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Linear Diagrams for Syllogisms

(with Relational)

GEORGE ENGLEBRETSEN

Abstract A system for diagramming syllogisms is developed here. Unlike
Venn, and other planar diagrams, these diagrams are linear. This allows one
to diagram inferences which exceed the virtual four term limit on nonlinear
systems. It also can be extended (by the use of vectors) to inferences involving
all kinds of relational expressions.

. . . be he a Triangle, Square, Pentagon, Hexagon, Circle, what you will —
a straight Line he looks and nothing else.

E. A. Abbott, Flatland

1 Euler and Venn diagrams are simple and effective devices for illustrating
syllogistic validity. Their potential is limited, however, since they cannot apply
to arguments with more than four terms. Attempts at extending the scope of
plane figure diagrams (e.g., by Lewis Carroll) have been only marginally success-
ful. (For a survey of such attempts, see Gardner [2].) Aristotle probably used
some sort of diagram method in teaching the syllogistic. And many ancient com-
mentaries made use of linear diagrams, though our understanding of just how
they worked is sketchy (see Ross [13], pp. 301-302 and Kneale [5], pp. 71-72).
If the ancient syllogists used linear diagrams rather than planar ones, and if they
diagrammed not only simple syllogisms but sorites, polysyllogisms, and com-
pound syllogisms, then it is likely that there is a satisfactory linear method for
logical diagrams which can readily go beyond the virtual four term limit on plane
diagrams. (In the eighteenth century, Lambert attempted linear diagrams for syl-
logistic [5] (pp. 111-150). See the critiques of his systems by Venn [15] (pp. 504-
527), Peirce [7], and Keynes [4] (pp. 243-247).) Here, I will describe such a linear
diagram method, illustrate some of its uses, and do what no syllogist has done
before —extend the method to relations. I will conclude with a brief polemical
remark in favor of syllogistic in general.
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2 Rather than follow the nineteenth century practice of representing each
term of an inference as a set of points constituting a plane figure, let us follow
the ancient suggestion of representing such terms as points on a straight line seg-
ment. (Topologically, we might think of the line as a covering space on the Venn
circle.) Thus a term like 'A9 (for 'animal', say) will be represented as a straight
line segment, the extent of which is undetermined. Each such line segment will
be labeled at its right terminus.

. A

Terms may be negated or unnegated. But in either case their diagrammatic
representation is a straight line segment. Thus 'non^' will be diagrammed as

non^4

Since nothing could ever satisfy both a term and its negation their linear repre-
sentations can have no point in common. In other words, the two lines repre-
senting such terms must be parallel.

. A

non^4

This diagrams the logical truth that no A is nonA

A limiting case of a line segment is a single point. Singular terms will be rep-
resented quite naturally by such lines (point-lines). Thus a term like 'Fido' will
be diagrammed as a single point.

Fido

If Fido is a dog then we want the point-line representing Fido to be one of the
points constituting the line representing dogs. If

. D

represents the term 'dog' we will place the point representing Tido' at the left
terminus of this line since we have agreed to label each line at its right terminus
and a point-line has no other point to its left.

Fido D

We will now show how categorical propositions in general are represented
by linear diagrams. But first a preliminary condition. A line consisting of no
points is no line. So no terms are empty. Every term is represented as a line of
one or more points.

We have seen how to diagram a proposition like 'Fido is a dog'. Suppose
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however that we want to diagram 'Some pets are dogs'. Here what needs to be
illustrated is the claim that there is at least one thing common to both pets and
dogs. Thus the lines for 'pet' and 'dog' must have at least one common point —
they must intersect.

^ s .pet

>• dog

Notice that we represent 'pet' and 'dog' as having a single common point. Yet,
for all we know, they may have many points in common. Nonetheless, from a
logical point of view, the truth-claim made by 'Some pets are dogs' is just that
at least one thing is both a pet and a dog. This is what we have diagrammed.
Generally, then, an I categorical ('Some 5 is P9) will be diagrammed as

(I) .

^ :

If two lines do not intersect then they must have no common point, i.e. they must
be parallel. The contradictory of an I proposition, therefore, must be represented
by parallel lines. An E categorical ('No Sis P') will be diagrammed as

(E) S

P

Universal affirmations claim that whatever satisfies the subject-term satis-
fies the predicate-term. So the subject-term line must be represented as a (pos-
sibly proper) part of the predicate-term line. We will represent, then, an A
categorical ('Every S is P9) as

(A) S
.P

Notice that if every S is P and every P is S then the number of points between
the right terminus of S and the right terminus of P will be zero.

To be very clear, then, our diagrams for universal and particular affirma-
tives are stipulated to be understood in such a way that
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permits interpretation (or reading) wherein more than one S is P (more than one
point shared by lines S and P and possibly all points on S on P, and even vice
versa) and

S
• P

permits interpretation (or reading) wherein all the points on P are points on S
as well. So, one line crossing another at a single point is to be interpreted to mean
that at least one point is shared by the two lines. (This parallels exactly a single
'x' on a Venn Diagram interpreted as "at least one".) And one line (S) partially
coinciding with another (P) is to be interpreted to mean that all points on S are
points on P and possibly no points on P are left over.

The contradictory of an A proposition claims that at least one thing satis-
fies the subject-term but not the predicate term. So an O categorical ('Some S
is not P') must be diagrammed as an S-point outside the P-line.

(O) S

. P

Note that'S' is represented as a point-line here. But, for all we know, there may
be more than one S, and the line representing them may or may not be parallel
to the P line. Indeed, to say that some S is not P is to say that some S is nonP,
which can be diagrammed as

P
^ v nonP

The simpler diagram for O consists just of the P-line and the point of intersec-
tion of the S- and nonP-lines.

3 Line diagrams represent inferences in the usual way. First the premises are
diagrammed. Then, either the conclusion has already been diagrammed or it has
not. If it has, the inference is valid. If it has not, the inference is invalid.

Equivalences are immediate inferences in which each of a pair of proposi-
tions can be validly inferred from the other. Thus, a linear diagram for one must
be the diagram for the other. For example, simple conversion equates 'Some 5
is P' and 'Some P is S\ Our diagram method illustrates this by representing both
propositions by a pair of intersecting S- and P-lines.
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- N — — P

Universal negatives are likewise simply convertible. Both 'No S is P9 and 'No P
is 5" are diagrammed by parallel S- and P-lines.

p

. S

Subalternation is an example of an immediate inference between two non-
equivalent propositions. Any universal proposition will validly entail its corre-
sponding particular just because no term is empty. Diagramatically, whenever
there is a line there must be at least one point in that line. For example, we can
infer 'Some S is P' from Έvery S is P' since the premise is diagrammed as

S
p

Since every part of a line intersects (at least once) that same line, it follows that
at least one point in 5 is in P. Also, from 'No S is P' we can validly infer 'Some
S is not P' since if lines S and P are parallel (given the premise), i.e.

S

. p

and every term is nonempty (every line consists of at least one point), there must
be at least one point in line S outside of line P.

Obversion is an example of immediate inference relying on the fact that a
term and its negation satisfy nothing in common (so that their line representa-
tions must be parallel). Consider, for example, Έvery S is P\ It is diagrammed
as

S
. p

But we also know that 'nonP' is contrary to 'P', so that a nonP-line is parallel
to the P-line. By adding this we have
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S
• P

nonP

Since every point on P is outside nonP, and since every point on S is on P, it fol-
lows that every point on S is outside nonP. In other words, lines S and nonP are
parallel (i.e. 'No S is nonP').

But the true importance of obversion is seen when applied to E and O forms.
'No S is P ' has been diagrammed thus far as

S

.p

By obversion, 'No 5 is P9 is equivalent to 'Every S is nonP', i.e.

S
• nonP

Likewise, 'Some S is not P ' is equivalent to 'Some S is nonP'. Thus, both

S

P

and

^ ^ » « ^ ^ nonP

^ ^ S

can be used to diagram an O proposition.
Now an obverted A proposition can be converted. The resulting proposition

can then be obverted to yield the contrapositive of the original. Thus the con-
trapositive of 'Every S is P ' is 'Every nonP is nonS\ Diagramatically, then, the
full representation of 'Every S is P9 must be
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(A.I) S

.P

nonP
nonS

(A.I) represents such equivalent propositions as Έvery S is P\ Έvery nonP is
nonS', 'No S is nonP', 'No nonP is S\ 'No nonS is P\ 'No P is nonS", 'No S
is nonS', 'No nonS is S\ 'No P is nonP\ and 'No nonP is P\ These last four
are tautological and are instances of the law of noncontradiction. A full repre-
sentation of any proposition will necessarily represent the law of noncontradic-
tion as well.

Consider the I proposition 'Some S is P\ Conversion and obversion on I de-
mand that a full representation must exhibit such equivalent propositions as
'Some P is S\ 'Some S is not nonP' and 'Some P is not nonS'. Thus

(I.I) . nonP

N, £ > nonS

Universal and particular negations can also be given full representations in
order to exhibit logical equivalences.

(E.I) * Ό

• * nonP

P
* nonS

(O.I) P
v. nonP N.

\
>» non5

S

Notice that the law of noncontradiction is also represented (twice) by each full
diagram.

The full representation of a categorical will always be a diagram consisting
of two pairs of parallel lines. However, for most purposes of logical reckoning,
the simple (A), (E), (I), and (O) diagrams are sufficient. These are the results of
"minimizing" (see Gardner [2], p. 72) the full diagrams, which will usually rep-
resent far more information than we need.
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Minimized diagrams:

(A) S
1 . p

(E) S S
or . nonP

. P

(I) \ ^
^ ^ - v ^ ^ . P

<°> S ^ nonP

- . P
 0 Γ ^ S

4 The classical simple syllogisms are easily diagrammed by our linear method
using just the simple categorical diagrams. The premise diagrams for the first fig-
ure are as follows (in each case the conclusion can be seen to be already
diagrammed—the mark of validity).

Barbara: Every M is P
Every 5 is M
So every S is P

Here the major is diagrammed first as

M
p

The minor is then added to get

S M
* . p

From this the conclusion can be read directly.

Darii: Every Mis P
Some S is M
So some S is P
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We diagram the major as

M
• P

Next the minor is added.

\ M

The conclusion again is already diagrammed since the 5- and P-lines intersect.

Celarent: N o M i s P
Every S is M
So no S is P

The major is diagrammed as

M
nonP

Adding the minor we get

S M
—— nonP

Ferio: No Mis P
Some S is M
So some S is not P

The major is

M
nonP

Adding the minor,

\ M
\ _ . nonP

Similar diagrams can easily be constructed for all 24 valid classical syllogisms
from AAA-1 to EIO-4. So, the method is complete. It is sound as well. An ex-
haustive (and exhausting) check of each of the 232 classical invalid forms shows
that none is valid by our method.

The diagram method (whether planar or linear) is most effective in determin-
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ing validity and in discovering missing premises or conclusions. Consider the
premise pair 'No P is M9 and 'Some Mis S\ In this case these are diagrammed
linearly simply as

P

^ ^ ^ ^ M

^ " ^ S

We can readily see that the inference of Έvery Pis S' from this is invalid. But
we can also see what the missing conclusion is —'Some S is nonP'. Enthymemes
with missing premises are most easily resolved by diagramming the explicit prem-
ise along with the contradictory of the conclusion. What follows, then, will be
the contradictory of the missing premise. For example, let the explicit premise
be Έvery A is B9 and the conclusion be 'Some C is not A\ We first diagram the
premise as

A
. B

We next add the contradictory of the conclusion (viz. 'Every C is A').

C A
* B

From this we conclude 'Every C is B\ which is the contradictory of the tacit
premise (viz. 'Some C is not B9).

5 Thus far we have seen that linear diagrams can do more or less what pla-
nar diagrams can do. One minor advantage they may have is due to the fact that
they are faster to construct (since lines and points are easier to draw than circles,
squares, ellipses, etc.). But the major advantage of line diagrams is their abil-
ity to represent inferences involving relatively large numbers of terms (viz. more
than four) without destroying the original simplicity of the diagrams. Here is an
example of a relatively elementary valid inference which Venn diagrams are

. powerless to represent in a simple, perspicuous manner.

Every A is B
Every B is C
No C is D
Some D is E
So some E is not A

Diagramming the first premise we have

A
B
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Adding the second gives us

A B
— • • C

Adding the third gives us

A B . c
D

Finally, adding the fourth, we have

A B
• . C

^ ^ v ^ D

That's all—three lines, five labels. The conclusion is already diagrammed. Sorites
of any number of terms can be diagrammed using the linear method. The geo-
metric restrictions on closed plane figures which prevent perspicuous represen-
tations involving more than four terms using simple continuous figures do not
apply to the still simpler linear figures.

Finally, identity statements are a special kind of proposition easily di-
agrammed by our method. A proposition of the form Ά is (identical to) B' claims
that the A -point is on the 5-line. Since the 5-line is a point-line, this means that
6A9 and 'B' label the same point, i.e.

A B

An argument like the following

Tully is Cicero
Cicero is Roman
So Tully is Roman

would be diagrammed as

C . .R
T

where, by the first premise, ' C and T ' both label the same point-line.

6 The simple diagrams outlined in Section 3 can be extended to represent
relational propositions. In this section I make some tentative suggestions as to
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how this can be done. (Peirce made an attempt at this as well. See [7], pp. 353ff.)
The key idea here is to see relational expressions as terms. It is the Leibnizian
notion that relational (indeed, all) propositions are logically categorical, so that
the logic of relational is syllogistic. That this can be shown at all should be sur-
prising to those who insist that syllogistic methods are powerless beyond the
range of simple categoricals consisting of monadic terms.

Consider a simple relational proposition such as 'Paris loves Helen'. The
claim here is that Paris is among the things which love Helen. Let us diagram
these by a line labeled 'loves Helen'.

loves Helen

Paris is one of them. So:

Paris loves Helen

'Some person loves Helen' would be diagrammed as an I proposition.

^ » v ^ loves Helen

^^> person

(Notice the converse here is 'Something which loves Helen is a person'.)
Thus far 'loves Helen' is treated just like any other term. It is represented by

a single line segment representing things which love Helen. Often in inferences,
however, it is necessary to analyze such relational terms, abstracting from them
one or more of their constituents for independent treatment. Consider the ar-
gument 'Someone loves Helen, but Helen is a vamp. So someone loves a vamp'.
The first premise can be diagrammed as

^ ^ ^ • ^ ^ ^ loves Helen

^""^ person

But in order to diagram the second premise we need a way to represent the rel-
ative term 'loves' and the object term 'Helen' separately. Let us represent rela-
tive terms by arrows (indicating the "direction" of the relation) connecting their
relata. Then 'loves, in this case, would be represented by an arrow from lovers
of Helen to Helen.

\. loves Helen

person l o v e s

Helen
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Ήelen' is now extracted from the relational 'loves Helen' and we are free to di-
agram our second premise, Ήelen is a vamp'.

^V loves Helen

person l o v e s

' vamp
Helen

Given that from this we can see that every lover of Helen loves Helen, the con-
clusion, 'Someone loves a vamp', can be read directly.

Look once more at our diagram for Taris loves Helen'.

Paris * * loves Helen

We know that whatever loves Helen loves Helen. In fact, we can say generally:

Whatever is r to some/every X is r to some/every X, i.e.

r to some X A* to every X

r r

-• .X lχ

It is this tautology which permits the tautological

loves Helen

loves

Helen

so that Taris loves Helen' can be rendered as

Paris loves Helen

loves

Helen

This full representation diagrams more information than we often need in com-
puting logical inferences. But it can be simplified (by suppressing tautological
information as with categoricals in general) to the more natural looking
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Paris

loves

Helen

or simply

P

1

H

If we agree to read arrows in reverse direction as representing the converses
of the relations they represent when read in their indicated direction, we can take
the preceding diagram to represent both 'Paris loves Helen' and its equivalent
passive transform, Ήelen is loved by Paris'. This same process can be used to
simplify diagrams for propositions such as 'Some man loves some woman'. Its
full representation is

\^ / some W

> M /
] W

Simplifying, by suppressing tautological information, we get

1 M

/

:: w

Notice that the locations of the end points of a relational arrow indicate the
quantities of the relata. The quantity is universal when the relational arrow meets
the term-line at the line's right terminus; otherwise the term is particular in quan-
tity. For example, 'Some A is r to some B' is diagrammed as

1 *A

r

: B



LINEAR DIAGRAMS WITH SYLLOGISMS 51

'Every A is r to some By is diagrammed as

. A

r

. B

Έvery A is r to every B' is diagrammed as

A
r

y B

And 'Some A is r to every By is diagrammed as

1 m A

r

: B

In spite of our simplifications, it is important to remember that in the con-
text of a logical inference it may be necessary to restore some or all of the full
relational expressions. This is especially so when those relational expressions oc-
cur as logical subjects in subsequent premises or conclusions. For example, a
proposition like 'Some senator gives away some money' could be diagrammed
in one of three ways.

(i) 1 S

g

M

(ϋ) v

- \ - — g some M

(iϋ) v

N. g some M

^ ι f
-'• M
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We can use (i) if the relative term 'gives away' occurs elsewhere without the log-
ical object 'money'. Thus, suppose the second premise is 'All money is tainted'.
Our premises are diagrammed then as

(i.l) 1 S

g

M

T

from which we might conclude 'Some senator gives away something tainted'. We
can use (ii), however, whenever the analysis of the relational expression, 'gives
away some money', is not demanded by any subsequent premise or conclusion.
Suppose our second premise is 'Whoever gives away some money is generous'.
Then we can diagram our premises as

(ϋ.l)
\ g some M

V — °
And from this we could read the conclusion 'Some senator is generous'. Finally,
we are in need of the full representation, (iii), when the relational expression oc-
curs subsequently both analyzed and unanalyzed. For example, suppose our sec-
ond premise is 'All money is tainted', our third premise is 'Whoever gives away
some money is generous', and our fourth premise is 'Whoever is generous loses
some money'. The conclusion, 'Some senator loses something tainted', is di-
agrammed by diagramming the premises thusly:

(iii.l)

^ v g some M G

g I

M

T

Consider next the following famous inference (see Sommers [14], pp. 42ff).
'Every circle is a figure. So whoever draws a circle draws a figure.' The prem-
ise is easy enough.

C
. . F
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We also know that whoever draws a circle draws a circle. Thus

d some C

d

:: . c

Together these give is

d some C

d

C

F

And here we can see 'Whoever draws a circle draws a figure'. We can develop
a useful general rule out of this. Call it "Rule R", based at bottom on four kinds
of cases. These cases are argument forms, each of which has the premise Έv-
ery X is Y\ Then, two kinds of conclusions occur with four variations in the re-
maining premise—as follows:

Case 1. Every X is Y
Some S is R to some X/ so, Some S is R to some Y

Case 2. Every X is Y
Some S is R to every X/ so, Some S is R to some Y

Case 3. Every X is Y
Every S is R to some A" /so, Every 5 is /? to some Y

Case 4. Every X is F
Every S is /? to every ^ /so, Every 5 is R to some 7

So, in general, the conclusion has one and the same grammatical predicate,
'. . . is R to some Y\ even when the same predicate in the second premise has
an 'every' in it. All of these cases seem valid intuitively. Each is confirmed to be
valid when placed on linear diagrams —as follows:

Case 1 Case 2

\ r to some X \v r to every X

^ S r

Y Y

X X
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Case 3 Case 4

τ r to some X . . r to every X
S S

r r
y ]: Y

x x

It is important to note that obviously valid as Cases 2 and 4 appear in our dia-
grams, they are not valid in the predicate calculus. To prove them valid in the
predicate calculus requires adding a premise tantamount to the existential import
embedded in our diagram method—the premise (for these schemata) There are
Xs9 or 'Some Xs exist' (for Cases 2 and 4).

Rule R is simply the obvious generalization from these cases —to wit:

Rule R: If every X is 7, then whatever is R to some/every X is R to some Y.

Diagrammatically, we state it as follows:

Rule R: r to some/every X r to some Y

/ r

/ Y

X

Thus, Rule R permits extending the line for 4s r to some/every X' so that it is
a subportion of 'is r to some Y9 so that the top line (in the statement of Rule R)
can be read 'Everything that is r to some/every X is r to some Y\

Now let us diagram the proposition Taris gave a rose to Helen' as

g some RtoH
P. •

g

R

to

H

We have arrived at this representation in the following way. First diagram the
proposition simply as

P g some R to H
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Next, analyze the relational expression 'gave a rose to Helen' as a relative term
'gave a rose to ' and its object term Ήelen', i.e.,

g some R to H
P f

g some R to

H

Now the relative term 'gave a rose to' is itself a relational expression. We ana-
lyze it as a relative term 'gave . . . to ' and its object term 'a rose'. Thus

g some RtoH
P i

g . to

R

H

Here the arrow labeled 'gave a rose to' has been replaced by

g... to

• R

Since the vertical line here is now only a part of the arrow from 'gave a rose to
Helen' to 'Helen' we can relabel the arrow segments to give us

g some R to H

P .

g

R

to

H

As before, we can often, unless the context demands otherwise, simplify this as
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P

g

R

i to

H

And this also diagrams such equivalent converse relational as Ήelen was given
a rose by Paris', Ά rose was given to Helen by Paris', 'Paris gave Helen a rose',
Ήelen was given by Paris a rose', and 'A rose was given by Paris to Helen'.

In diagramming relational expressions it must be kept in mind that ultimately
the entire arrow represents the relation. This is especially important for relations
which are not usually expressed in natural language by multi-world terms. Con-
sider, for example, Taris is between a rock and a hardplace'. This can be sim-
ply diagrammed as

P

R

• H

but there is no way to independently label the arrow-segments. The entire arrow
represents the between' relation. Perhaps the most perspicuous diagram would
thus be one which labels all such arrow segments by 'between', viz.

P

b

b

'• H

Our analysis of relational with more than one object is useful for diagram-
ming such inferences as

Some boy gave a rose to a girl
Every rose is a flower
Every girl is a child
So some boy gave a child a rose.
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The first premise is diagrammed (simply) as

B

g

R

to
2: G

Adding the next two premises gives us

1 • B

g

R

F

to

G

C

The conclusion is read directly.
Of course, when entire relational expressions occur more than once in an in-

ference we are often required to use their unanalyzed representations. Consider

Every boy loves some girl
Every girl adores every cat
Whoever adores every cat is a fool
So every boy loves a fool.

Here 'loves some girl' requires analysis while 'adores every cat' does not. So we
diagram the first premise as

iB

I

:: .G
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Adding the second premise we get

*B

I

G

a every C

(We could add the analysis of 'adores every cat', viz.

l
C

but it is unnecessary in this context.) Finally, we add the last premise.

t B

I

G a every C

F

Let us consider one last example.

Every boy loves some girl
Every girl adores every cat
Every cat is mangy
Whoever adores something mangy is a fool
So every boy loves some fool.

In this case, unlike the preceding one, both relational expressions must be ana-
lyzed. But, as we will see, 'adores every cat' must have an unanalyzed represen-
tation as well. The first premise is diagrammed as

. B

G
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Adding the second premise we have

• £

/
G a every C

a

\\C

The third premise gives us

\B

I

G a every C

a

M

C

Now the fourth premise is diagrammed as

a some M

F

Clearly what is missing to connect the two diagrams is a representation of What-
ever adores a cat adores something mangy'. And, in fact, this does hold, given
the third premise and our Rule R, for our Rule R explicitly sanctions changing
a diagram like

a every C

a

M

c
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into

a every C a some M

a

M

1

c

So instead of trying to add an F-line to the M-line (a mistake, since "Every M
is an F" is not a premise), we change the last diagram for this argument into the
following (which does not illustrate more information and is merely a rear-
rangement):

} B

I
G a every C a some M

a

M

C

For then we can add a representation of "Every adorer of some M (mangy-thing)
is an F (fool)" correctly and thereby show how the conclusion "every B (boy)
loves some F(fool)" is already represented:

B

I
G a every C a some M

F

a

M

C

And notice that this final diagram also contains a very clear representation of
the intermediate conclusion that many might think is the most important one for
this argument—viz., "Every G (girl) adores some M (mangy-thing)".
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7 We have adopted the convention that any arrow which touches the right
terminus of a line touches every point on that line; an arrow which touches a line
only at a point left of the right terminus touches that line at no other point. Yet
the presence of repeated references raises the possibility of counterexamples to
the second part of our convention. Consider the proposition 'Some barber shaves
some barber'. If we diagram this using 'Some boy loves some girl' as a model, i.e.

1 boy

loves

• girl

we get this:

1 *i

s

:: .B2

where Bx represents shaving barbers and B2 represents shaved barbers. But
clearly Bx and B2 must represent the same set of objects. After all, if just one
barber shaves himself then the proposition is true. In fact Bγ and B2 must be
identical lines. Let us represent barbers, then, by a single line (as we have always
done). Then our proposition can be diagrammed by drawing an arrow from one
nonterminal point to another.

s

^ _ ,

Here the distance between the base and head of the arrow may be equal to or
greater than zero (equal to zero if some barber shaves himself). This last suggests
that we have a preliminary way of diagramming the proposition 'Some barber
shaves himself, viz.

s

Ω _ .
and the proposition Έvery barber shaves himself, viz.

s

0.
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But how, given our right terminus convention, do we diagram Έvery barber
shaves every barber'?

What is required for us to diagrammatically distinguish between propositions
of the form Έvery X is r to every X9 and Έvery X is r to itself is an additional
convention. Our new convention will involve the representation of pronominal
expressions. Consider the inference 'Some girl is loved by every boy. She is lucky.
So some boy loves something which is lucky'. Here specific reference has been
made to some girl (i.e., to a certain girl rather than to some girl or other). Then
a pronoun is used to make subsequent reference to that very girl. We don't know
her name, but we can give her an arbitrary one (that is just what we use the pro-
noun 'she' for in this example). Let us agree to label every unnamed individual
to which specific reference is made with a small Roman numeral. That label can
then represent the pronoun in subsequent pronominal references. For our sam-
ple inference we could diagram the first premise initially as

*B

I

•'• G

But, since the reference to some girl is specific, we will label it.

15

/

- G

ί

The second premise says that she (/, the girl loved by every boy) is lucky. Add-
ing this yields

\ B

I *L

)r G
s' i

Consider next the argument 'Some boy loves a girl. She hates him. So he
loves a hater of him'. We diagram the first premise, adding the pronoun labels
for subsequent use.
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/
B

I

: .Q

a

Adding the second premise, we get

^ G
a

The conclusion is diagrammed here once we recognize that 'hates him', i.e.

<

is a simplification of 'is a hater of him', i.e.

/

h

hi

This same simplification allows us to diagram 'Some boy loves every girl. They
hate him. So some boy loves a hater of him'.

G

Next consider the proposition Έvery owner of a donkey beats it' (see Geach's
important discussion of such sentences in [3], pp. 116ff). Analytically, every
owner of a donkey owns a donkey, i.e.
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o some D

o

: D

It, the donkey so owned, is beaten by its owner. So:

0
0 some D

i

We are adopting the convention of labeling individuals to which specific ref-
erence is made by small Roman numerals, which are then used to represent sub-
sequent pronominal references. This convention permits us to diagram, now,
Έvery barber shaves every barber' and Έvery barber shaves himself respectively
as follows:

g*
B

g*
B

1

Now since Έvery barber shaves every barber' implies Έvery barber shaves
himself we might justify this by a rule (called "/-insertion" by an anonymous
reader) analogous to existential instantiation in the predicate calculus. Such a rule
allows us to pronominalize at will by marking any point on a given diagram with
a Roman numeral. It must be noted that once a pronoun is so marked it cannot
subsequently be ignored (otherwise one might derive, e.g., Έvery barber shaves
every barber' from Έvery barber shaves himself). We would diagram the valid
argument 'Some barber shaves every man. Every barber is a man. So some barber
shaves himself as follows:

Second premise:

B M

Adding the first premise:

/ B ^ v
^ . X M

(i.e., 'Some barber shaves every Man').
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Given our pronominal convention (/-insertion) and our right terminus conven-
tion we can read the conclusion directly from:

if B ^ \
/ . ^.M

In particular, the latter convention permits movement at the arrowhead to the
left (with the /-point as its leftmost limit). In other words,

US B M

Let us conclude this section with some brief remarks concerning relative
products. Consider the proposition Ίago is a hater of a lover of Desdemona'.
Leaving 'hater of a lover of Desdemona' unanalyzed, we have

/ h some / D

9 #

Here Iago (/) is an individual member of the set of things which hate (h) some
lover (/) of Desdemona (D). We could analyze the relational here first as

/
• h some / D

h

• ID

where

h

]: ID

represents 'hates a lover of Desdemona'. Further analysis yields

/
• 1 h some / D

h

•• 1 ID

I

D
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By suppressing some of the analytic content here we could simplify this as

/

L
1 •/£>

/

D

Next, consider the argument Έvery lover of an adorer of a cat is a fool. Ev-
ery boy loves some girl. Every girl adores some cat. So every boy is a fooΓ. We
diagram the second premise simply as

T
 B

I

•'• G

There is no need to analyze 'adores some cat', so we can add the representation
of the third premise to give us

. B

I

, a some C
1 »

G

Now, by Rule R, we can add

B

/ some a some C

I

a some C

G
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Finally, we add the first premise to get

B I some a some C F

/
a some C

G

from which we can read the conclusion directly.
Finally, let us note (under the prompting of our anonymous but friendly

reader) that negative relational can be diagrammed by our method. First we
must recognize that, as with nonrelational terms, relational terms have corre-
sponding negatives. Consider the sentence 'Some boy does not like every vege-
table'. The sentence is ambiguous (in at least two ways), given there are no
contextual clues, between (1) 'Some boy dislikes every vegetable' and (2) 'Some
boy fails to like every vegetable'. The difference here is due to the scope of the
negation. In (1) only the relational term 'likes' is negated (i.e. 'Some boy does
not-like every vegetable'). In (2) the entire relational predicate 'like every vege-
table' is negated (i.e. 'Some boy does not-(like every vegetable)'), an O form. We
can think of 'dislike' as the logical contrary of 'like' and 'fails to like' as the con-
tradictory of 'like'. Such relational are diagrammed just as nonnegative rela-
tionals are diagrammed. Thus, (1) can be diagrammed as:

B

non/

Wy

(2) can be diagrammed as:

•B

I every V

The real value of recognizing negative relational is seen when we approach
inferences in which such expressions play logically effective roles. Consider the
argument 'Paris loves Helen. Every Greek fails to love every Trojan. Helen is
a Trojan. So Paris is not a Greek'. The third premise is diagrammed as:

(i) H T

Now (without accounting for the relations between contrary and contradictory
negative relations) we can diagram the second premise (along with the third) as:
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(ϋ) f G

non/

H T

Adding the first premise, we have:

(in) fG,

P

I non/

H T

At this point the question naturally arises concerning how we know that the P-
point is not on the G-line. For if it is not then our conclusion is diagrammed.
First, note that the /-line and non/ line are (indeed, must be) parallel. Now, we
could not diagram the P-point on the G-line without contradicting the first prem-
ise. So the only way to diagram all three premises consistently is by keeping the
P-point off the G-line. Diagram (iii) represents the simplest and most perspic-
uous way of doing this, and from it the conclusion is easily read. Of course there
is much more to be said concerning negative relational and, indeed, negation
in general (see [14]).

8 I have offered these suggestions about linear diagrams because I believe
syllogistic is alive and well—indeed, stronger than ever. Quine's predicate-functor
algebra (see [9] through [12]) is one version of it. Also see Peterson [8]. But by
far the best version is Sommer's (see especially [14] and the essays in Englebretsen
[1]). His new syllogistic is simple, natural, effective, and more powerful than the
standard first-order predicate calculus. With an easy diagram method to accom-
pany it, who could ask for anything more?
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