly erroneous.
Moreover the system described for (IV), when it takes, is not failing—i.e. not
outputing either intermittent or catastrophic error.
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I claim it is a reasonable hypothesis that the system of models indicated
adequately captures the phenomenon of gestalt “recognition”, and also the qual-
ity of intentionality in type-acceptance.

It seems to me that our simple example of recognition of a particular as
an instance of universal type highlights most of the key problems confronting
mechanism. It is paradigmatic. Grasping universals in the sense of subsumming
a particular under a universal or abstracting a universal from a particular is
effective. If not, it is hard to see how any algorithm could possibly be executed
since a central ingredient is the correct reading and manipulation of symbol
tokens that instantiate types. The problem is to explain in naturalistic terms how
this might be done. CT suggests how: the act of recognizing a particular as an
instance of universal can be accounted for in Turing machine terms. If it can’t
be done mechanically, CT is false. Turing’s own argument [60] for the suitability
of his machines is precisely one to the effect that atomic acts such as observing
symbols are reproducible in his computational models.

Incidentally, the example brings to light the fallacy committed by philos-
ophies that oppose mechanism on grounds that physical devices that embody or
follow algorithms are strictly syntactical and hence could not possibly explain
cognitive cum intentional cum semantical phenomena. Proponents of this view,
such as Searle [51], claim too much. Even a “syntactical device” (if it were ever
explained what that is) must be able to recognize tokens as types. And this is
already intentional as our analysis shows even if it is too idealized to be true.
So granting computational processors are syntactical in no way concedes a fun-
damental limitation.

One concluding point. There are still those who will insist that intentional
phenomena cannot be accounted for naturalistically; by that I mean by some
kind of reduction to psychological, neurological, or, as in our case, to essentially
mathematical, terms. Of the many reasons for this conservative view the promi-
nent ones go back to what I have called ‘Quine’s version of Brentano’s thesis’:
One cannot break out of the circle of intentional terms (Quine [48], p. 220).
There are many confusing inequivalent versions of this doctrine, one that says
definitions of terms such as ‘expects’ and ‘belief’ are implicit and in terms of each
other; and another that says that psychological laws tend to explain the inten-
tions denoted by these expressions in terms of one another. Of course if these
persons are right and if all cognition is effective, as seems empirically to be the
case, CT is false. There are ingredients in effective processes that simply can-
not be reduced to concepts of recursion and machine theory. This is the Plato-
nist’s point, and it applies to Turing’s own version of CT.

However I claim the conservatives could be right only if they could show
that adequacy lists such as the above are incompleteable, not merely incomplete,
or that the model constructions do not actually do what they are supposed to
do, for example that recognition or type-acceptance is a phenomenon not cap-
tured by our definitions or any other naturalistic one. This is a big order. I don’t
think anything but detailed, informed counterarguments are worthy of any atten-
tion. Arguments from unanalyzable intuitions won’t do; and neither will those
that associate mechanism with some vaguely conceived programming theory of
mind. Strong intutions must be respected, especially in philosophy. But they
should lead, not block.
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Postscript An alternative to automaton models in verifying CT in specific
cases is programming models or simulation. Under our blanket assumption that
cognitive processes are effectively computable, I suppose any computer program
that runs successfully duplicates some human task we would usually say requires
intelligence, and to that extent verifies CT. Of course such programs range from
spread-sheet software produced for the market that claim no merit as models
of human cognition to, say, theorem provers or natural language processors,
which do. I suspect that ‘computationalism’ (which is popularly preferred to
‘mechanism’) means to most philosophers and logicians some sort of program
theory of mind. Discounting those who appreciate the distinction between pro-
grams executed by a stored program computer and automaton tables (includ-
ing those implicit in the design of hardware), most persons would probably opt
for programming models of the mind as the most appropriate tools for philo-
sophical support of mechanism. Webb ([65], p. 235) for instance maintains that
the fruitfulness of the mechanist theory of mind “can only be established empir-
ically by programming”.

It seems to me this attitude is mistaken, even given the most optimistic pre-
dictions (which I share) of the fruitfulness of artificial intelligence programming
for understanding the human mind. For there is a wide difference between
assuming mechanism as a working framework hypothesis for artifical intelligence
and cognitive science, and philosophical arguments to establish that hypothe-
sis. In principle, to show that a specific skill is computable an adequate program
will do the job; but in general it is far more troublesome to show a program will
do what it is supposed to do than to construct and verify an automaton struc-
ture. The usual order of events is to show by abstract mathematical means,
including automata theory, that a putative algorithm works and then write a pro-
gram that realizes it. This has been true in the practice of artificial intelligence
itself for years.

Programs realize algorithms that are followed by processors. Other algo-
rithms are embodied in processor structures. If human cognition is essentially
program-running, which seems to me the central assumption of “Strong AI”
(Searle [51]), there is no reason that the underlying processor must be a system
of recursive rules only. It is conceivable that a program be interpreted by a
Cartesian mind that interacts with the brain in program execution. Or a concep-
tualist’s soul. There is nothing in the concept of effective processor that implies
material or mechanistic mind. The point of the symbol-token recognition exam-
ple was of course to show that the processor that interprets and executes an algo-
rithm is mechanical. It seems to me that approaches to cognitive science that
build on analogies to digital computer and program paradigms (executive sys-
tems, input-output routines, slow, fast, and cache memories, etc.) are philosoph-
ically naive though perhaps suggestive for artifical intelligence. Ultimately the
processor itself, the brain, must be shown to embody recursive relations if CT
is to be verified in the general case.

The “followed-embodied” distinction is already presupposed by many com-
putationalist proposals for managing the problem of intentionality, notably Den-
nett’s [17]. We are justified in ascribing beliefs, hopes, expectations, and actions
to programs (hence, by Strong Al, to minds) if program execution reduces down
via machine languages to the actions of physical, electronic, or chemical
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switches —in our reckoning to instantiated automata. Thus even those forms of
mechanism that do not insist as mine does on explications of intentional vocabu-
lary in purely mathematical terms, already tacitly assign what turns out to be
an essentially ontological priority to embodied algorithms.

Program-theoretic versions of computationalism are prone, it seems to me,
to confusion of problems of program design with adequacy conditions. They are
certainly not the same. In pattern recognition theory there is a standing prac-
tice, based on an assumption that recognition is some kind of map from tokens
to types (cf. Nilsson [43], of working out both matching and signature iden-
tifications schemes of increasingly elaborate kinds. All of them present for-
midable technical problems in algorithm design. Almost none of them, to my
knowledge, pay attention to the fact that recognition is many-many, not func-
tional (Condition II above), and to that extent do not heed an adequacy con-
dition. Of course in principle any automaton model can be translated to a
program which, in turn, can in principle be shown (or not shown, as the case
may be) to satisfy appropriate adequacy conditions. But the demands of writ-
ing useful or theoretically interesting programs are certain to be diversionary,
as experience abundantly shows, although such demands do not preclude atten-
tion to fundamental theoretical questions of the philosophy of mechanism.

NOTES

1. Many neuroscientists also have adopted a mechanist point of view. I do not mean
to rule out the significance of neuroscience for the cognitive sciences, and hence for
the Thesis.

2. ‘Calculable’ has generally been supplanted by ‘computable’. ‘Calculator’ connotes
‘fixed program’ as associated with hand and desk calculators of the 1960s and
before. In Turing’s version of CT, ‘Turing computable’ or ‘program computable’,
relative to some fixed, precise programming language, then is to be distinguished
from ‘effectively computable’.

3. I will continue to write of definitions and explications as “analytic”, “a priori”, etc.,
although it is the statements that result from substitutions of definienda for
definientia (or vice versa) that are among the analytic, or nonanalytic, etc., prop-
erly speaking.

Wang, in [64], attacks the Carnap-Quine doctrine that analyticity is truth by
convention (p. 451) and advocates, following Godel [18] that it is either a tautology
or truth grasped conceptually in terms of some kind of coherence of meanings. For
logical empiricism CT would be analytic, and for Quine certainly conventional but
would escape the typical analytical-synthetical distinctions of past years, as would
many mathematical statements outside of pure logic. Although I follow Quine for
the most part I do not intend to revive old business here beyond these remarks.

4. I count the converse thesis as problematic. There are primitive recursive functions
that lack effective presentations in the sense defined below (cf. Rogers ([49], pp. 9f)
and Note 7 below). However this paper is devoted mainly to the direct Thesis.

5. Reading CT as a proposition about computations of algorithmic functions, we must
suppose that the notion of computable function has been extended to fields of
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notations, i.e., numerals and strings of identifiable objects of a finite set. Strictly
speaking, versions (3) and (4) of CT to follow, in which there is explicit reference
to algorithmic procedures, must be read as functions of strings or numerals, since
algorithms apply to concrete objects only. For a precise treatment of string theory
see [14]. For a wide variety of different types of string functions see [37]. I rely on
the reader to interpret functions as relations of numbers, appropriate notations, or
strings, depending on context.

. Shapiro [53] has drawn a distinction along essentially the same lines. He suggests

one can read CT either as proposing the substitution of a precise notion of recur-
siveness for the vague one of effective computability, or as identifying a “fixed,
preformal structure underlying mathematical thought” with recursiveness. He notes
that the first of these two interpretations is essentially that of Rogers; i.e., of expli-
cation in the sense of Carnap, while the second is essentially that of Turing and
Post.

. The interplay of the concept of computability as a property of functions with that

of effectiveness as a property of representations requires more study, it seems to me.
Some authors (Moschovakis [35], p. 472; Webb [65], p. 54) think an effective func-
tion is one having an algorithm. Surely this cannot be right, for then the railway-
tie function would be effective. On the other hand Shapiro argues that functions
are computable if and only if they have effective presentations. It seems to me that
my railway-tie function is again a counterexample. As it is finite, it is computable,
by the converse of CT; and trivially there must be an algorithm, according to both
Shapiro’s and my construal of ‘computable’. But the presentation does not suggest
an algorithm, so it is not effective. But there are difficulties here even without using
CT. If I understand Shapiro correctly, a presentation is quasi-effective “if there is
an algorithm P such that (in principle) one can establish that ‘P realizes the func-
tion’ [described by that presentation]” ([52], p. 211). There is an algorithm for the
railway tie function one could in principle establish given detailed railway histories,
19th century land surveys, etc. So the railway-tie function seems to be quasi-
effective, hence computable (p. 215). But by the equivalence of computability and
effectiveness of presentations, it is not computable.

Shapiro’s principles about effectiveness, if they are right after all, help defuse
certain arguments against CT. One of Bowie’s [3] criticisms is a case in point. Bowie
means to show that recursiveness and computability are not coextensive whereas he
only shows that recursiveness and quasi-effectiveness are not coextensive ([52], p.
226).

The doubts about the converse of CT raised in Note 4 get reinforced by exam-
ples. There are recursive functions that are not effective inasmuch as the expressions
that define them do not provide a suggestion of an algorithmic procedure. For
example, the familiar “Fermat function” is recursive, assuming the law of the ex-
cluded middle. But its received presentation is not effective. If a presentation existed
that were effective; i.e., suggested an algorithm for determining which constant
function obtained, it would necessarily be true if and only if Fermat’s Last Theorem
were true.

. The verb ‘suggests’ in the definition of ‘effective’ presentation is not entirely clear,

but I shall take it for granted it is clear enough for purposes of this paper. Perhaps
the vagueness of ‘effective’ (and hence ‘effectively computable function’) can be
traced in part to the vagueness of ‘suggests’, and in part to that of ‘algorithm’ (cf.
Rogers [49], pp. 1-5, for a discussion of the latter).
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A finite state automaton (acceptor or transducer, cf. Nelson [37]) can be thought
of as a box supplied with a one-way input tape that introduces symbols into the box
one-by-one. Moreover the input of a finite state automaton is unbounded —it can
receive any finite length string of defined symbols. A Turing machine can also be
thought of as a box with an input tape. However in that case the box also contains
a working tape that is loaded by the input, after which the input is inactive or
thrown away. What makes a Turing machine “infinite” is the unboundedness of its
working tape, not the cardinality of the quadruple structure, which is finite. A finite
automaton (e.g., a digital computer) might also have a working tape; but it will be
bounded. Thus the differences in computational power can be traced to working
tapes, not to input length or cardinality of the quadruple structures. See Kirk [24]
and Nelson [42] for more discussion.

Kirk ([24], pp. 442-445) critically discusses many of the so-called “limitations” on
the computational powers of finite state automata.

I have in mind essentially Chomsky’s [10] competence-performance distinction.
Also see Nelson [39].

A similar view about the effectiveness of arbitrary sets of natural numbers, stem-
ming from vaguely constructive if not intuitionistic impulses, was once suggested
by Church himself [11].

This view is Dirk van Dalen’s, conveyed to me in a private communication. A con-
trary view is Kleene’s: given his concept of recursively realizability, he is convinced
that “only number-theoretic functions which are general recursive can be proved to
exist intuitionistically” ([26], p. 509).

Having made this correction, Mendelson claims Kalmar actually does show that CT
is contradictory, not merely implausible. I think this is wrong for reasons given in
the immediately following text above.

I owe this observation to Mortimer Kadish.

We are again assuming something like the Chomsky competence-performance dis-
tinction in the idealization that B is a universal machine. The universal machine
represents B’s competence. If a human being is only a finite automaton, she never-
theless might realize the table of a universal machine, and also a two-way tape, pro-
vided that “tape” additions are external —in the environment (see Note 9).

Besides recognition (perception), Nelson ([40], Chapters VI-X) attempts construc-
tions for taking, expectation, belief, desire, reference, meaning and a theory of truth
for a primitive language based on acceptance rather than on satisfaction.

See Hopcroft and Ullman [21]. ‘Recognition’ seems to imply veridicality. Accep-
tance yields recognition (perception plus identification—see Sayre [50]) when in
accord with objective facts. The interrelationships among concepts here are com-
plex, and there is little general philosophical agreement on what a full theory should
be.

The forerunner of all such methods is Turing’s [60]. His version of CT is established
precisely by showing that Turing machine quadruples are adequate to the conditions
posed by effective computist operations.

Beyond Turing, the method of constructing models consisting of Turing or
Post production type rules and insisting that they have “explanatory adequacy” in
the realm of cognitive science was pioneered by Chomsky [9], [10]. McCulloch and
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Pitts [33] present a model of nervous activity and are in the same spirit, as it too
uses essentially finite state automata (which are weakly equivalent to finite state
grammars and are expressible Turing or Post rules). However the authors are not
as expressly bent on meeting adequacy conditions as Chomsky. Indeed their model,
although a landmark in the field and deserving of great respect, falls far short of
empirical adequacy. None of these thinkers appear to be aware of the involvement
of CT in version (6) —to appear shortly—in their investigations.

Dennett [17] insists that an adequate cognitive science must not assume “unanalyzed
bits of intelligence”. Intelligent computer programs tend to show how cognitive fea-
tures can be reduced to machine operations, which satisfies the demand. Our obser-
vation about the primary character of embodied algorithms really says the same
thing; for digital machine operations do embody algorithms.

Burks [4] argues that all cognitive (in fact, all “natural human”) functions can be
performed by a finite automaton or digital computer. The part that is relevant to
us tries to establish that such functions are all effectively computable, i.e., functions
computed by effective processors. Sensory inputs (stimuli and sequences of stimuli),
even if they include “every qualitative and quantitative detail that might make a
difference in the output” (p. 56) must be finite. So are internal states: “There is
a minimal size physiological part that matters in human information process-
ing. . . . Since the human body occupies a finite volume, there is only a finite num-
ber of these parts. Also there is a maximum speed at which these parts can operate.
It follows that man’s transformation of input(s) to outputs is mediated by a finite
number of internal states (p. 57). Similarly outputs are finite and the transforma-
tions are deterministic, i.e., functional. The concept of just noticeable difference
which is involved in this account is well established experimentally, widely accepted,
and indeed a cornerstone of cognitive science.

Note that acceptance is intentional: in ordinary philosophical terms it is a mental
act that need have no de re object, but yet need mean or refer. One might take an
object to be of a type in order to satisfy expectations, while the object is really of
another (or null) type. Moreover, acceptance entails knowledge of universals, which
is not a physical act according to the Platonist or conceptualist. I mean to capture
all such aspects in the list of adequacy conditions to follow in the text.

The construction indicated essentially copies Davis’s construction of a semi-Thue
combinatorial system from a Turing machine ([15], pp. 88-91).

The resulting automaton computes the characteristic function if and only if the
completion of the original partial function is computable (see Davis [15], p. 16).
This is guaranteed by the limitation of all functions to those computable by push-
down machines.

The construction suggests a concept of virtual class membership for ill-defined
strings. Let R be a recursive resemblance relation, and A a recursive set. (Roughly,
R is a resemblance relation if it is the taking relation described informally in the
text.) We say that x is a virtual member of A4 if and only if there is a y such that
R(x,y) and y € A. Since A is recursive there is a machine that computes its char-
acteristic function; i.e., accepts y. So we say the machine virtually accepts x. The
complex machine of our construction virtually accepts a string x since taking is
recursive (it is the result of a computation of a composition of automata), and the
set determined by a type is recursive as its characteristic function is Turing comput-
able. It has seemed to me that this concept might be a useful alternative to that of
fuzzy set in cognitive studies.
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