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Monadic Π{-Theories of Π{-Properties

KEES DOETS*

Abstract Axiomatizations are provided for the monadic universal second-
order theories of: scattered orderings, well-orderings, complete orderings, the
ordering of the natural numbers, of the reals, and of well-founded trees.
Proofs employ the Ehrenfeucht-Fraϊsse-game.

Summary For some Πj-statements vRφ{R), results of the following type
are proved: Suppose that a monadic Π} -sentence VXX... y/Xkφ(Xι9... ,Xk) is
a consequence of VRφ(R), then the first-order sentence ψ(Uι,. . ., Uk) is
already a consequence of the first-order schema corresponding to vRφ(R)9

which requires φ(R) only for R which are (parametrically) first-order definable
in the language of ψ(Uu . . . , Uk). Cases considered here are: scattered order-
ings, well-orderings, complete orderings, models of order type ω, of order type
λ, and well-founded trees. The method of proof uses the Ehrenfeucht-
Fraϊsse-game.

1 Introduction Some natural axioms of a number of theories are of the
second-order (Π{) form vRφ(R), where φ is a first-order predicate and R is a
second-order variable. For instance, the induction principle of arithmetic, the
completeness of the reals, Zermelo's Aussonderungsaxiom, and the Fraenkel-
Skolem replacement axiom in set theory are of this type. As to first-order ver-
sions of these principles, the natural option is to require φ(R) not for all R but
for parametrically first-order definable R only, thus replacing the second-order
axiom by its corresponding first-order schema.

Obviously, the new theory will have models not allowed by the old one (by
the Lόwenheim-Skolem-Tarski Theorem for instance) and hence it may turn out
to be strictly weaker than its second-order companion. For instance, second-

*I wish to thank Johan van Benthem for his questions (to which 3.1, 4.6, and 4.9 below
form the answers) and his stimulating interest in the topic of this paper.1
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order arithmetic is categorical, hence it implies first-order sentences beyond the
scope of the first-order induction schema.

On the other hand, if the language is restricted sufficiently, conservation
may occur. This paper contains a number of examples of this. They all concern
theories of (partial) orderings, in which conservation is proved with respect to
monadic Π} -sentences. The method of proof consists in showing how to trans-
fer counterexamples t o a Π j -sentence on a "nonstandard" model to a standard
model.

To be more precise (cf. the condition of Theorem 1.2(ii) below), I will
prove results of the following type. Let L be a first-order language contain-
ing < and unary predicates Ux,..., Uk. Let Oil = (M,<, Uγ,..., Uk) be a model
of the first-order L-schema corresponding to the Πj-property vRφ(R); i.e.,
each R C M which is first-order definable on 311 satisfies φ(R) on 311. Then for
each L-sentence ψ( U{,..., Uk) true in 311 there is a model (N,<) of the origi-
nal Πj -sentence vRφ(R) satisfying 3 ^ . . . lXkψ(Xu . . . 9Xk).

To explain how this is done we need the notion of ̂ -equivalence. Models
are called n-equivalent (denoted by =") iff they satisfy the same first-order sen-
tences of quantifier-rank <n. In the sequel, our languages will be finite and do
not contain operation symbols. Under these circumstances, we have the fol-
lowing:

1.1 Lemma Up to logical equivalence, there are only finitely many first-
order formulas of quantifier-rank <n in the free variables JCO> >Xk-\ in each
language.

Proof: Induction with respect to n. For n = 0, notice that there are only finitely
many atomic formulas in these variables and use disjunctive normal forms. For
the induction step, choose a finite set Σ of formulas of quantifier-rank <n in
the free variables x0,... ,xk such that every such formula has an equivalent in
Σ. Now, consider disjunctive normal forms over "atoms" Vxkφ and 3xkφ where
φGΣ.

It follows that ^-equivalence has only finitely many equivalence classes in
each language of the type considered. This is the main important fact used
below.

The n-characteristic σ of a model 3IZ is the conjunction of all sentences of
quantifier-rank <n valid in 311. Thus, 31 1= σ iff 31 =n 311. ^-equivalence has
been neatly characterized by Ehrenfeucht using his game (for more on this, cf.
[3], pp. 93-96, 247-252, and 359-361).

In the following basic theorem Σ is a set of first-order sentences in a lan-
guage L and vRφ(R) is a Π} -sentence over L. Let Xu. . . ,Xk be new unary
relation-symbols and Lk = L U {Xu... ,Xk}. (Lk~) definably-φ is, by defini-
tion, the set of universal closures of L^-formulas obtained from φ by replacing
each occurrence of R{tx,..., tm) by some fixed Z^-formula η{tx,..., tm) (tak-
ing measures to avoid the clashing of variables). Thus, L^-definably-φ intui-
tively requires φ(R) only when R is (parametrically) first-order definable in the
language Lk.

The union over all k of these schemata is the first-order schema correspond-
ing to vRφ(R).
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1.2 Theorem The following two conditions are equivalent:
(i) for each first-order formula ψ = ψ(Xι,. . . ,Xk) in the language Lk: ifΣ +
vRφ(R) N vXx . . . vXkψ, then Σ + Lk-definably-φ \-ψ(XΪ9... 9Xk);
(ii) each model (911, C/i,..., t/*) o/ Σ + Lk-definably-φ has an n-equiυalent
satisfying Σ + VRφ(R) for each n.

Proof: (i) => (ii): Let (9K, Uu . . ., Uk) 1= Σ + L^-definably-φ have the Λ-
characteristic τ(Xu... ,Λ^). We want a model of Σ + VRφ(R) + aΛ^ . . . aΛ^r.
If such a model does not exist, then Σ + vRφ(R) 1= VΛ̂  .. . vA^-ir; hence by
(i), Σ + L^-definably-φ \= -ιτ(X\,... 9Xk), contradicting the assumptions on
(3K, £/!, . . . , £/*).

(//) =*(/): Assume Σ + vRφ(R) \=vXx... VXkψ and let (911,(7!,..., f/*)
be a model of Σ + L^-definably-φ. By (ii), there is an ^-equivalent satisfying
VRφ(R) + Σ where we take n to be the quantifier rank of ψ. By assumption,
this ^-equivalent satisfies vXi . . . vXkψ, hence ψ(Xι,... ,Xk) is also satisfied,
so (9H, U\,. . ., Uk) must satisfy this formula as well.

The Σ of the theorem below will always be finite. Therefore we may require
that the ^-equivalent of (ii) satisfies vRφ(R) only, without invalidating the truth
of (ii) => (i): simply let n be at least the maximum of quantifier ranks of formulas
in Σ.

In what follows, results of type (ii) are proved. According to the theorem,
this shows that, in the context of Σ, the first-order schema corresponding to
VRφ(R) suffices to prove all monadic U\-consequences of this second-order
statement. (Actually, Theorem 4.9 below does a little better.)

In particular, when 1.2(i) or (ii) holds, the monadic Πj-theory of Σ +
vRφ(R) is recursively enumerable (cf. [1] for decidability results in this con-
text).

All models encountered here will have the form 3H = (M,<, Uu . . . , Uk),
where < orders Mand Uu. .. ,UkC M. If Xc M, then DC (and sometimes X
as well) denotes the submodel of 3Π with universe X. I C M is an interval if
x < y < z and x,zG I imply y G /; notations like (x,z) and [x,z) denote spe-
cific intervals as usual.

If /is an ordered set and m a function on / associating a model m(i) with
every / e /, we may form the ordered sum Σ/e/m(/), being the model obtained
from the m(i) by gluing (disjoint copies of) them one after the other according
to the ordering of /. Formally, ΣιGlm(i) can be defined as the model with uni-
verse (J (m(i) x {/}) with the ordering defined by: (a,i) < (bj) iff / <rj9

iGl

or: / =j and a < z b (here, < 7 and < 7 denote the orderings of m(i) and / ) ; and
if Un is the /?-th unary relation of m(i) (1 < n < k) then Un = \J (Uι

n x {/})
i(Ξl

is the corresponding one of the ordered sum.
A condensation of an ordered model ΐftl is a partition of ΐίϊl into intervals.

Any condensation P of 3H inherits an ordering from 3H by putting, for p,q E
P: p < q iff for some a E p and Z? E # (equivalently, iff for all a E /? and Z? E
q) a <b. Hence, a condensation P of 3TC is nothing but a way of writing 911 as
an ordered sum, ΐPfί = ΣpGPp.

If the condensation P is induced by the equivalence ~ (such equivalences
are called congruences by some), we write P — M/~.
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1.3 Lemma Let R be any transitive binary relation on the ordered model ΐftl.
Define ~ = ~R by: a - b iff one of the following holds:

(ϊ)a = b
(ii) a < b and for all c,d such that a < c < d < b: cRd

(iii) b < a and for all c,d such that b < c < d < a: cRd.
Then ~ induces a condensation.

Proof: The proof is straightforward.

All condensations used in the sequel are defined in this fashion.

1.4 Lemma If for all i E I m(i) =n ιn'(0, then ΣiGίm(i) =n ΣisIm'(i).

Proof: It is straightforward to describe a winning strategy for the second player
in the Ehrenfeucht ft-game between these sums under the condition given.

The following generalization of Lemma 1.4 is needed in Section 4.

1.5 Lemma Suppose that I and J are ordered sets and that m and m' associ-
ate ordered models m(i), respectively mf{j), to each i E /, respectively j E /, such
that:

(*) (7,{/jm(0 N σ})σ€ΞΣ ssΛ
 (JΛJ\M'U) t= σ])σGΣ where Σ is the set of n-char-

acteristics. Then ΣiGlm(i) =n ΣjGjm
f{j).

Proof: Use the Ehrenfeucht game-technique. If the first player chooses, say,
a E Σ/m(/), the second player locates the / E / for which a E m(i), then uses
(*) to find ay corresponding to /; in particular, tn'(y) =n *n(/), and a counter-
move is readily found; etc.

1.6 Examples where 1.2(ii) fails
1. (Due to van Benthem.) Consider the Π} statement vXφ(X) in the lan-

guage of < where φ(X) means that X and its complement cannot both be cofi-
nal. Obviously, every ordered model of vXφ(X) has a greatest element. On the
other hand, the first-order schema corresponding to φ does not imply this. A
countermodel is (ω,<): notice that each definable set here is either finite or
cofinite. {Proof: Using games, it is easy to verify by induction on n that order-
ings of type ω and ω + ζ are ^-equivalent for all n. Now, let ψ(x) be any for-
mula in the free variable x. If no a E f satisfies ψ in ω + f then 3jVx(y < x -*
-iψ) holds in ω + f therefore it holds in ω and the set defined by ψ in ω must
be finite. On the other hand, if some ί/Gf satisfies ψ in ω + f then every a E
f satisfies ψ in ω 4- f—this is so because for each pair a,b E f there is an
automorphism h of ω + f such that Λα = 6. Hence, 3^Vx(^ < x -> ψ) holds in
ω + f; therefore, it holds in ω and the set defined by ψ in ω must be cofinite.)

2. In theories defining a pairing the restriction to monadic languages is only
apparent and results like ours can fail badly. We mentioned the case of arith-
metic; also, each model of set theory certainly is definably well-founded, nev-
ertheless such models need not have a well-founded π-equivalent for n large
enough: well-founded models have standard integers, therefore they are arith-
metically correct; but, Gόdel sentences are arithmetical.
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2 Monadic H\-theory of scattered orderings A linear ordering 3ΪI = (M,<)
is called scattered if it does not embed the ordering (Q,<) of the rationals.

Q embeds every countable ordering; in particular, it embeds ω*. It follows
that every well-ordering is scattered. I shall need the following lemma:

2.1 Lemma A scattered ordered sum of scattered orderings is scattered.

Proof: Suppose Q C Σ/(Ξ/ra(/). If some Q Π m(i) contains at least two ratio-
nals, it contains the interval between them and so m(i) cannot be scattered.
Hence, sending p G Q to the / G / for which p G m{i) embeds Q in /, a con-
tradiction.

There is more than one way to formalize scatteredness into a Πj-state-
ment, and not every formalization is a good one from our point of view.

2.2 Example Let δ express that < is a dense ordering containing at least two
elements. φ(X) is the formula obtained from -ιδ by relativizing quantifiers to
membership in (the set) X. Clearly, ΐftl is scattered iff it satisfies VXφ(X). Here
is an example of a model ΐftl = (M,<,^, Y,Z) which is definably-φ but has no
scattered 3-equivalent. Partition Q into dense subsets R, S, T and put 311 =
Σ 9 G Q M 9 , where Mq = {2,<,X«, Yq,Zq) and Xq = Z if q G R; Xq is empty
otherwise; similarly, Yq = Z or 0 depending on whether q G S or not; and
Zq = Z or 0 depending on whether q G T. Notice that each interval Mq of
OH is a set of indiscernibles of WL (use automorphisms of Mq); hence, if A is a
definable set of 9ϊl, either A Π Mq = 0 or Mq C A. Therefore, no nonempty
definable set of ΐftl is densely ordered and it follows that 3ϊl is definably-φ. On
the other hand, the fact that 3TC satisfies sentences such as (Vx G X)(Vy G Y)
(x < y -> ( 3 Z G Z ) ( X < Z < ^ ) ) shows that no 3-equivalent of ΐftl can be scat-
tered.

A "good" formalization of scatteredness should avoid this counterexample.

2.3 Lemma An ordering is scattered iff it has no densely ordered conden-
sation.

Proof: Only if: Use the axiom of choice. If: Suppose that Q C M. Define ~ by
way of 1.3 where aRb iff a < b and (α, b) Π Q is finite. It is easy to see that —
induces a dense condensation.

The (dyadic!) Πj -characterization of scatteredness contained in this lemma
is a "good" one according to the following theorem, where we call a model
definably scattered if no definable equivalence partitions 31Z into a dense order-
ing of intervals. Notice that the model of 2.2 is not definably scattered in this
sense.

2.4 Theorem IfΐPXis definably scattered, then it has scattered n-equivalents
for each n.

Proof: I use what Rosenstein [3] calls a condensation argument, which originated
with Hausdorff. Define ~ in the fashion of 1.3 with aRb meaning that (a,b)
has a scattered ^-equivalent (if a < b). By 2.1, R is transitive. Hence, — induces
a condensation by 1.3. Moreover, - is definable: there are only finitely many
^-characteristics; let Γ be the (finite) set of ^-characteristics belonging to scat-
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tered models. Then (c,d) has a scattered π-equivalent iff ϋH H V τ ( c ' ^ , where

τ(c,d) j s obtained from r by relativizing quantifiers to membership in (c,d). It
is now clear that ~ can be defined as well.

Claim 1 Each equivalence class has a scattered n-equivalent.

Proof: Let / be an equivalence class and a E I.
(i) / has a greatest element b. Then a ~ b and I~a = [x E I\a < x] =

[tf,6] has a scattered λz-equivalent by definition.
(ii) If not, choose a sequence ao = a < ax < .. .< a% < ... (ζ < a) cofinal

in /. Each (a^a^+{) and hence each [a^a^+x) has a scattered ^-equivalent A%.
Hence I~a = Σ ξ < α [ ^ , ^ + 1 ) has the ̂ -equivalent Σ^<aAξ by 1.4 which, by 2.1,
is scattered.

Argue similarly for I<a = {x E I\x < a}; so / = I<a + /-" has a scattered
^-equivalent.

Claim 2 77ze induced ordering of the equivalence classes is dense.

Proof: Suppose that I < J are equivalence classes and no equivalence class is
between / and /. Let a E / and b E 7, and suppose that a < c < d < b. Then
(c,rf) has a scattered ^-equivalent: if c, J E / or c9d E / this is clear, and if
c E / and cf E / we know from the previous proof that / > c and J<d have scat-
tered ^-equivalents; but, (c,d) = I>c + J<d. Therefore, a - b, a contradiction.

Since 311 is definably scattered, ~ cannot have more than one equivalence
class: M itself. Consequently, ΐftl must have a scattered ^-equivalent by the first
claim.

2.5 Remark By 2.2 and 2.3, we have two Π}-formalizations of scattered-
ness; however, the first-order schema corresponding to the second one (defin-
able scatteredness) is strictly stronger than the first-order schema belonging to
the first.

2.6 Corollary The monadic H\-theory of scattered orderings is recursively
enumerable.

Proof: Use 2.4 and 1.2.

3 Monadic ϊl\-theory of ω and of the class of finite orderings It is clear
what it means for an ordered set to satisfy complete induction when there is a
least element and every element has an immediate successor. Definable induc-
tion requires that every definable set containing the least element and closed
under immediate successors contains every element. Complete induction is the
usual Π{ -instrument transforming a suitable set of first-order axioms of quan-
tifier rank <3 into a categorical description of the order type ω. Definable induc-
tion does not come close to this, but it suffices for the monadic ΐl\ -theory:

3.1 Theorem 7/(1) (M,<) Ξ 3 (ω, <) and (2) OH = (M,<,XU ... ,Xk) sat-
isfies definable induction, then 3TC has n-equiυalents of order type ω for every n.

Proof: by the Lόwenheim-Skolem Theorem, we may assume UH to be countable.
Define X— [a E M | VZ? < a([b,a) has a finite ^-equivalent)). Just as in the case
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of ~ in the proof of 2.4, it is easy to see that X is a definable set. Trivially, X
contains the least element of 911. Also, Xis closed under immediate successors:
if S is a finite ^-equivalent of [b9a) and c is the immediate successor of a then
it is clear that the ordered sum S + {a} is the required finite ^-equivalent of
[bfc). By definable induction then, X = M. Let a0 be the least element of 911
and choose a0 < a{ < a2 < . . . cofinal in M (which we have assumed to be
countable!). Choose a finite /7-equivalent S, of [ahai+ι) for each /. Then S =
Σ/S/ is the required ^-equivalent of order type ω.

Virtually the same proof works for the class of finite ordered models.
Notice that a linear ordering (M,<) is finite if it contains a least and a

greatest element, every nonmaximal element has an immediate successor and
restricted induction is satisfied, which says that every set containing the least ele-
ment and closed under immediate successors (insofar as they exist) contains the
greatest element as well. (Of course other characterizations work as well.)
Restricted induction brings along its first-order companion: definable restricted
induction.

3.2 Theorem If the linearly ordered model 9ΪZ
(1) has a least and a greatest element and every nonmaximal element has an

immediate successor, and
(2) satisfies definable restricted induction,
then 911 has finite n-equivalents for all n.

Proof: Begin as in the proof of 3.1. Definable restricted induction now shows
^Γto contain the greatest element b of 311. Thus, [a,b) has a finite Az-equivalent
and so does [a,b] = 911, as required.

3.3 Examples The following models show that we cannot strengthen the con-
clusions of 3.1 and 3.2 to: 911 has an elementary equivalent (i.e., a model n-
equivalent with 9H for all n simultaneously) which has order type ω (respectively
which is finite). For the second, let 9H have order type ω + ω* and let the Xt be
empty. For the first, consider 91Z + 91 where 9H is the previous model and 91
has order type ω —but Xo = N this time. The bigger n is, the longer an n-
equivalent of 9H has to be (namely, at least 2" — 1) and hence the larger the
first element of Xo in an ^-equivalent of 911 + 91 is.

3.4 Remark The direct method of proof of 3.1 and 3.2 works for the class
of well-ordered models too; however, I shall derive that result from the corre-
sponding one for the order-complete models.

3.5 Remark The monadic Πj -theories of ω and the class of finite orderings
are recursively enumerable. (Compare 2.6.)

4 Monadic H\ -theory of complete orderings, of well-orderings, and of the
reals The ordering (M,<) is complete if each nonempty set with an upper
bound has a least upper bound (a sup). Hence, 911 is called definably complete
if this holds for definable sets.

4.1 Theorem IfΐPίί is definably complete, it has complete n-equivalents for
each n.
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Before proving 4.1, here are an example and a corollary.

4.2 Example The following model shows that it is impossible to strengthen
the conclusion of 4.1 to requiring an elementary equivalent of 9ίl.

Choose rationals q0 < qx < q2 < . . . and r0 > rx > r2 > .. . such that
limg, = lim η is irrational; take A = {qt\i E IN) U (/ / | / G N ) and consider
9K = (Q,<,A). For each n, the models (R,<,{1,.. . ,mj) for m > 2n - 1 are
^-equivalents of 9K. On the other hand, suppose that (N,<,B) is a complete ele-
mentary equivalent of Oil. It follows that B has order type ω + a for some α:
TV must contain a sup of the first ω elements of B. However, 911 lacks an element
which is a limit of Ά's — a contradiction.

OH is (definably) well-ordered if each nonempty subset of M (which is
parametrically first-order definable on 9TC) has a least element.

The following trivial lemma may look surprising, as completeness usually
is considered only in the context of dense orderings.

4.3 Lemma 9ϊl is (definably) well-ordered iff it is (definably) complete, has
a least element, and every nonmaximal element has an immediate successor.

Proof: Suppose that 0 Φ X C M and X has no minimum. Put Y = {y E
M\ VJC E X(y < x)}. Fis definable if Jf is definable. Since the least element of
ΐί\ί must be in Y, Yis nonempty; moreover, every x E X is SLΠ upper bound of
Y. Thus, Y has a sup y. If y E F, the immediate successor of y is minimal in
X. Hence, y £ Y. But then y must be minimal in X, a contradiction.

4.4 Corollary If OH is definably well-ordered, it has well-ordered it-
equivalents for each n.

Proof: Notice that 4.3 defines well-order as completeness plus a quantifier rank
3 statement. By 4.3, 3TC is definably complete. Thus, let m = max(«,3) and take
91 to be a complete ra-equivalent of 9K by 4.1. By 4.3 again, 91 is the model
required.

We say that an ordered sum Σ/G//77(/) is completely ordered if the order-
ing of / is complete.

4.5 Lemma
(i) Completely ordered sums of complete orderings with endpoints are complete.

(ii) Well-ordered sums of complete orderings with least elements are complete.

Proof: (i): Let XC ΣieIm(i) have an upper bound in m(i0). Then / = {j\XΠ
m(j) Φ 0 ) has the upper bound /0. Let j = sup /. Case 1: j E J. Then max
m(j) is an upper bound for X Π m(j) and sup X — sup(^Γ Π m(j)). Case 2:
j £ J. Then sup X = min m(j). (ii): Similar.

Proof of 4.1: Define — in the fashion of 1.3 with aRb meaning: a < b and (a9b)
has a complete ^-equivalent.

Notice that R is transitive. Hence, ~ induces a condensation by 1.3. (N.B.
this would not have been so obvious in case we had defined x ~ y to mean that
(x,y) had a complete ^-equivalent only.)

Furthermore, ~ is definable: compare the proof of 2.4. Hence, the equiva-
lence classes are definable as well.
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Claim 1 Each equivalence class with an upper (lower) bound has a greatest
(respectively least) element and each equivalence class has a complete n-
equivalent.

Proof: Let / be an equivalence class and a G I. If / has no upper bound, choose
a0 — a < ax < a2 < . . . < a$. < . .. (ξ < a) cofinal in /. Choose a complete n-
equivalent N% of [^,α ξ + 1) for each ξ < a. Then Σξ<aNξ is a complete π-equiv-
alent of Σξ[a^,a^+ι) = (xG I\a < x] = I~a. If/has an upper bound, it must
have a sup s by definable completeness. I claim that sΈ I (and so, s is the max-
imum of /, I~a = [a,s] and hence (a,s) and, therefore, I~a as well, has a com-
plete ^-equivalent by definition). For if not choose a0 = a < ax < a2 < . . . <
#£ < . . . cofinal in / again to show that (a9s) has a complete zz-equivalent as
before; a similar argument will show that a ~ s.

Much the same goes for the other half I<a = {x E I\x < a] of /, and so
the claim has been proved.

Claim 2 The induced ordering on the class M/~ of equivalence classes is
dense.

Proof: Suppose that I < J are neighbors in M/~. Then a = sup / and b = inf
/are neighbors in 3TI; moreover, a E /and b E /. Hence, (a,b) is empty; there-
fore, a — ό — a contradiction.

If there is but cwe equivalence class we are done. So, assume not. The rest
of the proof works towards a contradiction.

The following argument is taken from [3] (Theorem 7.17, p. 117). Choose
a complete ^-equivalent r (/) for each / with / E Λf/~ in such a way that T =
{r(I)\I E M/~} is finite (this is possible by 1.1). Now, if for some σ E Γ,
{/ E M/~ |r(/) = σ} is «oί dense in the ordering of M/~, there must be a
proper interval Co C M/~ such that no / E Co has τ(/) = σ. Repeating this
argument (first with Co and 7Λ [σ] etc.) using induction on the finite cardinal
|Γ | , one ultimately arrives at the following:

Claim 3 There is a proper (open) interval D of M/~ and a set Σ C T such
that (i) every IGD has τ(I) E Σ, and (ii) if σ E Σ then {I<ED\τ(I) = σ} is dense
in D.

The contradiction aimed for is contained in the next claim.

Claim 4 D has but one element.

Proof: Suppose that a,b E (J D and a < b. We need to show that (a,b) has
a complete /z-equivalent. Suppose that a E /, b E /. If / = /, there is nothing
to prove. Let E be the interval (/,/) in D. Now, (a,b) = I>a + \j E + J<b;
therefore it suffices to show that these components have complete ^-equivalents.
For I>a and J<b

9 this is already known (cf. the proof of Claim 1). Therefore,
it remains to show that (J E has such an ̂ -equivalent as well.

First, notice that Claim 3 remains valid if we replace D by E. Now, con-
struct a complete /^-equivalent 91 of the submodel (J E — ΣίeEI of ϋϊl as fol-
lows: let h: R -> Σ be any partition of 1R into | Σ| classes [x E R\h(x) = σ]
(σ E Σ), each of which is dense in 1R and put dl = ΣxG]Rh(x).



Π}-THEORIES 233

By 4.5 and Claim 1, VI is completely ordered. It remains to show that 01
is ^-equivalent to U E.

First, notice that the models (£,<,{/G E\τ(I) = σ})σeΣ and (R,<,{xG
IR| /Z(ΛΓ) = σ})σGΣ (with | Σ| unary relations each) are partially isomorphic and
a fortiori n-equivalent. (The argument for dense orderings is well-known; the
extra structure involved here —partitions into |Σ|-many dense sets —does not
complicate it terribly much.) The result now follows from 1.5.

This completes the proof of 4.1.

The most prominent type of (dense) complete ordering is λ, the order type
of the set of reals. The following example shows that we cannot strengthen the
conclusion of 4.1 by requiring the ̂ -equivalent to be of type λ, under the
assumption that the ordering of ΐίϊί is dense.

4.6 Example ForxGlR, let m(x) = ([O,l],<,0) if x is rational, andm(x) =
([0,1] ,<, [0,1]) otherwise. Consider ΐί\l = ΣxG]Rm(x). 3TC has the complete
order type (1 + λ + 1) λ (cf. 4.5), so it certainly is definably complete. On the
other hand, the proof of Lemma 4.8 below shows that it lacks a 5-equivalent
of order type λ: each complete 5-equivalent of 311 has a definable equivalence
splitting the model in an uncountable number of proper intervals — contradicting
the Suslin property of 1R. Hence, the Suslin property of IR contributes to its
monadic Π} -theory.

The following definition, suggested by 4.6, isolates this contribution:

4.7 Definition ΐftl has property I if each densely ordered condensation of ΐftl
has a dense set of singletons.

4.8 Lemma Models of order type λ and, more generally, all complete order-
ings with the Suslin property, have property I.

Proof: Suppose that P is a densely ordered condensation of a Suslin ordering.
Suppose that p < q in P but (p,q) does not contain a singleton. By Suslinity,
(p,q) must be countable; hence, it has the order type of the rationals. There-
fore, (p,q) has as many bounded sets without sup as there are irrationals. Let
K be such a set. Then (J K is a bounded set in the original ordering without sup.

4.9 Theorem If ΐfll is definably-I, definably complete, and densely ordered
without endpoints, then it has n-equivalents of order type λfor each n.

Proof: First, we follow the proof of 4.1 with some slight modifications.
To begin with, we may assume by the Lδwenheim-Skolem Theorem that

3TC is only countable.
Now, define ~ by the scheme of 1.3 with aRb meaning: a < b and (a,b)

has an ̂ -equivalent of order type λ. Again, R is transitive, so ~ induces a con-
densation by 1.3.

Claim 1 Each equivalence class has an n-equivalent of one of the following
types: 1, λ + 1 (if it begins ΐffl), 1 + λ (if it ends ΐίϊl), λ (if it does both), or
1 + λ + 1.

Proof: Much as before. Notice that we need to form only countable sums since
ΐPίl is countable, thus preserving the separability of the models involved, thereby
guaranteeing one of the order types required.
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Claim 2 M/~ is densely ordered.

Proof: Use the fact that the ordering of 911 is dense.

Again, it suffices to show that M is the only class in M/~. Suppose it is
not.

Claim 3 There is a proper (open) interval D of M/~ and a finite set Σ of
models of order type either 1 or 1 + λ + 1 such that
(i) every IE D has an n-equiυalent in Σ, and

(ii) ifσEΣ then {I E D\I =n σ] is dense in D.

Proof: As before.

In order to reach the desired contradiction, and stepping over some obvi-
ous details (cf. the proof of 4.1, Claim 4), construct an ̂ -equivalent 91 of \J D
of order type λ as follows:

Since 911 is definably-/, M/~ has a dense set of singletons; hence Σ con-
tains a singleton model τ 0 . Take h: IR -> Σ partitioning R into | Σ| classes {x E
R\h(x) = σ] (σ E Σ) each of which is dense and such that {JCE R\h(x) = τ0}
happens to be the set of irrationals.

Put 91 = ΣxGRh(x). By 4.5, 91 is complete as before and it is easy to see
that 91 has a countable dense set this time, whence 91 has the order type λ. That
91 =n (J D follows as before, using 1.5.

4.10 Corollary Every ordering which has I, is complete, and is densely
ordered without endpoints satisfies the monadic U\-theory o/IR.

4.11 Example For each ordinal a, λ + (1 + λ) a has the required proper-
ties (and differs from λ for a > ωi, since α>i φ λ).

4.12 Remark Section 17 of [2] contains a Π}-characterization of (1R,<).

4.13 Remark The theorems above imply recursive enumerability of the
monadic Πj -theories of complete orderings, well-orderings, and R. (Note that
these theories are in fact decidable. For the first and last one this is due to
Gurevich. The decidability of the second one is due to Rabin. Cf. [1].)

5 Monadic H\-theory of well-founded trees Previous sections dealt with
linearly ordered models only; the scope is widened here somewhat to the notion
of a tree.

A partially ordered set 9H = (M,<) is called a tree iff, for each m E M,
the set ml = \m' E M\m' < m] is linearly ordered.

The Πj -property considered here is well-foundedness: 9H is well-founded
iff each nonempty set has a minimal element; equivalently, when 9ΐl is a tree:
iff each mi is well-ordered.

Definable well-foundedness, of course, restricts this to definable sets.
The proof of Theorem 5.1 below can be considered as a paradigm for a

method applicable in a variety of situations, where the models considered belong
to certain types of partial orderings (trees being the simplest example) and the
Πj -property involved can be either well-foundedness, converse well-founded-
ness, or, more generally, some kind of completeness as in Section 4. It did not
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seem useful, however, to aim for this greater generality here, as a most general
result probably does not exist and the generalizations obtained of the result
below all appeared to be rather arbitrary.

5.1 Theorem If ^ is a tree with finitely many extra unary relations which
is definably well-founded, then it has well-founded n-equivalents for all n.

Again, we have the companion result on recursive enumerability of the
monadic Π{ -theory of well-founded trees.

Before embarking on the proof, we need some surgical terminology on trees
and three lemmas.

A component of 911 is a maximal connected subset. An element of 9ΐl is
minimal iff it is the least element of its component. In particular, components
are (first-order parametrically) definable.

Therefore, if 911 is definably well-founded, so are its components. The con-
verse of this holds as well: Piet Rodenburg (by private communication) recently
proved —in a setting more general than this one —that the restriction of a defin-
able set to a component must be definable on that component. This result is not
used here, however, which makes for some complications in the formulation of
the lemmas below.

If X C M is downward closed (i.e., if a < b E X implies that a E X) then
M\X is upward closed, and vice versa.

I shall use the following notations. If X C M then (ΐfll,X) denotes the
expansion of 911 obtained by adding X as a new unary relation. If a G M then
#ΐ equals {c E M\a < c). Notice that, somewhat arbitrarily, a E #ΐ, but a (£ ai.

5.2 Lemma Suppose that the tree 911 is definably well-founded. If a < b in
9TC then, for each n, ((#T)\ (6ΐ), [a,b)) has an n-equiυalent (91,β) such that
β is well-ordered and all components ofN\β are definably well-founded (see Fig-
ure 1).

Figure 1.

Thus, 91 can be used as a substitute (within ^-equivalence) of the part
(flft)\ (6ΐ) of 911, thereby exchanging [a,b) for the well-ordered β and preserv-
ing definable well-foundedness of the rest, component-wise. The other two
lemmas are similar in spirit. The proof of 5.1 finally will show how to carry out
such substitutions repeatedly, thereby eventually arriving at the desired well-
founded ^-equivalent. To see that such substitutions actually work, the following
remark is needed.
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Remark In what follows, a lot of cutting and pasting of trees has to be per-
formed. To see that in each case ^-equivalence is preserved, the Ehrenfeucht
game technique can be applied. The general procedure is as follows. Suppose
that 911' is obtained from 911 by exchanging some part 91 by an ^-equivalent 91'.
In all cases occurring it will be clear how this exchange-process has to be per-
formed, since the way 91 is "attached" to 911 \ 91 will be particularly simple. Let
/be the identity-map on 911 \ 91.

5.2.1 Lemma Suppose that, for each partial isomorphism h between 91 and
91', the union / U h is a partial isomorphism between 9H and 91Γ. (In applica-
tions it always will be rather obvious that this condition is satisfied.) Then it will
be the case that 911 =n 91Γ.

Proof: Consider the fl-game between 9TC and 91Γ. The second player wins this
if, to answer moves by the first one in either 91 or 91', he uses a winning strategy
for the «-game between these models, and if he copies the first player on 911 \ 91.

Proof of 5.2: Let X be the set of b e Msuch that for all a < b, (tfί\Z?ΐ,[#,&))
has an ^-equivalent of the type desired. The lemma asserts that X = M.

Suppose that XφM. Observe that X is definable: there are only finitely
many ^-characteristics of models (91,β) such that β is well-ordered and all com-
ponents of N\β are definably well-founded; moreover, that (αT\Z?T,[α,Z?» satis-
fies a given characteristic is a first-order property of (ΐί\l,a,b). By definable
well-foundedness, M\X, assumed to be nonempty, has a minimal element b.
Suppose a < b is such that a corresponding ^-equivalent of the required type
does not exist. Obviously, b cannot have an immediate predecessor. Choose
a0 = a < ax < . . . < # $ < . . . ( £ < α) cofinal in bϊ. By the minimality of b,
choose (Nξ,βξ) =n (tf£Ϊ\tf£+1ΐ,[tf£,tf£+1)) such that β$ is well-ordered and all
components of N^\β^ are definably well-founded for each £ < a (see Figure 2).

/ t
/ I

' /

JWβ2

Figure 2.
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The model Σξ<a(Nξ,βζ), obtained by gluing the β% one after the other now
forms a counterexample to the choice of a and b: to see that this is an «-equiv-
alent of (#?\&T, [#,£)), apply the remark to (αΐ\&t, [#,&)) = (J ( ^ ΐ \ ^ + 1 ί ,

[aξ,aξ+ι)) and Σξ<a(Nξ,βξ).

5.3 Corollary Suppose the tree 9Π is definably well-founded and b E M.
Then, for each n, (9K,6) has an n-equiυalent (ΐffl'9b') such that b'l is well-
ordered and all components of M'\ (b'l) are definably well-founded.

Proof: If b is minimal in 311, then (911, fe) itself satisfies the stipulations. Other-
wise, let a be the least element of bl. By 5.2, (αΐ\6ΐ, [a,b)) has an ̂ -equivalent
(91,β) with β well-ordered and all components of N\β definably well-founded.
Replace (tfΐ\6t,[α,Z?)) in 3ft by (91,j8); the result is 911'. In 911', bi = β. Thus,
putting b' = b makes b'l well-ordered. The components of M'\(b'l) are the
ones of N\β plus bt plus the OΠ-components different from the one contain-
ing b (if any); these are all definably well-founded. Finally, (9ΪΓ,&') =n (9K,&)
follows from the remark above.

The next lemma is the version of 5.3 with finitely many b's at the same
time:

5.4 Lemma Suppose that the tree 9ft is definably well-founded and A C M
is finite. Then, for each n, ((^(ί,a)aeA has an n-equiυalent (^l\a')aeA such that

each a'I (a EA) is well-ordered and all components of M' \ (J a'I are defin-
\a(ΞΆ

ably well-founded.

Proof: By induction on the number of elements in A. To start with, we have 5.3.
For the induction step, choose a E A and put B = A \ {a}. Apply the inductive
hypothesis to (9K,tf) and B to obtain (ΐfϊί\a'9b')beβ with all b' I (b E B) well-
ordered and M'\ (J b'l definably well-founded — component-wise.

\b(ΞB

Case 1: Suppose that for some b E By a < b. Then a' < b', a'l is well-

ordered, M'\ \J a'l = M'\ \J b'l, and we are done.
\aGA \b<EB

Case 2: If not, let C be the component of M ' \ (J b'l containing a'.
\bGB

By 5.3, obtain (β',a") =n (G,af) with a"I well-ordered and C'\(a")l defin-
ably well-founded, component-wise. Replace ((3,#') in ΐίϊl' by (Q',a") to obtain
the desired model (ΐPίl"9a'\b')beB.

We are now ready for the proof of 5.1.

Proof: Define a sequence of models 9K0,9Ili,9Il2,... and sets T°, Tι, Γ2,. ..
such that:

1. ΐHlo = ΐP(l; T° = 0
2. Tι is a well-founded downward-closed part of OH/ and every component

of Mt\Tι is definably well-founded
3. TlJtX (considered as a submodel of 9]Zί+1) is an end-extension of T'
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(considered as a submodel of 911/) (i.e., V C Ti+\ and for a,b G 7"'+1,
if ft G Γ7 and α < b then α G Γ'")

4. (9K/,0/er Ξ " (9R/+i>0/er
5. for all a G M/XΓ7 there is a 6 G Ti+ι such that (ϋH / 5 ί ,α) , e Γ / Ξ " " 1

(9rc/+1,f,Z0,er.

9ΪI/+1 and Γ ' + 1 will be obtained from 911, and V by replacing M/NΓ' in 311, by
an ^-equivalent with a well-founded initial part (namely, Tι+ι\Tι) preserving
definable well-foundedness component-wise. This will take care of 2-4. How-
ever, Tι+ι must be big enough so as to satisfy 5. This is achieved in the follow-
ing manner:

Let C be a component of M{\Tι. Choose A C C such that for each c G C
there is an a G A with (6,#) =n~ι (C,c) and such that A is finite —this can be
done according to 1.1. By 5.4, (Q9a)asA has an ̂ -equivalent (<3\a')aGA with

every a'ϊ well-ordered and C"\ | J #'4 definably well-founded, component-

wise.
9H/+1 is obtained from 311/ by exchanging 6 for G' and making simi-

lar replacements for every other component of Mt\Tι. Γ / + 1 is Tι plus all the
(J (α ' i U {ar}) so encountered.

It is now obvious that 2-5 are satisfied.
Now, put 91 = (J T. By 2-3, 91 is well-founded. I claim that 91 is an

/^-equivalent of 9H. Consider the Ehrenfeucht-ft-game between these models.
Notice that, as Tι c 9ϊl, , in order to win it suffices for the second player to
choose his moves in such a way that after his k-ύi move the sequences a0,...,
ak-ι G M and tθ9... Jk_ι G Â  have been played such that for all /, if
/ 0 , . . . , ί * - i G r then

[*],- ( 9 H , α o , . . . , ^ - i ) ^ " " ^ (9K/, ίo , . . . ,^- i ) .

Notice that / <j and [*]/ imply [*]y by condition 4 above.
Now, the second player can keep up with this requirement: First, if k = 0

then [*]o holds since 9H0 = 3TZ.
Next, suppose the players have arrived at a position where [*], still is

satisfied.
(a) Let the first player choose tk G N, say, tk G TJ. If j < / then [*],- pro-

vides the second player with an ak G Msuch that (ΐPfί,a0,... ,ak) —n~k~ι (9H ,
tQi...Jk)Λΐi< y, simply use [*]y.

(b) Assume that the first player chooses ak G M. By [*],-, there is a w G
Mi such that (3K,ύr0,. ..,ak) =n~k~x (<3Kht0,. . .,tk_uu). If, by a stroke of
luck, u G Γ', we are done. If not, by condition 5 there is a tk G Γ ' + 1 such that
( 9 t t / + 1 , / , ^ ) / e r - " - 1 (9 t t/ ,M/) / e r , in particular, (9H / + 1 , ί 0 , . . . , 4 ) ΞΞ"-*- 1

(9K/,r0,.. ,^_! ,w). Hence, (911,α0,... ,ak) =n'k~l (ΐί\li+utOi... ftk)\ so the
second player chooses tk, thereby ensuring that [*]/+i holds for the resulting
sequences.

6 Appendix: Strengthening 2.4 and 4.4 Let 9H0 be the smallest class of
order types such that
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(1) 1 G 9Ko
(2) α,|8G ^0=^ OL + βG 9K0

(3) a E 9H0 => α ω,α ω* E 9Π0.

By 2.1, all types in 3TC0 are scattered. By a theorem of Laύchli and Leonard
([3], Theorem 7.9, p. 115) 9TC0 contains ^-equivalents for each scattered order-
ing and for all n. Their method of proof shows that the extra unary relations
of our models do not spoil this situation:

2.4' Theorem Ifΐίϊί is definably scattered, it has (scattered) n-equivalents
with order type in ΐί\ί0for each n.

Proof: On M, define ~ by way of 1.3 with aRb meaning: a < b and (a,b) has
an ^-equivalent with order type in 9ϊl0. By (1) and (2), R is transitive, so —
induces a condensation.

Claim 1 Each equivalence class has an n-equivalent with order type in 9ϊlo

Proof: If the class / is unbounded, choose a < a0 < ax < a2 < . . . cofinal in /
(by Lόwenheim-Skolem, assume 911 is countable). For / <j, let h(ij) be the n-
characteristic of [ahaj). By Ramsey's Theorem, there is an infinite set A C IN
and a σ such that if / < j and ij E A then h(ij) — σ. Let / = min A and choose
7V0 = " [a,aϊ) and TV\= σ with order types in 3ΐl0. Then I-a =n No + N ω and
this model has order type in UTC0 by (2) and (3).

The same goes for I<a, etc.

As before, M/~ must be either dense or consist of one class only; since the
first alternative cannot obtain, the proof is finished.

Next, let JC be the smallest class of order types such that

(1) 1 G3C
(2) ot,β E 3C => a + β E K
(3) a E JC =» α ω E JC.

Clearly, JC C 3H0 AH types in X are well-ordered and it is easy to see
(using Cantor normal forms) that a E K iff 0 < a < ωω. K contains n-
equivalents for each well-ordering and for all n (it is easy to see that no smaller
class has this property). Again, extra unary relations do not change this state
of affairs:

4.4' Theorem // 9U is definably well-ordered, it has (well-ordered) n-
equivalents with order-type in JC for each n.

Proof: Define X = {a \ Vό < a [b, a) has an ̂ -equivalent with order type in 3C}.
X is definable, hence if X Φ M then M\X has a least element a. Pick b < a such
that [b,a) has no ̂ -equivalent with type in JC. By (1) and (2), a cannot be a suc-
cessor. Now, choose b < bo< b{ < . . . cofinal in [b,a) and argue as in the pre-
vious proof.

Corollary (Ehrenfeucht- [3], Theorem 6.22, p. 108) ωω = (OR, <) (where
OR is the class of all ordinals).

Proof: If / starts an (n + l)-game with a move a E OR, // answers with an n-
equivalent β in ωω. (Notice that αΐ = OR and βί = ωω.)
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The classes 3H0

 a n d ^ w e r e inductively defined by closure properties ob-
tained by looking at what it takes to prove 2.4 and 4.4. In the same way, one
may find, e.g., a class 6 of order types such that each completely and densely
ordered model without endpoints has /7-equivalents with types in 6 ; closure
properties needed here are

(1) λ e C
( 2 ) α , β e e => a + l + βe e
(3)α G C => (a 4- l) ω, (1 + α) ω* G C
(4) if A: R -• e has A[R] finite and all {x G R|A(x) = σ} (σ G A[R])

dense in R then Σ x G R ( l + h(x) + 1) G β.

NOTE

1. After this paper had been completed my attention was drawn to [1] (by Burgess). It
appears that the material below displays the following points of overlap with that
work, which precedes mine by at last three years. First, Gurevich already identified
Property I (cf. 4.7 below). As a matter of fact, he presents it in its monadic universal
second-order form using a selector-set (this is similar to the phenomenon of two for-
mulations of scatteredness, cf. 2.5 below). Second, much of the proofs of 4.1 and
4.9 (in particular, the proper way to handle the condensation argument and the use
of shufflings) can be found in their paper. Third, there are remarks identical with
4.10 and 4.11. However, their paper supercedes mine with respect to 4.13, as it even
shows decidability of the theories involved.
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