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Embedding Brouwer Algebras
in the Medvedev Lattice

ANDREA SORBI

Abstract We prove various results on embedding Brouwer algebras in the
Medvedev lattice. In particular, we characterize the finite Brouwer algebras
that are embeddable in the Medvedev lattice.

1 Introduction The following definition is fundamental throughout the
paper:

Definition 1.1 Let & = (L,v,A,0,1) be a distributive lattice with 0,1 and
let < be the partial ordering relation of £ Then {is a Brouwer algebra if { can
be given a binary operation — such that, for every a,b,c € L,

b<avcea-b=ec

(Notice that this is equivalent to saying that the set {c € L : b < a v c} has a least
element and this least element equals a — b.)

Also, we say that a distributive lattice with 0,1 is a Heyting algebra if the dual
of €1is a Brouwer algebra (for details on Heyting algebras see e.g. Balbes and
Dwinger [1]). Heyting algebras are often called pseudo-Boolean algebras (see e.g.
Rasiowa [10]). In the remainder of the paper, we will often use without further
comment the fact that every finite distributive lattice with 0,1 is a Brouwer al-
gebra (also, a Heyting algebra).

Now, let M be the Medvedev lattice (see Medvedev [7] and Rogers [11]). In
Sorbi [13] we show that I is not a Heyting algebra. On the other hand, it is
known ([7]; see also [11], Theorem 13.XXIV, for a proof) that I is a Brouwer
algebra. In this paper we show that as a Brouwer algebra I is in fact a fairly
rich one, by proving various embedding results. In particular, we obtain a char-
acterization of the finite Brouwer algebras that are embeddable in I, thus ex-
tending a similar embedding result proved in Skvortsova [12]. Among the
consequences of this result is also a proof (see Corollary 2.8 below) of the fact
that the set of identities of I (in the sense of [11], §13.7, i.e. the propositional
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formulas which are valid in 9, as defined later in this section) coincides with the
set of theorems of the propositional logic obtained by adding the axiom scheme
- v 1 to the intuitionistic propositional calculus (this result was essentially
stated by Medvedeyv in [8], Theorem 2; a proof is contained in the aforemen-
tioned paper by Skvortsova [12]), contrary to the mistaken attribution to Med-
vedev, made in [11], of the coincidence of these identities with the theorems of
the intuitionistic propositional calculus.

Except for the few changes and additions listed below, our notations are the
same as in [11] (in particular §13.7), to which the reader is referred also for any
unexplained notations and terminology used in this paper. As is customary in
the literature, the operations of least upper bound and greatest lower bound in
a lattice —thus in It as well —are denoted by the symbols v and A, respectively.
In this paper therefore, in reference to It the symbols v and A are interchanged
with respect to the notation of [11], §13.7. Thus, given any degrees of difficulty
A and B, A v B denotes the least upper bound of A and B, and A A B denotes
the greatest lower bound of 4 and B; given any functions f and g, by fv g we
denote the function 4 such that f(x) = #(2x) and g(x) = h(2x + 1), for every
X € w (w is the set of natural numbers); given x € w and a function f, x * f de-
notes the function 4 such that #(0) = x and A(y + 1) = f(»), for all y; given
mass problems @ and B, welet Av® = {fvg: fER&gEB}and RAA B =
{0xf:fe@} U {l=*g:ge ®B}; given a mass problem @ and x € w, it is conve-
nienttolet x* @ = {x*f: f€ R}, thus RAB =0* Q@ U 1 * B. If [ is a finite
set and {@;:i € I}, {f;:i € I} are collections of mass problems and functions,
respectively, then the expressions V;c; @;, Aicr @i, Vier f; always refer to some
fixed listing of the elements of I: for instance, if iy, .. .,i, is a listing of 7 then
Vier®i= (- (Q;;vQ&;) v---)v&;). Of course, the degrees of difficulty of
the mass problems V;c; @; and A ;c; @;, as well as the Turing degree of V< f;,
are independent of the choice of the listing of I.

The relation of reducibility between mass problems is denoted by <; conse-
quently, given mass problems @ and ®, we have that @ < ® if there exists a
recursive operator ¥ such that ¥(®) €S @; @ = @ means that @ < ® and @ <
@ : [@] is the equivalence class of @ under =, i.e., [@] is the degree of difficulty
of @. 0 denotes the least element of I and 1 denotes the greatest element of IN.

Let (“w)* be the set of partial functions from w into w; the operation v al-
ready defined on total functions can be extended in an obvious way to partial
functions; likewise, given i € w and a partial function ¢, the symbol i * ¢ has
the obvious meaning. Given any finite initial segment f;, 1h(f) denotes the length
of f. The set of finite initial segments will be denoted by Fis.

Let Pord be the category of partial orders; we shall be interested also in the
following subcategories of Pord: the category DItt of distributive lattices; the cat-
egory DItty,; of distributive lattices with 0 and 1; the category Brw of Brouwer
algebras. Given any category C, a C-embedding is a monomorphism of C (for
terminology, see MacLane [6]); the class of objects of C is denoted by 0b (C).
Let Form denote the set of formulas of a standard propositional language with
denumerably many propositional letters and connectives v,A,—, . Given any
Brouwer algebra ® =<L,v,A,0,1), a mapping V': Form — £ is a valuation if for
all o, 3 € Form, we have: V(avB) =V(a)AV(B); V(aaB)=V(a)Vv V(B);
V(ia—B)=V(a)— V(B); V(—~a) = V(a)— 1: it may be appropriate to remark
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that in these equations the symbols v, A, — denote, in the left side, propositional
connectives and, in the right side, Brouwer algebra operations; notice also the
correspondence of the connectives v, A with the operations A, v, respectively. A
formula « is valid in R if, for every valuation V:Form — g, V(a) = 0. Let
Th(®) = {a:«ais valid in £} and let Int denote the (set of theorems of the) in-
tuitionistic propositional calculus (see e.g. [10], §I1X.1): it is well-known that
Int € Th(®).

2 Embedding Brouwer algebras in IN Since I is a Brouwer algebra, ac-
cording to Definition 1.1 the type of I can be enriched with a binary opera-
tion — satisfying, for every degree of difficulty 4, B, and C,

B=AvCesA->B=<C.
We need the following
Definition 2.1 Given any function f, let &, = {g:g £7f} and By = [B].

Lemma 2.2 (1) For every function f, By is both join-irreducible and meet-
irreducible; (2) for any two functions f and g, f <t g if and only if By < B,.

Proof: (1) That By is meet-irreducible follows from Dyment, [4], Corollary 2.9,

since the mass problem ®&; satisfies: (Vx € w)(vg € Bf) [x * g € Bf]. As to

show that By is join-irreducible, notice that the set of degrees of difficulty

{C:C < By} is a principal ideal generated by Bs A [{ f}]; indeed, By A [{f}] < By:

moreover, if C is a mass problem such that € < &, then € £ &, and thus there

exists g € C such that g <7 f; hence C < {f} and therefore [C] < B A [{f}].
(2) Immediate, as f <7 g if and only if B, € ;.

Lemma 2.3 Let {X;:j € J}, {Y,:v € V] be finite collections of finite sub-
sets of {Bs:f € w”}. Then Vc;(AX;) = Vyer(AYy) = v{AY,:v E V &
(Vj € DAY, £ A X;1}.

Proof: Let {X;:j € J} and {Y,:v € V} be as in the statement of the theorem;
then for every j € Jand v € V there exist finite sets of functions {f/:i € I;} and
{gi:u € U,} such that X; = {Byj:i€ L} and Y, = {Byy:u € U,}. It is conve-
nient to assume that the sets 7, J and I; (j € J), U, (v € V) are finite subsets
of w.

Let X = Ve (AX)), Y= V,ep(nY,),and Z = v{rY,:vE V & (Vj EJ)
[AY, £ AX;].
Let also X = Ve (Aiey, By/): thus X = [X]. Clearly Y < X'v Z; we want to

show that Z is the least element C such that Y < X v C. To this end, it suffices
to show that, for every v € V,

(Ve N)AY, £AX;] = (VO [AY, = XVvC=>rY,=<C].

So, let v € V be such that (vj € J) [AY, £ AX;] and let C be a mass problem
such that A\ ,ey, gz < X v C. The assumptions on v € V allow us to conclude
that

ueU,
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Hence,
(*) (Vi€ N)@i € ) (Vu € U,) [Byy £ Byi].

Since, by distributivity, I = A{V,es CBfg(j) 1§ €1ljes I} (where I1jes I is the
cartesian product), we conclude by (*¥) and Lemma 2.2(1) (as B,y is join-
irreducible) that there exists ¢ € II;c,Z; such that

(vue U,) [(Bg,i’ £V (Bféu)] :
JjeJ

Choose such a £ € Ilje, I;. Since A ey, Bgy = X v C we also have that
Nueu, Bgy = (Vjes By ) v €. On the other hand, it is easy to see that
Auev, By = Uueu, (4 * Bgy); therefore the mass problem (Ve; &y ) v Cis
reducible to the mass problem U, ey, (4 * Bgy).

Claim Let Fy, Fy, D, Z be degrees of difficulty such that Fo A Fy < Dv Z and
D contains a mass problem D such that (Vf € Fis)(Vf € D) [f* f€ D). Then
there exist degrees of difficulty Zy,Z, such that ZynZ, =Z and F;< D v Z;
(i€ {0,1}).

Proof of Claim: (The claim also follows from [12], Lemma 6.) Let Fy,F,,D,Z
be degrees of difficulty as in the statement of the claim; let Fy € F,, F, € Fy,
D € D, Z € Z be mass problems and suppose that (Vf€ Fis)(Vf€ D) [f*f€ D].
We will suppose that D # 1 (i.e. D # &), otherwise the claim is trivial. Let
¥ be a recursive operator such that Fo A F; < D v Z via V. For every u € w, let
Z.={h € Z:(3f € Fis)[¥(fV h)(0) is defined & ¥ (fv h)(0) = ul}. Given
any set A, let even(A4) = {(2x,y): 2x,y) € A} and odd(A4) = {2x + 1,y):
{2x + 1,y) € A}. Given any finite single-valued set D, let D be the least finite
initial segment £ (in the lexicographical ordering of Fis) such that D < graph(f).
Finally, given any partial functions ¢ and y, let us say that ¢ and y are not com-
patible if there is some i € w on which ¢ and ¢ are both defined and ¢ (i) # ¥ (i).
Let the r.e. set W define (through the corresponding enumeration operator, see
[11], §9.8) the recursive operator ¥ and let {W*:s € w} be a finite recursive
approximation to W, such that W*+! — W is at most a singleton.

Subclaim 1 Z=ZoNZ;.

Proof of Subclaim 1: Certainly Z < Zo A Z;, since each Z,, is a subset of Z, and
thus Z < Z,,.
Let us show the converse. Define

W' = {(x,»),2):[x =0 & (3s)(3w) [D,, single-valued & y € {0,1} &
«0,y>,w) € W* & odd(D,,) € {(2x+ 1,y) :{x,y)ED,} &
(VE< S)(VKiL,j),kYE W) [i=0&j€ {0,1} &
Dy, single-valued = odd(Dy), odd(D,,) not compatible]]] or
[x>0& D, = {{x — 1,y)}1}.

Clearly W’ is r.e.; also, it is not difficult to see that W’ defines a recursive
operator ¥’ such that, for every h € Z, ¥’'(h) =i * h for a suitable i € {0,1}.
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Such a number i exists since the mass problem D is nonempty and, thus, if
h € Z then, for some f € D, ¥ (f v h)(0) is defined; thus for some f € Fis,
¥ (fv h)(0) is defined and ¥ (fv h)(0) € {0,1}. On the other hand, we have
that (Vx)(Vé € (“w)*)[x> 0= ¥'(¢)(x) = o(x — 1)]. Thus ZyA Z; = Z via
V'’ as desired.

Subclaim 2 For every i€ (0,1}, T, =D v Z,.

Proof of Subclaim 2: Let i € {0,1} be given. Define W” = {(x,y),2):
(3s)(3w) [KO0,i),w) € W*® & D,, single-valued & odd(D,,) € odd(D,) &
(Vt < 8)(VLJ, i), kY € WH[j = 0 & D, single-valued = odd(Dy, odd(D,)
not compatible] & (3u) [(x + 1,p),ud € W & {(J,k):{2j,k) € D,} € D,, U
{(J,k):j = h(D,) & (2(j — Ih(D,,)), k> € D;} & odd(D,) < odd(D,)]]}.

Clearly, W” is r.e.: it is not difficult to see that W” defines a recursive op-
erator ¥” whose behavior can be informally described as follows: given a func-
tion A, if, say, h = fv g, then ¥” selects some finite initial segment f such that
¥ (f'v 2)(0) is defined and equals i, if such a f exists; then, for every x € w,
V'(fvg)(x) =¥ ((f*f)veg)(x+1); otherwise ¥”(fv g) is the empty func-
tion. Clearly, if fvge D v Z, then ¥”(fv g) € F,.

The proof of the claim is complete, taking Z, = [Z4], Z; = [Z,].

Let us now return to the proof of Lemma 2.3. We observe that, by the Claim,
since the mass problem Ve ; & i satisfies the property of the mass problem
D in the statement of the Claim, there exist mass problems C,(u € U,), such
that C = A,cy, Cy, and, for every u € U, Bgy < (Vjes @‘f{(,)) v C,. Since
each ®,» belongs to a join-irreducible degree of difficulty (Lemma 2.1(1)), we
deduce that, for every u € U,, B,z < C, and, thus, A ,cy, Bor < C, as desired.

Now, let ¥ be the sublattice (with 0,1) of IN generated by the set {By:
fE w®}):

Corollary 2.4 W is a sub-Brouwer algebra of M.

Proof: Immediate by Lemma 2.3, as I’ is closed under the operation —.

It is not difficult to see that the forgetful functors U :DIltt - Pord and
U : Ditty; — DItt have left adjoint functors, say IF : Pord — DItt and IL,, : DItt —»
DItt,, , respectively (see [6], Chapter IV, for the category theoretic terminology
employed here). Here are useful descriptions of F and L, : given any partial or-
der B = (P, <,,), let [Fr(P) be the free distributive lattice generated by the set
P: via identification of generators with the corresponding elements of P, each
element of IFr(P) can be represented as V,c;(AS;), for some nonempty finite
subsets S; S P, and some finite nonempty set I of indices (see Balbes [1], §V.3).
Then IF(PB) is the lattice obtained by dividing IFr (P) modulo the equivalence re-
lation (indeed a lattice-theoretic congruence) generated by the preordering (i.e.,
reflexive and transitive) relation < on [Fr(P) defined by

V (AS) LV (AT)) if (vve V)(3je ) (VIE T)(IsES,) [s <, t].
vev jeJ

As to ILy;, given any £ € ob (DItt), simply let Ly; (8) =1 @ 2@ 1, where ] de-
notes the one-element partial order and @ is ordinal sum, as in [1], II.1 (see also



BROUWER ALGEBRAS 271

[1], Theorem I1.5.7). Let also Fy; = ILy; ° IF : Pord — DlItty,;. Clearly, for every
B € ob(Pord), Fy, (°B) is a Brouwer algebra. Let D7 be the partial order of Tur-
ing degrees: we have

Corollary 2.5 Fo, (D7) is Brw-embeddable in IN.

Proof: Immediate by Corollary 2.4, as Fy (D7) = I': indeed, by Lemma 2.3,
the function which maps the generator [ f]7 into B, extends to an isomorphism
between IFy; (D7) and IN': to show this, simply use the fact that, in the notation
of Lemma 2.3,

V (W) =V (A X)) eV (7 X)) - V (rY,) =0.
vev jes = VeV
We are now ready for the desired characterization of the finite Brouwer al-
gebras which are Brw-embeddable in 9. Let Brw’ = {® € ob (Brw): the least el-
ement of ¥ is meet-irreducible and the greatest element of f is join-irreducible}.

Theorem 2.6 A finite Brouwer algebra £ is Brw-embeddable in I if and only
if € Brw’,

Proof: The “only if” part follows from the observation that, in I, 0 is meet-
irreducible and 1 is join-irreducible. Let 2 and 3 denote the two-chain and the
three-chain, respectively. Let Brw; be the smallest class of Brouwer algebras
such that

(1) 2 €Brwy;
(2) if Q€ Brw,;then 1 ® ¢ € Brwy;
(3) Brw; is closed under finite products.

Since a Brouwer algebra £ is subdirectly irreducible if and only if 8 =2 or & =
1 ® &, for some Brouwer algebra ' (see e.g. [1], Theorem IX.4.5 or, rather, its
dual version, since we are dealing here with Brouwer algebras instead of Heyt-
ing algebras), it follows by the Birkhoff subdirect product theorem (see e.g.
Burris [2], Theorem 2.8.6) that every finite Brouwer algebra is Brw-embeddable
in some element of Brw;. Since 2 and 3 are clearly Brw-embeddable in I, in or-
der to show the claim is then enough to show that, for every £ € Brw;, Ly (2)
is Brw-embeddable in 9® (we use here the fact that every finite Brouwer algebra
in Brw’ different from 2 and 3 has the form LLy; (2), for some £). To this end,
we first show that for every & € Brwy, there exists a finite partial order B such
that ILy,; (2) is Brw-embeddable in Fy,; (B). Indeed, ILy; (2) = IFy; (2). Moreover,
for every £ € Brw; and every B € ob (Pord), if Ly, (¥) is Brw-embeddable in
Fo; (B), then Ly (1 @ Q) is clearly Brw-embeddable in Fy;, (1 ® B). Let now
L, - --,%, € Brw; and By, ..., B, € ob(Pord) be such that, for every i < n,
ILo; (&) is Brw-embeddable in IFy; (*B;); for every i < n, let B; = (P;,<;). Let B
be the coproduct, in Pord, of the family (B;:i < n) (for instance, let B =
(Uj<n {i} X B;,<), where (i,p) < (j,q) if and only if i = j and p =<; q) with
coproduct injections J;: B; — B and let $ be the set of join-irreducible elements
of the cartesian product IT;<, IF(‘;). Henceforth, we shall identify generators of
F(Po),. . .,F(B,) and F(P) with the corresponding elements of Py, . . .,P, and
B, respectively. Let 0; denote the least element of IF(B,): it is not difficult to see
that T = {(po,...,Pn): P € P; and p; is join-irreducible in PB; and there is at
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most one i < n such that p; # 0;}; notice also that < is a partial order with the
induced order. Let us define a function J: S — IF(P) as follows: given (py,. . .,
Dn) € 8, if p; = AXj, for every i < n, where X; € B;, then let

J((pos--.sPn) = ./\ (A (X))).
i=n
(In defining J, we have used the fact that, for every i < n, the join-irreducible
elements of IF(B;) are exactly those elements having the form AX, for some
X < B;, as is easily seen using the characterization of the join-irreducible ele-
ments of Fr(P;), for which see e.g. [1], Theorem V, 3.7. Also, J is independent
of the choices of the X;’s.)

It is easily checked that J is a Pord-monomorphism, as each generator in
IF(‘B;) and F(B) is meet-irreducible. Now, in every finite distributive lattice, each
element is the join of a unique set of mutually incomparable join-irreducible el-
ements (see e.g. [1], Theorem I11.2.2); define H : Lo, (I1;<, F(B;)) — Fo; (B) by

0 ifx=0
H(x) ={ W(X) if x € J] F(B;) and x = v.X, and X consists of mutually
i=n incomparable join-irreducible elements
1 ifx=1.

We claim that H is a Brw-embedding. This is an easy consequence of the follow-
ing observations:

(@) H maps join-irreducible elements of ILg;(II;<,IF(B;)) into join-
irreducible elements of IFy; (B), by definition of J;
(b) < is closed under the operation A of IT;<, IF(*B;).

Now, clearly H preserves v; from (a) and the fact that Jis a Pord-embedding it
follows that H is 1-1 and preserves the operation —; indeed, if € is any Brouwer
algebra, with partial ordering <;, and X, Y € £ consist of join-irreducible ele-
ments, then we have that vX <; vYif and only if (Vx€ X)(3y€ Y)[x <. y]
and vX - vY = v{y € Y:(vx € X) [y £ x]}; from (a) and (b) it follows
that H preserves the operation A. Since ILg; (I;<, &) is Brw-embeddable in
Lo; (IT;<, F(B;)), by composition we get a Brw-embedding of ILy; (IT;<, &) into
Fo, (B).

To finish off the proof it is now enough to show that, for every finite par-
tial order B, Fy,; (B) is Brw-embeddable in . But every finite partial order B
is Pord-embeddable in D7 and the functor IF,; takes Pord-monomorphisms into
Brw-monomorphisms (indeed, it clearly takes Pord-morphisms into DItty;-
morphisms by functoriality; moreover, if K: $; — B, is a Pord-monomorphism,
then IFy; (K) maps join-irreducible elements into join-irreducible elements, so we
can argue as we did for H to conclude that IFy; (K) is a Brw-embedding); hence,
for every finite partial order B, IFo; (B) is Brw-embeddable in Fy; (D7) and,
thus, by Corollary 2.5, in It.

Remark 2.7 Let M~ =M — {0}. It is easy to see that M~ is still a Brouwer
algebra: indeed, if f is any recursive function, then By is the least element of
IR~: call 0~ this least element. Now, given any finite partial order B, we have
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that Fy; () is Brw-embeddable in I ~: indeed, it suffices to use a Pord-embed-
ding I: B — D7 such that the least element of D is not in the range of I; then,
by composition, we get a Brw-embedding of Fy, () into I which avoids 0™, Fi-
nally, define H ~:Fo; (P) > M~ by H (x) =H(x)if x#0and H(0) =07; so
Fo; (B) is Brw-embeddable in It~ via H ™. Now, since 0~ is meet-irreducible (by
[4], Corollary 2.9), it follows that a finite Brouwer algebra is Brw-embeddable
in MM~ if and only if € € Brw’.

Corollary 2.8 ([8],[12]) Th(IN) is the intermediate logic obtained by adding
the axiom scheme —« v = -« to the intuitionistic propositional calculus.

Proof: Let Jan (after Jankov) be the logic obtained by adding the scheme
- vV 7« to the intuitionistic propositional calculus. It is shown in Jankov [5]
that Jan = N{Th(Ly, (¥): Lis a finite Brouwer algebra}. Thus, by Theorem 2.6
and the fact that if €, is Brw-embeddable in £, then Th(%,) € Th(®,) (see for
instance [10]), it follows that Th (M) < Jan.

On the other hand, one trivially checks that Jan € Th(M), by showing that
for every oo € Form, the formula -« v = -« is valid in 9.

3 The case of the Mucénick lattice Theorem 2.6 shows further similarities,
besides those pointed out in [13], between the Medvedeyv lattice and the Mu¢nick
lattice, as is shown in Fact 3.3 below (a comparative study of these lattices is pre-
sented in [13]; see also [4] and Mutnick [9]). We proceed to give the main defi-
nitions.

Given mass problems @,® S “w, let @ =,, B if (vgEeBR)(IfER)[f=rg].
Let =,, be the equivalence relation generated by <,, and, given any mass prob-
lem @, let [@],, denote the equivalence class of @ under =,,: such equivalence
classes are partially ordered by: [@],, <, [B],if @ <, B.

Definition 3.1 ([9]) Let M, =<{[R),: C € “w}, <,). M,, is in fact an ob-
ject of DItty, called the Mucnick lattice.

M., has the following useful representation. Given any partial order =
(P, <p), let (see [3]) H(P) be the object of Dltty, given by:

(1) the elements of H(B) are the subsets X © P which are upward closed
under <, (i.e., pEX & p=<,q9=qg€X);

(2) given X, Y € H(B), let X < Y'if Y € X; then U,N correspond to A,V re-
spectively; @ is the greatest element and P is the least element.

Lemma 3.2 M, = H(Dr).
Proof: See [13].

It is known that for every partial order P = (P, <), H(B) (hence H(Dr)
and thus M, by Lemma 3.2) is a Brouwer algebra (under the operation — given
by: for every X, Y € H(B), X > Y={xEP:(VWWEP)[x<,y=>y¢& Xor
yevYl.

Fact 3.3 A finite ® € Brw is Brw-embeddable in I, if and only if & € Brw’.

Proof: The “only if” part follows from the fact that It, € Brw’ The converse
is an easy consequence, via Lemma 3.2, of the duality between partial orders and
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Heyting algebras (hence Brower algebras as well), given in [3]. Here is, however,
a more direct proof. As in Theorem 2.6, it is enough to show that, for every
£ € Brw;, Ly, (2) is Brw-embeddable in M,,. Given any function f, let By =
[B/],. The following are easily shown:

(1) for every f, B} is join-irreducible (by an argument similar to that of
Lemma 2.2(1));

(2) the mapping: [f]r — B/’ is a Pord-monomorphism (as in Lemma
2.2(2)), that preserves (existing) infima.

Thus, let § € Brw; be given and let P be the partial order of the join-irreducible
elements of £: by definition of Brwy, it is easy to see that B is a lower semilat-
tice. Let J:P — D be an inf-preserving embedding and, for every p € B,
choose f, € J(p). Finally define I: LLy; (%) > M,, by:

0 ifx=0

I(x) =4 VBf  ifx€®&x=vl, where I < B consists of mutually
el incomparable elements

1 ifx=1.

It is not difficult to see that I is a Brw-embedding, by arguments similar to those
employed for H in the proof of Theorem 2.6.

Corollary 3.4 Th(M,) = Jan.
Proof: See proof of Corollary 2.8, using Fact 3.3.

Remark 3.5 (1) Let M, = M, — {0,,}, where 0,, is the least element of IM,,.
It is easily seen that I;, is still a Brouwer algebra. One can show that a finite
Brouwer algebra £ is Brw-embeddable in I, if and only if the greatest element
of g is join-irreducible; indeed, in the proof of Fact 3.3, define the embedding I:
Lo () » M, starting from a Pord-embedding J: B — Dy which preserves
the least element as well as infima: then 7 restricts to a Brw-embedding 7 ~:
LD 1->Mms.

(2) Corollary 3.4 answers a question, raised in [9], aiming to characterize
Th(IM,,). Of course, answering this question is nowadays trivial, because of the
work in [3] and [6], not available at the time of [9].
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