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Solving Functional Equations at Higher Types;

Some Examples and Some Theorems

RICHARD STATMAN#*

The solvability of higher type functional equations has been studied by a
number of authors. Roughly speaking the literature sorts into four topics: con-
structive solvability (e.g., Godel [5], Scott [7]); solvability in all models, i.e.,
unification (e.g., Andrews [1], Statman [8] and [9]); solvability in models of
A.C. (e.g., Church [2], Friedman [4]); and the solvability of special classes of
equations (e.g., Scott [7]). In this note we shall consider yet a fifth topic, namely,
the solvability of functional equations in extensions of models.

Our main result is the no counterexample theorem. This theorem equates
the unsolvability of E in every extension of U with the solvability of some other
E in %. The theorem can be iterated and applied to \ theories (in extended lan-
guages) as well as to models. Thus, it can be used to explain, in a general way,
a phenomenon well illustrated by the case of AU.

AU is the theory of upper semilattices of monotone functionals. ALl has the
property that each of its models can be extended to solve all the fixed point equa-
tions

Mx=x .

This is a simple consequence of a Scott-type completion argument. It is also an
immediate corollary to the no counterexample theorem.
We adopt for the most part the notation and terminology of [8] and [9].

Types 7 have the form 7(1) = (... (7(¢) = 0)...).
If 8 is a set of objects (terms, functionals, etc.), 87 is the set of all mem-
bers of § of type 7.
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If I is a set of constants A(X) is the set of all terms with constants from

L. A(T) is the set of all closed members of A(Z). A = A(¢).

M, N range over A.

B, C, K, I, W, S are the usual combinators.

A, B, ...range over models of the typed A\ calculus.

A* is the result of adjoining infinitely many indeterminates of each type

to 2.

R=R,SUA" X...x A" is logical if R(®;,...,®,) e V¥,... ¥, R(¥,,
L_—n,_—J

oY) R(PYY,...,P,7,)

(this is, of course, no restriction on ®g).

Definition Functional equations E = E(y, X) have the form
Myk = Nyx

where M, N € A. By \ abstraction this is perfectly general. Given the parame-
ters J, we wish to solve for X.

Example 1. Solvability in all models for all choices of parameters: In this case
we may assume J = ¢ [9]. Then E is solvable in all models if and only if M¥
and NX are unifiable.

Functional equations are closed under conjunction (see [4]).

Example 2. (Dezani) Invertibility: BMx = I A BxM = I is solvable in all
models if and only if M is a hereditary permutation [3]. A solution, if it exists,
is given by AyM(...(My)...) for some n.

—

n

Functional equations are in general not closed under negation; however,
in one important case, they are.

Example 3. Mq.dels of A.C. ([4]): Let % be a model of A.C. and let & < 9.
Then either E(®, X) is solvable in ¥ or

AEZX(MBX) = Nuvu A NXZR(NDE) = Auvv
is solvable in ¥ (so E(®, X) is not solvable in any extension of ).

Definition B 2 U is called functionally complete (over %) if no extension of
U solves more functional equations, with parameters from %, than 9.

Example 4. Upper semilattices of monotone functionals: Let L € 0 (L, =
Axi...x,L)and U= U, € 7— (r— 1) (for greater clarity we shall infix U). Let
AU be the following equations:

Lur=r
AMxUx=1
AMyxUy=xxyyUx
MyzxU (yUz)=Ayz(xUy)Uz
AMyx Uy =2rxyz(xz) U (¥2)
Ayz (xy) Ux(y Uz) =Nxyzx(y Uz) .
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Let A be a model of ALl. Then the fixed point equation
Mx=x

is solvable in every functionally complete extension of . For if &, ¥ € ¥ define
dc Ve ol V¥ =1V, then Sis a partial order and a logical relation. Thus we
can apply a Scott-type completion argument.

Given E, for zy, z; € 0 define E, = E,(z92,7, il) to be

NXZo = NXu X (MyX) (NYX) A
NXup X (NYX) (MyX) = NXu X (MyX) (NyX) A

NX u, X (NyX)(MyX) = NXz; .

A solution to E,(abd, ii) for a # b is called a counterexample to E(®, ¥).
E(®, X) is said to be no counterexample interpretable in Y if for each a # b
and n, En(abi, i) has itself a counterexample in Y. The reader might wish to
compare these notions to [6].

Example 5. The fixed point equation Mx = x: The fixed point equation
is no counterexample interpretable in any model of AU. For put M" =
M(...(ML)...), and suppose ¥ is a model of ALl and ¥ is a solution of
—

n
E,(ab, ii). We have a = ¥\ M'M>M"' € V,M*M*M?* < V;M*M*M3*c...=b
so @ S b. Symmetrically b S @ so a = b. The rest is simply an exercise in the
definition. Observe that this gives an alternative proof of Example 4.

The No Counterexample Theorem
E(®, X) is solvable in an extension of U &
E(®, X) has no counterexample in .

Proof: Clearly it suffices to show <, so_assume that E(&;, X) has no counter-
example in 9. Let T; = M and T, = N®. Define ~ on Y* X A* by &, ~ $, &
IV P, = V(T X)(TrX) A &, = ¥(T,X)(T,X). Let = be the transitive closure
of ~. Since ~ is reflexive and symmetric, = is an equivalence relation.

(1) ~ is a logical relation.
In particular, if y ¢ ¥ and &, ~ &, then A\y®, ~ A\y®,. Thus

(2) = is a logical relation.

Thus, as in Example 8 of [13], putting [®] = {¥: & = ¥} and [®][¥] =
[®#¥], we obtain a model B = {[P]: & € A*}. Moreover, the map & —~ []] is
a total homomorphism of Y* onto B.

Now suppose ®;, &, € A, &, # $,, and ¥, = ¥,. By (2) there exists a,
b€ A°, a# b, and a = b. Thus, there exists a;,...,a,_; € U° such that a ~
a; ~...~ a,_, ~ b. Hence, there exists ¥,..., ¥, € A* such that
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a =Y (T,%)(T>%) A
a, = ‘I,I(TZ-’E)(TI-’E) A
ay = Vo (T1X)(T2X) A

an_y = ¥V, (T1X)(ToX) A
b=V, (T,x)(T\X) .
Thus

AX(NXY ) X(ToX) (T X) = NXb .

So E,,(abf_ﬁ, X) is solvable in A*, therefore it is solvable in . This is a con-
tradiction.

Thus ¥ < B.

Finally, [¥] is a solution of E(®, ¥) in B.

Corollagy 1 E(‘i;, X) is solvable in every functionally complete extension of
A & E(®, X) is no counterexample interpretable in Y.

Corollary 2 E(cf>, X) is solvable in some extension of A & it is solvable in
some total homomorphic image of U* which extends Y.

Corollary 3 M3 = NX is not solvable in any model & for some n

AX(Axy x) = N uy X(MX) (NX) A
AX U X(NX) (MX) = N up X(MX) (NX) A

AX U, X(NX) (MX) = M(Axyy)
is solvable in every model.

Example 6. Consistency ([11]): M = N is false in every nontrivial model &
uM = Axy x AuN = \xyy is solvable in every model.

Definition Functional equations of the form MX = A\xyx or equivalently
M3 = \xyy are called isolated. Functional equations of the form Mx = N are
semi-isolated.

Example 7. Semi-isolated functional equations: MX = N has a solution in all
models & it has a \ definable (possibly with a type 0 parameter) solution in @,
for all sufficiently large n ([11]). Here n depends only on N.

Example 5 continued: Let £ consist of L, U, and constants FEO— (... (0—

n
0)...)f i .For Te A(Z t T"=T(...(TL)...). We shall
) ) for various n. For () pu ( (TL) )

n
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show that Tx = x is solvable in every model of AU if and only if AU } 77! =
T" for some n. Note that, since the axioms of ALl are typically ambiguous [12],
the corresponding result follows for the typed A calculus.

For this it suffices to construct a universal model of AU in which < is
locally finite. With a little more care we can construct such a model which is gen-
erated by its 1-section. In this model < is not only locally finite but also recur-
sive. The decidability of the word problem for ALl follows immediately.

As a preliminary we need some simple results about the first-order theory
of upper semilattices with smallest element and monotone functions. Consider
the first-order language with the constant L, function symbols F of various ari-
ties, the binary function symbol U (infixed), and the binary relation symbol <.
Let 3 be the following set of sentences:

vxxUxcx

vx 1 <cx

vxvy xUycyUx

vxvyvz xU(yUz)cs(xUy)lUz
VXVYVZ xUy)yUzexUd(yUz)

VxVy xSxUy
VXVYVZ XS YANYyESz>XCS2
VXyvuv XxXCSunycv-oxUyculv

VX] o Xy VY e Y XIEVIA . AX, SV FX ... X, S FY ... ).

Obviously, if we define x =y« x € yAy S x then = is a congruence. For what
follows it is convenient to think of the terms of 3 as independent of the associ-
ation of LI’s and the order of arguments of LI’s. This is harmless since Ll is
associative and commutative.

We write a S bifgisasubtermof b.a<be3cShb3I tacSc. aisin
normal form if

a= 1,
a = Fa, .. .a, where each q; is in normal form, or
a=Fay...a, U...UF,ay ...a,,, where each Fa; .. .a,, is in normal

formand i #j—> 3V Fiay ... .am S Fja;1 .. .a),.
The following facts are easily verified:

() 3+Fay...a,<alb->3}Fa...a,Sav3} Fay...a,<b.

)3+ Fay...a,SGby... b, F=Gnforl<i<n3}tach,.

3)3¥¢¥ Fay...a,< L.

(4) For each a there is a unique normal b such that 3 | a = b.

(5) If a<bA3 } b < cthen there exists d S csuch that 3 | a S d.

(6) If a is normal and b < a then J I a S b.

(7) < is transitive, reflexive, and a < bab <a e I Lta=>b. Let J, =3 U
{bcc: b, cKa}.

@ I, Fbca=3Fbc<ca.

Let @ be the free model of 3. We consider @ modulo = as an algebra with x
y e xUy=y. Since @, contains all functions on its ground domain ®;,, we may
assume that this algebra S @, and that its domain is ®;. Let It be its Gandy
hull in @, ([11]; briefly, to build ¢ take all elements of @, A-definable from
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parameters in @, and “collapse” the result to an extensional model of genuine
set theoretic functionals).

Now define ® U ¥ = Az(®z) U (¥z) and define a logical relation € =
C on by ¢ % VoedJ¥=1V,

T

Claim dPcVedUV =V,

Proof: By induction on types. The basis case is by definition so we proceed to
the induction step. Suppose ® < ¥. By induction hypothesis X € X, for X of
lower type, so ®X € ¥.X. Thus by induction hypothesis ®X LI ¥X = ¥.X, Thus
& U ¥ = ¥ by definition of LI. Now suppose ® LI ¥ = ¥, Now < is a partial
ordering of its field. In addition, by the construction of I, L € L, FS F
and U € U so by the fundamental theorem of logical relations ([13]) vx x € x.
Thus S is a partial ordering. Suppose X; € X,. We have &X, U ¥.X, = (¢ U
¥)X, = ¥.X; so by induction hypothesis X, € ¥.X,. But $X; € ¢X, so
@Xl c ‘I’Xz Hence & < V.

In particular, I E AU, i.e., A\UF Ty S T =Mk T, € T,. We shall prove
the converse.

Definition For T € A(X) = A we define the notion of A L normal form as
follows: T € 7is in AU normal form if

@ T=Mx;...x 1
M) T=Nxy...x, F(T\xy...%x;)...(T,x;...x;) where each T;is in ALl normal
formand FE0— (...(0—-0)...)

;—nr_—)
© T=Nx;... x5 x(Tix;...x))...(T,xy...x;) where each T;is in ALl normal
form and n = (i)
d T=rxy...x, (Tyx;...x) U...U (Tpx,...x;) where n > 1, each T;is in
AU normal form and each T; is of type (b) or (c).

It is easy to see that every term has a AU normal form.

Lemma Suppose Ty, T, € Ay and N\ U ¥ Ty S T,. Then there exist U, . ..
U, € Ay, such that M ¥ T)U,...U, S T,U;...U,.

Proof: We may assume that 7; and 75 are in ALl normal form. The proof is by
induction on |7;| + |T3|. We distinguish the following cases:

T]'E(l) )\Xl...xtl.
(2) )\x1...x,F(T“x,...x,)...(Tl,,xl...x,)
BG) MNey.oox (Tyxyeoox) U U (Tyxg ..o x,)
(4) )\xl...x,xi (T“xl...x,)...(Tl,,xl...x,)

T2—=— (a) )\X] R A
®) A1 ... x; G(Tyxy...%) ... (TomXxy ... X;)
(C) )\xl...x, (Tzlxl‘..x,) u...d (T2mx1...x,)
@ Axyooox X (Toyxy oo x) oo Ty oo Xy).

Now the cases when 7; = (1) are impossible and the cases when T, = (a) are
trivial.
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Case T, = (2). The cases when T, = (b) or T, = (d) are immediate or follow
directly from the induction hypothesis. Thus we may assume 75 = (c).

For 1 = j=m NUVW T, € Ty; so by induction hypothesis there exist
Ulj' .. Utj (S Kfm such that I ¥ T] Ulj- . Utj = TZlej- .. Utj' Let H be new
and for 1 =i <tset

U=y HUpy o 00) o (Uigyy 22 i)

Suppose M F T'U,...U, € TLU,...U,. Then for some 1 <j<m Mk
T1U1 e Ut = TZle PN U,. Thus A\ U |'T1U1 e Ut o= TZle e Ut' Hence,
AU l'TlUlj-~-Utj= [)\ul...umuj/H]TlUl...U,E [)\ul.. .umuj/H]szUl.. .
U, = szUlj...Utj and M k T]U]j...Utj = T2lej---Utj- This is a con-
tradiction.

Case Ty = (3). For some 1 <i<n \U ¥ Ty; € T3, so this case follows immedi-
ately from the induction hypothesis.

Case T, = (4). This case is obvious when T, = (b).

Subcase T, = (c). Now for 1 <=j<=mNUW T, € T}, so by induction hypoth-
esis 3U1j. . Utj (S Agm such that I ¥ T] Ulj‘ . U,j c TZjUIj' .. Utj° Let H be
new and set

U=y HUpyy . 06 - o (Ui vy - k)

We have T1U1 e UtB=17 H((Jil(T“UI e Ut)- . -(TanI e Ut)) "((Jim(TllUl

. UYL (T, Uy .. Uy)). The remainder of this case proceeds as in case Ty =
() T = (0.

Subcase T, = (d). This case is obvious unless i =j (so n = m). For some 1 <
I < n, N\UW Ty, € Ty so by induction hypothesis there exist V... V,x € Ay
such that M ¥ T V,... Viuk © TyVy ... Vipr. Let H be new and set

U=sM v HyVier oo Vi) (Vive o2 vn)
U=sVifr+i.

We have T\Uy ... Uy = H(TyUs ... UVeer - Vi) (VA(TuUr .. Uy .
(Th,Uy...Uy)) and TLU, . .. U,B——n H(TyUp .. .UV oo Vi) (Vi(Ty Uy .
U,)(TanIUt)) Ifiml:TlUlU,Q T2U1Utthen§m}=T11Ul
UIVt+l e Vf+k g TZ[UI e UIVI+1 o .. I/l+k' HenCC, k U |‘ Tl[Ul “e e U1V1+l .o
Vt+k g T2]Ul N Ut Vl+l e Vt+k. ThuS AU I' Tl Vl o .. Vt+k = [)\uv U/H]
T”U]...UIVH,I... Vt+k o= [)\uU U/H]TZIUIH~UtVt+1-~' Vt+k = T2[Vl
Viek. Thus M E T, V... Vg € Ty V... Vigy. This is a contradiction.

From the proof of the lemma we obtain AU } T, € T,

(1) or

(2) and

T,=(M)and F=Gandfor 1 <i<n AU } T, T, or
T,=(c)and forsome l < j<m AU } T; € T3 or
Ti=Q@)andforl<=i<n AU} T;; €T, or

T,
T,
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T, = (4) and
T,=(c)and forsome 1 < j<m AU } Ty S T or
T,=(dandi=jand for 1 sk <n AU } Ty, S Ty.

Thus we have the

Proposition MET, €T, \U + T, € T,. Moreover, in W, € is locally
finite (i.e., intervals are finite) and recursive.

Corollary 1 If Tx = x is solvable in every model of N\l then for some
nA\UF T =77,

Proof: If M E TU = U then for all n M F T" < U. Thus for some n M k
Tn+l =T7".

Corollary 2 AU has the finite model property, i.e., invalid equations have
Sfinite countermodels.

Proof sketch: Construct M, for 3, as MM was constructed for I using @, for
sufficiently large n. There exists a total homomorphism from 9t onto 9%,. In
particular I, E AU. Now apply the proposition for appropriate a.
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