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Iteration One More Time

Roy T. Cook

Abstract A neologicist set theory based on an abstraction principle (NewerV)
codifying the iterative conception of set is investigated,and its strength is com-
pared to Boolos’sNewV. The new principle, unlikeNewV, fails to imply the
axiom of replacement, but does secure powerset. LikeNewV, however, it also
fails to entail the axiom of infinity. A set theory based on theconjunction of
these two principles is then examined. It turns out that thisset theory, supple-
mented by a principle stating that there are infinitely many nonsets, captures all
(or enough) of standard second-order ZFC. Issues pertaining to the axiom of
foundation are also investigated, and I conclude by arguingthat this treatment
provides the neologicist with the most viable reconstruction of set theory he is
likely to obtain.

1 Motivation

There are (at least) two reasons for investigating abstraction principles for set the-
ory. The first concerns the technical feasibility of a neologicist foundation for all of
mathematics. The second concerns the connection between the theory of Fregean
extensions (as codified in various restrictions ofBasic Law V) and the mathematical
notion of set (as codified in various axiomatic set theories,such as ZFC).1

Neologicists argue that we can reproduce (the most important parts of) mathe-
matics using abstraction principles. An abstraction principle is any second-order
formula2 of the form

(∀P)(∀Q)[@(P) = @(Q) ↔ E(P, Q)].

‘@’ here is a function from properties (or relations) to objects, andE is an equiv-
alence relation on the properties (or relations). Abstraction principles are intended,
in some sense, to be implicit definitions of the abstraction operator @ occurring on
the left-hand side of the biconditional, and as a result allow us to take, as objects,
characteristics that the properties (or relations) have incommon.
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Frege’sBasic Law Vis

BLV (∀P)(∀Q)[EXT(P) = EXT(Q) ↔ (∀x)(Px ↔ Qx)].

Frege derives all of arithmetic fromBLV plus second-order logic, but Russell’s dis-
covery thatBLV is inconsistent with the second-order comprehension axiomrenders
this result less noteworthy. The resurrection of logicism stems from the observa-
tion that Frege’s only ineliminable use ofBLV occurs in his derivation ofHume’s
Principle:3

HP (∀P)(∀Q)[NUM(P) = NUM(Q) ↔ P ≈ Q].

(P ≈ Q is the second-order formula asserting that there is a 1–1 correspondence
between thePs and theQs.)

The ‘NUM’ operator is, in effect, a number generating function, mapping proper-
ties onto the number corresponding to the cardinality of theextension of the property.
UnlikeBLV above,HP is consistent. Frege’s derivation of arithmetic in theGrundge-
setze[8] can be reconstructed in second-order logic plusHP, thereby avoiding the
troublesomeBLV. This result, quite remarkable as a mathematical fact independent
of any philosophical implications, has come to be calledFrege’s Theorem.

Given the success ofHume’s Principle, neologicists have attempted to extend this
treatment to more powerful mathematical theories. Although the results are some-
what promising in the case of real analysis (see Hale [9]), the attempts to capture set
theory within the neologicist framework have so far been disappointing (see Shapiro
and Weir [13]). The purpose of this paper is to further investigate such neo-Fregean
treatments of set theory.

Two issues arise when one is reconstructing mathematical theories within the ne-
ologicist framework, one purely mathematical and one purely (or primarily) philo-
sophical. First, one has to formulate abstraction principles which provide one with
what is recognizably the mathematical theory in question. Second, one needs to
defend these principles as neologicistically acceptable,where the notion of “accept-
able” might be fleshed out in terms of analyticity, implicit definition, stipulation and
so on. I shall have little to say here with regard to the secondissue, and that only in
passing. It is the first issue that is addressed by the resultsbelow.

Even if one is not amenable to the philosophy of mathematics espoused by neo-
Fregeans, the framework provided by neologicist style variants ofBasic Law Vnev-
ertheless provides an elegant and powerful setting within which to study and compare
various intuitive notions of set (or of collection). Boolos’s NewV[3] was formulated
in order to capture one popular idea underlying attempts to provide a foundation for
set theory (and thus for all of mathematics), the limitationof size conception of set.
NewerV, the abstraction principle introduced below, is intended to codify its main
rival, the iterative conception of set. As we shall see,NewVandNewerVprovide
quite different theories of Fregean extensions (i.e., set theories), and neither provides
an account of sets as strong as second-order ZFC. As a result,we seemed forced
to accept that the notion of set and the accompanying formal set theory accepted
and studied by mathematicians and philosophers outstrips the content of both the
limitation of size doctrine and the iterative conception ofset.

2 Two Notions of Set

Historically there are (at least) two competing notions of set that have motivated
mathematicians and philosophers studying the foundationsof mathematics, the iter-
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ative conception and the limitation of size conception.4

Boolos, in his insightful comparison of the two notions in “Iteration Again”, char-
acterizes two versions of the limitation of size notion:

On a stronger version of limitation of size, objects form a set if and only if
they are not in one-one correspondence with all the objects there are. On a
weaker, there is no set whose members are in one-one correspondence with
all objects, but objects do form a set if they are in one-one correspondence
with the members of a given set. (Under certain natural conditions, this last
hypothesis can be weakened to: if there are no more of them than there are
members of a given set.) The difference between the two versions is that the
weaker does not guarantee that objects will always form a setif they are not
in one-one correspondence with all objects. ([3], p. 90)

Boolos’sNewV, which will be examined briefly in Section3, corresponds to a neo-
logicist reconstruction of the stronger version of the limitation of size conception of
set.

The iterative notion of set, founded on the idea that each setis built up from other
sets or objects that are simpler, or at least prior, is characterized by Boolos as follows:

According to the iterative, or cumulative, conception of sets, sets are formed
at stages; indeed, every set is formed at some stage of the following “pro-
cess”: at stage 0 all possible collections of individuals are formed. . . . The
sets formed at stage 1 are all possible collections of sets formed at stage 0, . . ..
The sets formed at stage 2 are all possible collections of sets formed at stages
0 and 1. The sets formed at stage 3 are all possible collections of sets formed
at stages 0, 1, and 2, . . .. The sets formed at stage 4, . . .. In general, for any
natural numbern, the sets formed at stagen are all possible collections of sets
formed at stages earlier thann, i.e., stages 0, 1, . . . , n − 1. Immediately after
all stages 0, 1, 2, . . . there is a stage, stageω. The sets formed at stageω are,
similarly, all possible collections of collections of setsformed at stages ear-
lier ω, i.e., stages 0, 1, 2, . . .. After stageω comes stageω + 1 : at which. . ..
In general, for eachα, the sets formed at stageα are all possible collections
of sets formed at stages earlier thanα. There is no last stage: each stage is
immediately followed by another. Thus there are stagesω + 2, ω + 3, . . ..
Immediately after all of these, there is a stageω + ω, alias ω · 2. Then
ω · 2 + 1, ω · 2 + 2, etc. Immediately after allω, ω · 2, ω · 3, . . . comes
ω · ω, aliasω2. Thenω2 + 1, . . . and so it goes. ([3], p. 88)

Boolos gives a formal axiomatization of stages, and sets formed at stages, and in-
vestigates which set-theoretic axioms follow from this characterization. In many
respects we will end up agreeing with Boolos’s conclusions.There is one major
point of (possible) disagreement, however, concerning theaxiom of infinity. Thus, a
brief look at Boolos’s discussion of infinity is in order.

Boolos argues that the axiom of infinity follows from the iterative conception of
sets, but this is only because, in characterizing sets as formed in stages, he assumes
that there is a limit stage, that is, stageω. After providing an axiom calledInf he
writes:

Inf states that there is a “limit” stage, a stage later than some stage but not
immediately later than any stage earlier than it: the existence of stageω and
hence of such a stage asInf claims to exist is a notable feature of the con-
ception we have described.Inf is too weak to capture the full strength of the
claims about the existence of infinite stages made in the rough description; a
further axiom would be needed to guarantee the existence of astageω + ω,
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for example. It suffices, however, for the derivation of the sentence of set the-
ory customarily called “the axiom of infinity”.Inf, it should be noted, is used
only in the derivation of the axiom of infinity. ([3], p. 92)

Even if too weak to capture all of the iterative conception asdescribed in the passage
quoted earlier,Inf is still, as Boolos puts it, quite “notable,” since it amounts to noth-
ing less than assuming the truth of the axiom of infinity. Thisis not to say that Boolos
has given an incorrect description of (the intuitions behind) the iterative conception,
rather, he has described one conception of set, which we might call Boolos-iterative
set theory, that is codified by something like ZFC-replacement. In what follows, a
more general conception of iteration (based on abstraction) will be presented, one
that does not itself imply the axiom of infinity. Within this framework we can iso-
late additional principles of varying strength that imply (among other things) the
existence of an infinite set. In particular, we will see exactly what assumptions are
needed in order to arrive at a theory akin to Boolos-iterative set theory.

3 New V

As the first step toward a neologicist account of the limitation of size conception
of set theory, a variation ofBLV due to Boolos [3] calledNewVhas been proposed
(where ‘Big(P)’ is an abbreviation for the second-order formula assertingthat the
Ps are equinumerous with the entire domain):5

NewV: (∀P)(∀Q)[EXT(P) = EXT(Q) ↔ ((∀x)(Px ↔ Qx)

∨(Big(P) ∧ Big(Q)))].

A set is the extension of asmallproperty:

Set(x) ↔ (∃P)[x = EXT(P) ∧ ¬Big(P)].

The membership relation is defined in terms of theEXT operator:

x ∈ y ↔ (∃P)[Px ∧ y = EXT(P)].

Restricting the relevant quantifiers to sets,NewV entails the second-order exten-
sionality, separation, empty set, pairing, and replacement axioms.6 Oddly, however,
NewVproves the negation of theunion axiom:

Union: (∀x)(Set(x)→(∃y)(Set(y) ∧ (∀z)(z ∈ y↔ (∀w)(z ∈ w ∧ w ∈ x)))).

The reason for this failure is that the singleton of the ‘Bad’ extension (i.e., the single-
ton of the extension of all ‘Big’ properties) is a set, but its union, the ‘Bad’ extension
itself, is not.

We can reformulate the union axiom so that, for any set, the axiom asserts the ex-
istence of another set that contains exactly the elements ofevery set that is contained
in the original set, that is, we ignore any elements of the original set that are not sets
themselves:

Union∗: (∀x)(Set(x) → (∃y)(Set(y) ∧ (∀z)(z ∈ y
↔ (∀w)(Set(w) ∧ (z ∈ w ∧ w ∈ x))))).

NewVentails this variant of the axiom, since∪{∅} = ∪{EXT(x = x)} = ∅. Here
I do not wish to get embroiled in debates regarding which of these is the “correct”
formulation of the union axiom, so in what follows we shall examine the behavior of
both principles.

There are a number of ways that we might further restrict the notion of set. First,
we lay down two conditions concepts might satisfy:
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BoolosClosed(F) ↔ (∀y)((Set(y) ∧ (∀z)(z ∈ y → Fz)) → Fy)

Transitive(F) ↔ (∀y)((Set(y) ∧ Fy)(∀z)(z ∈ y → Fz)

We can then define several useful conditions that sets might satisfy:

BoolosPure(x) ↔ (∀F)(BoolosClosed(F) → Fx)

Transitive(x) ↔ (∀F)((∀y)(Fy ↔ y ∈ x) → Transitive(F))

Hereditary(x) ↔ (∃F)(Transitive(F) ∧ (∀y)(Fy → Set(y)) ∧ Fx).

Intuitively, Boolos-pure7 sets are those that we can “build up” from the empty set.
A set is hereditary if its members are sets, and the members ofits members are sets,
and the members of the members of its members are sets . . . ad infinitum. We can
straightforwardly prove thatNewV(in fact, any consistent restriction ofBasic Law
V) implies that all Boolos-pure sets are hereditary. The possibility, within NewVset
theory, of hereditary sets that are not Boolos-pure has beenextensively studied in
Uzquiano and Jané [14].

If we restrict the quantifiers to Boolos-pure sets or hereditary sets we can still
derive the axioms of extensionality, separation, empty set, pairing, union (the original
formulation, in addition to union∗), and replacement.NewValso proves the axiom
of foundation when relativized to the Boolos-pure sets, although foundation may fail
for the hereditary sets (see [14]). The failure of foundation for hereditary sets will
become important in the discussion of the iterative conception below.

Neither the axiom of infinity nor the powerset axiom (nor either of them rela-
tivized to any of the restrictions discussed above) follow from NewV alone, how-
ever.8 We should note that the failure of these axioms does not depend on the par-
ticular way in which we interpreted ‘set’ and ‘∈’ within the theory ofNewV, since
the conditions relevant to the satisfaction of infinity and powerset can be formulated
independently of these definitions (namely, that the universe contain a non-‘Big’
extension holding of infinitely many extensions on the one hand, and that the collec-
tion of extensions must be either countably infinite or of sizeiα for a limit α on the
other). Thus, if we wish to formulate a neologicist set theory of a strength similar to
that of ZFC,NewVis mathematically inadequate.

4 The Basic Formal Theory

The first step in formulating the iterative conception of setwithin the neologicist
framework is to generate, in some neologicistically acceptable way, an ordering of
some definite collection of objects that can serve to enumerate stages. We achieve
this by utilizing a variant of theOrder-Type Abstraction Principle:9

OAP: (∀R)(∀S)[OT(R) = OT(S) ↔ R ∼= S].

Of course,OAP is inconsistent—theBurali-Forti Paradoxcan be derived from it.
Consider, however, theSize-Restricted Ordinal Abstraction Principle:10

SOAP: (∀R)(∀S)[ORD(R) = ORD(S) ↔ (((¬WO(R) ∨ Big(R))

∧(¬WO(S) ∨ Big(S)) ∨ (WO(R) ∧ WO(S)

∧R ∼= S∧ ¬Big(R) ∧ ¬Big(S)))].

We first note thatSOAPis satisfiable (our metatheory throughout the paper will be
first-order ZFC-foundation):
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Theorem 4.1 SOAP can be satisfied on any infinite set.

Proof Given an infinite setX, we can construct a model ofSOAPwith X as domain:
Let κ be the cardinality ofX. Then there is a 1–1 mappingf from κ onto X. For
each non-Big well-orderingR on X, ORD(R) is f (γ +1) whereγ < κ is the ordinal
such thatR is isomorphic toγ . For any relationR on X where R either is not a
well-ordering or isBig, ORD(R) is f (0). �

Additionally,SOAPis only satisfied on infinite models.

Theorem 4.2 Any model of SOAP has an infinite domain.

Proof Assume thatM is a model ofSOAPwith domainD where| D |= n for some
finite n. Then there are distinct objects given bySOAPfor each of the well-ordering
types 0, 1, . . . , n − 1, and there is an object that is the value ofORD(R) for any R
that isBig or not a well-ordering. Since this latter object is distinctfrom the objects
given bySOAPfor each of the non-Big ordering types,D contains at leastn + 1
distinct objects. Contradiction. �

The following abbreviation will be useful:

ON(α) ↔ (∃R)(α = ORD(R) ∧ ¬Big(R) ∧ WO(R)).

It is important to emphasize that ordinal numbers (i.e., theobjects in the range of
the ORD operator), upon which we will be building our neologicist account of set
theory, are not (or are not necessarily) identical to the sets that we usually call ordi-
nals (i.e.,∅, {∅}, {∅, {∅}}, . . . , ω, etc.). Thus, in what follows we will be careful
to distinguish between ordinal numbers (i.e.,ORD(R) for someR) and ordinals (i.e.,
transitive pure sets well-ordered by membership). Nevertheless, there is a clear cor-
respondence between the class of ordinals and the class of ordinal numbers, and we
shall, for convenience, use lower case Greek letters for both.

We define the ordering on the ordinal numbers generated bySOAPin the usual
way:

ORD(R) < ORD(S) ↔ (∃ f )((∀x)(∀y)((R(x, y) → S( f (x), f (y)))

∧ (∃z)(∀w)((∃v)(R(v,w) → S( f (w), z))).

The common theorems about well-orderings can be proved to hold of the ordinal
numbers generated bySOAPby standard proofs and are assumed in what follows.
Most important is the fact that Theorems4.1and4.2 imply the following corollary.

Corollary 4.3 For any model of SOAP, the collection of ordinal numbers, ordered
by<, is isomorphic to an infiniteZFCcardinal number.

This implies that, in any model ofSOAP, there is no last ordinal number.
Next, we have a principle telling us what objects we have access to prior to “apply-

ing” the iterative operation of set formation. ThisBasis Axiomwill be some instance
of the following schema:

BA: BASE(x) ↔ 8.

The strength of our iterative set theory will depend greatlyon what formula we select
for 8, as we shall see in Sections8 and11below when we examine some particular
candidates. There is no restriction that the members of the basis are not sets, and we
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allow that the ‘Bad’ extension (‘Bad’ within the present context is defined below)
might be contained in the basis.

We now define the notion of ‘stage’. (In what follows, three different membership
symbols will appear.∈S is used when defining our notion of stage.∈N is the set-
theoretic membership relation defined within the neologicist set theory. Finally,∈
without subscripts is to be understood as the membership relation of first-order ZFC-
foundation, used when we are working in the metatheory. Subscripts—or their lack
thereof—will also be used to label notions defined in terms ofthe various notions of
membership.)

x ∈S Stg(α) ↔ ON(α) ∧ BASE(x) ∨ (∃P)(x = EXT(P)

∧ (∃β)(ON(β) ∧ β < α ∧ (∀y)(Py → y ∈S Stg(β)))).

The first stage consists of the elements of basis, and each succeeding stage contains
the basis (if any) plus the extension of every property all ofwhose instances are
contained in some prior stage. This definition guarantees that if x ∈S Stg(α) for
some ordinal numbern, thenx ∈S Stg(β) for all β > α. The following abstraction
principle “generates” extensions of properties within theiterative hierarchy:

NewerV: (∀P)(∀Q)[EXT(P) = EXT(Q) ↔ ((∀x)(Px ↔ Qx)

∨(¬(∃α)(ON(α) ∧ (∀x)(Px → x ∈S Stg(α)))

∧¬(∃α)(ON(α) ∧ (∀x)(Qx → x ∈S Stg(α)))))].

To clarify things, we can rewordNewerValong the lines of Boolos’sNewV:

NewerV: (∀P)(∀Q)[EXT(P) = EXT(Q) ↔ ((∀x)(Px ↔ Qx)

∨(Bad(P) ∧ Bad(Q)))]

where
Bad(P) ↔ ¬(∃α)(ON(α) ∧ (∀x)(Px → x ∈S Stg(α))).

Boolos’s definitions of set and membership can be reformulated in the present con-
text to obtain similar notions withinNewerVset theory (NewerVset theory should
be understood to denote the theory that follows from the conjunction ofNewerVand
SOAP):11

Set(x) ↔ (∃P)[x = EXT(P) ∧ ¬Bad(P)] ,

x ∈N y ↔ (∃P)[Px ∧ y = EXT(P)].

Along these lines, we can define notions of Boolos-pure sets,hereditary sets, and so
on just as was done forNewVabove.

A clarification at this point is useful to avoid confusion. Wecan define the notion
of urelement in the standard way as follows:

Ure(x) ↔ ¬Set(x).

Again, there is no guarantee that the elements of the basis are all urelements, or vice
versa.

If we restrict the relevant quantifiers to sets, thenNewerVentails the extension-
ality, empty set, separation, union∗ (but not union), pairing, and powerset axioms.
Derivations are given in the appendix.NewerV, like NewV, proves the axiom of foun-
dation if restricted to Boolos-pure sets, although foundation may fail to hold of the
hereditary sets or sets in general. Similarly, the union axiom holds when restricted
to Boolos-pure or hereditary sets.
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5 NewerV and Abstraction

NewerV, as formulated above, is circular—it contains reference tostages on the right-
hand side of the biconditional yet our definition of stage contains explicit use of the
extensions forming operator supposedly being defined. On the face of it this objec-
tion does not seem overly compelling—as is well known, for the implicit definitions
codified in abstraction principles such asHume’s PrincipleandNewVto do the work
intended, the quantifiers on the right-hand side of the biconditional must range over
all objects, including the abstracts being introduced (anddefined) on the left. Once
this is accepted, there seems little reason not to explicitly refer to extensions in our
definition of the identity conditions for extensions, sincewe are already forced to
quantify over them in such a definition. Nevertheless, a method by which to avoid
this outright circularity would no doubt be welcomed, and fortunately such a method
exists.

In order to avoid such circularity, we could have our extensions forming operator
‘EXT’ apply, not to concepts, but to pairs(P, α) whereP is a concept andα is an
ordinal number. We then define the notion of stage∗ as

x ∈S Stg∗(α) ↔ ON(A) ∧ BASE(x) ∨ (∃β)(∃P)(ON(β) ∧ β < α

∧ x = EXT∗(P, β) ∧ (∀y)(Py → y ∈S Stg∗(β)).

The appropriate abstraction principle would be

NewerV∗: (∀P)(∀α)(∀Q)(∀β)[EXT∗(P, α) = EXT∗(Q, β) ↔ ((∀x)(Px ↔ Qx)

∨(¬(ON(α) ∧ (∀x)(Px → x ∈S Stg∗(α)))

∧¬(ON(β) ∧ (∀x)(Qx → x ∈S Stg∗(β)))))],

and we would define set and membership as

Set(x)∗ ↔ (∃P)(∃α)[x = EXT∗(P, α) ∧ ¬Bad(P, α)],

x ∈∗
N y ↔ (∃P)(∃a)[Px ∧ y = EXT∗(P, α)],

where
Bad(P, α) ↔ ¬(ON(α) ∧ (∀x)(Px → x ∈S Stg∗(α))).

In order to insure that this method works, we need to verify that

(∀P)(∀α)(∀β)((¬Bad(P, α) ∧ ¬Bad(P, β)) → EXT∗(P, α) = EXT∗(P, β)),

that is,

(∀P)(∀Q)(∀α)(∀β)((¬(ON(α) ∧ (∀x)(Px → x ∈S Stg∗(α))) ∧

¬(ON(β) ∧ (∀x)(Qx → x ∈S Stg∗(β)))) → EXT∗(P, α) = EXT∗(Q, β)).

This can be straightforwardly derived fromSOAP+ NewerV∗.
Essentially, we have replaced the circular definition of extensions with a recursive

definition, where at each “level” we introduce new extensions defined in terms of the
ones at previous levels. To make things more intuitive, we can think of the recursive
formulationNewerV∗ as schematic for infinitely many noncircular definitions of in-
finitely many extension-forming operators. First, we obtain the level-0 extensions:

NewerV0: (∀P)(∀Q)[EXT0(P) = EXT0(Q) ↔ ((∀x)(Px ↔ Qx)

∨((∃x)(Px ∧ ¬BASE(x)) ∧ (∃x)(Qx ∧ ¬BASE(x))))],

that is, level-0 extensions correspond to those collections whose members are mem-
bers of the basis. We then define level-1 extensions in terms of level-0 extensions:
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NewerV1: (∀P)(∀Q)[EXT1(P) = EXT1(Q) ↔ ((∀x)(Px ↔ Qx)

∨((∃x)(Px ∧ ¬BASE(x) ∧ ¬(∃F)(x = EXT0(F)))

∧(∃x)(Qx ∧ ¬BASE(x) ∧ ¬(∃F)(x = EXT0(F))))],

where level-1 extensions correspond to those collections whose members are either
members of the basis or are level-0 extensions. We can continue in this way, explic-
itly defining more general extension operators, where the level-n extensions corre-
spond to those sets whose members are either members of the basis or are level-m
extensions for somem < n.

While this method will only take us (at best, assuming both enough objects and
enough abstraction principles) as far as level-α extensions forα < ε0, we should
note that each instance ofNewerVn is, within the neologicist framework, an abstrac-
tion principle implicitly defining an abstraction operatorEXTn in terms of previously
defined operators.12 NewerV∗ is a generalization of this process, allowing us to han-
dle all cases simultaneously (including ranks numbered by ordinals for which we
might not have names) and thus does not, perhaps, deserve thetitle of abstraction
principle in a literal sense. Nevertheless,NewerV∗ is a natural generalization of such
a piecemeal process of abstraction and seems well within thespirit, if not the letter,
of the neologicist approach.

With NewerV∗ in place, we can define the notion of extension simpliciter:

x = EXT(P) ↔ (∃α)(ON(α) ∧ (∀y)(Py → y ∈S Stg∗(α))

∧ x = EXT∗(P, α)) ∨ (∀α)(ON(α) → (∃y)(Py

∧ y /∈S Stg∗(α)) ∧ x = EXT∗(x = x , 0)).

In other words, the extension of a conceptP is the extension∗ of P and any ordinal
α such that(P, α) is notBad, and is theBadextension(EXT∗(x = x, 0)) if there is
no such ordinal. We can then define stages in terms of extensions as before:

x ∈S Stg(α) ↔ ON(α) ∧ BASE(x) ∨ (∃P)(x = EXT(P)

∧ (∃β)(ON(β) ∧ β < α ∧ (∀y)(Py → y ∈S Stg(β)))).

The resulting derivation ofNewerV(using this definition) fromNewerV∗ is left to
the reader.

This way of proceeding, using bounded quantification, accomplishes what the
simpler formulationNewerVdoes, and in addition makes the recursive nature of
iterative extensions more explicit:EXT∗(P, α) is defined in terms of∈S Stg∗, and
∈S Stg∗ is defined in terms ofEXT∗(Q, β) for β < α. Of course, it is possible
that neo-Fregeans (or their opponents) might findNewerV∗ as objectionable as the
explicitly circularNewerV. At this point I have no additional positive argument for
the acceptability ofNewerV∗ other than its intuitive plausibility.

What can be noted, however, is that if the neo-Fregean refuses to accept both
NewerVandNewerV∗, then he will most likely find himself unable to formulate any
version of the iterative conception of set. There seems to beno means by which
one can formulate a general iterative principle for abstractions within the neologicist
framework other than by providing identity criteria for thetwo extensions occurring
on the left-hand side of the biconditional in terms of conditions being imposed (on
the right-hand side of the biconditional) on other extensions that might be members
of the original pair of extensions.
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The reader should note thatNewerVis meant to be the “official” formulation of
the neologicist iterative conception of sets and will be used below. The “recursive”
reformulationNewerV∗ is provided only to assuage worries regarding circularity.

6 Standard Models

Given a particularBASE, we constructranks within standard second-order ZFC-
foundation as follows:

VBASE(0) = {x : BASE(x)}

VBASE(α + 1) = V(α) ∪ (℘ (V(a)))

VBASE(γ ) = ∪λ<γ V(λ)(γ a limit ordinal).

(The intuitive idea is that the members of the basis that we donot want to be sets
in the model based onVBASE(κ) can be represented, in the model, by sets of cardi-
nality greater than the cardinality ofVBASE(κ).) Letting ⊗ be an arbitrary set not
in VBASE(κ), to serve as theBadextension, we can now construct what we will call
standard models (consisting of domain and interpretation function) ofNewerVset
theory:13

M(BASE,κ) = 〈VBASE(κ) ∪ {⊗}, I 〉

where for all relation symbolsR,

I (ORD(R)) = α if α is an ordinal inVBASE(κ)

and〈α,∈〉 is isomorphic toI (R)

I (ORD(R)) = ⊗ otherwise;

and for any predicateP,

I (EXT(P)) = {x ∈ VBASE(κ) : x ∈ I (P)}

if {x ∈ VBASE(κ) : x ∈ I (P)} ∈ VBASE(κ)

I (EXT(P)) = ⊗ otherwise.

Note that it might be the case that⊗ ∈ BASE, in which caseVBASE(κ) ∪ {⊗} =

VBASE(κ). The fact that models of our neologicist iterative set theory “look” like
the standard iterative hierarchy is unsurprising. Let us call two structuresM and
N extension-isomorphicif there is a one-one onto functionf from the domain of
M to the domain ofN such thatf is an isomorphism with respect toEXT (but not
necessarilyORD).

Theorem 6.1 Any model of SOAP+ NewerV of cardinalityκ contains a substruc-
ture that is extension-isomorphic to M(∅,κ).

Proof Given a modelM of cardinalityκ with domainD and interpretation function
I , let O ⊂ D be the domain of the ‘ORD’ operator underI . SinceD is of cardinality
κ , andM is a model ofSOAP, O (with its ordering) is isomorphic toκ . We can then
construct the copy ofV∅(κ) (and thusM(∅,κ)) recursively usingO, where theαth
rank is just the collection containing the extension of every property all of whose
instances occur in ranks less thanα (whereV∅(κ) = ∅). �

The following result is useful in what follows.

Theorem 6.2 A standard model M(BASE,κ) is a model of SOAP+ NewerV if and
only if | VBASE(κ) |= κ andκ is infinite.
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Proof (⇒) AssumeM(BASE,κ) is a model ofSOAP+ NewerV. If M(BASE,κ) is
a modelSOAP, then M(BASE,κ) must be infinite, but again bySOAP, there must
be infinitely many ordinal numbers, soκ must be infinite. By an easy induction,
| VBASE(γ ) |≥| γ | for anyγ . Assume| VBASE(κ) |> κ . Then, bySOAP, there would
be | VBASE(κ) | many ordinal numbers, but thenM(BASE,κ) would not be a model of
NewerV(sinceNewerVentails a rank for each ordinal number). So| VBASE(κ) |= κ .

(⇐) Assume| VBASE(κ) |= κ andκ infinite. For anyκ , M(BASE,κ ) is a model of
NewerV. If | VBASE(κ) |= κ , thenSOAPgeneratesκ many ordinal numbers, the right
amount forκ ranks, soM(BASE,κ ) is a model ofSOAP. �

Restricting our attention further, to models with empty basis, we have the following
theorem.

Theorem 6.3 For infinite cardinalsκ , | V∅(κ) |= κ if and only if eitheriκ = κ

or κ = ω.

Proof Evident from the fact that, first,V∅(κ) is the hereditarily finite sets, and
second, forκ > ω, | V∅(κ) |= iκ . �

In other words,M(∅,κ) is a model ofSOAP+ NewerVif and only if V∅(κ) is the
collection of hereditarily-less-than-κ sets.

7 The Axiom of Replacement

Our next step is to examine the axiom of replacement:14

Replacement: (∀x)(∀ f )(∃y)(∀z)(z ∈N x → f (z) ∈N y).

In the specific case of standard models ofSOAP+ NewerVwhereBASE= ∅ we
have the following.

Theorem 7.1 For any cardinalκ , if M(∅,κ) is a model of SOAP+ NewerV, then
M(∅,κ) satisfies the axiom of replacement if and only ifκ is regular.

Proof (⇒) Assume thatM(∅,κ) is a model ofSOAP+ NewerVand the axiom of
replacement and assume, for reductio, thatκ is not regular, that is,c f (κ) < κ . Then
there is an ordinalγ < κ and a functionf such thatf mapsγ unboundedly into
κ . Let S be the range off restricted toγ . Then there is no ordinal numberα such
that, for all x in S, x ∈S Stg(α), so S is Bad, that is, not a set. Contradiction, so
c f (κ) = κ andκ is regular.

(⇐) Assume thatM(∅,κ) is a model ofSOAP+ NewerVand thatκ is regular. Letx
be any set andf any function onV∅(κ), and letS be the range off restricted tox.
Clearly,| S |≤| x |. x ∈ V∅(κ), and, sinceM(∅,κ) is a model ofSOAP+ NewerV,
℘(x) ∈ V∅(κ), so it follows that℘(x) ⊆ V∅(κ). Thus,| x |<| V∅(κ) |, and, since
M(∅,κ) is a model ofSOAP+ NewerV, | x |< κ . So | S |< κ . Thus, sinceκ is
regular and there is no function fromS into κ whose range is unbounded inκ , there
must be aγ < κ such that, for ally in S, y ∈S Stg(γ ). ThusS is not ‘Bad’, so
EXT(S) is a set. �

This allows us to prove that the axiom of replacement does notfollow from SOAP+

NewerV. Defineπ as follows:15
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π0 = ω

πn+1 = iπn

π = sup{πi : i < ω}.

M(∅,π) is a model ofSOAP+ NewerVsinceiπ = π16 (in fact, it is the least such
cardinal) butπ is not regular, sincec f (π) = ω. Thus the axiom of replacement
does not follow fromSOAP+ NewerV. The failure of replacement is, in this context,
equivalent to the failure of the followingSame Size Principle:

SSP: (∀P)(∀Q)(¬Bad(P) ∧ P ≈ Q) → ¬Bad(Q)).

On the other hand, the followingSize Restriction Principledoes hold:

SRP: (∀P)(¬Bad(P)) → ¬(∃Q)((∀x)(Qx) ∧ P ≈ Q)).

That is, no sets are equinumerous with the entire domain.
The failure of replacement should not come as too much of a surprise on the

iterative conception of set theory, however. Boolos, in “The Iterative Conception of
Set,” writes that

There is an extension of the stage theory from which the axioms of replace-
ment could have been derived. We could have taken as axioms all instances
. . . of a principle which may be put, “If each set is correlatedwith at least
one stage (no matter how), then for any setz there is a stages such that for
each memberw of z, s is later than some stage with whichw is correlated.”
Thisboundingor cofinalityprinciple is an attractive further thought about the
interrelation of sets and stages, but it does seem to us to be afurther thought,
and not one that can be said to have been meant in the rough description of
the iterative conception . . . . Thus the axioms of replacement do not seem to
us to follow from the iterative conception. (Boolos [2], p. 26–27)17

In the later paper [3], after considering ways in which the iterative conceptionmight
be strengthened to secure replacement, he writes that

Whether some such strengthening. . . can be plausibly thought not to involve a
new principle that is not really part of the iterative conception seems doubtful.
([3], p. 97)

Although Boolos’s examination is not conducted within the neologicist framework,
his comments regarding replacement agree both with the results obtained here and
with intuition. Unlike the limitation of size conception, the iterative conception re-
gards the size of a collection as irrelevant to whether or notit receives the honorific
‘set’. All that matters is whether the objects contained in the collection are formed
at some point in the hierarchy.

8 The Basis and Infinity

SOAP+ NewerVplus the followingBasis Axiom,

BA∅: BASE(x) ↔ x 6= x,

that is,NewerVset theory with an empty basis, or what we might callpure NewerV
set theory, is extremely weak. Of the standard axioms, the only ones that hold here
are those proved above. In addition to the failure of the axiom of replacement, the
axiom of infinity,18

Infinity: (∃x)(∅N ∈N x ∧ (∀y)(y ∈N x → y ∪ {y}N ∈N x))

fails.

Theorem 8.1 M(∅,ω) is a model of SOAP+ NewerV but fails to satisfy infinity.
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Proof M(∅,ω) is just the collection of hereditarily finite sets (plus the ‘Bad’ exten-
sion) which is countable, so| V∅(ω) |= ℵ0, and M(∅,ω) is a model ofSOAP+

NewerV. There are no infinite sets inM(∅,ω), however, so the axiom of infinity is not
satisfied. �

Theorem8.1, combined with the results of the previous section, suffice to show that,
relative toSOAP+ NewerV, the axiom of infinity and the axiom of replacement
are independent, sinceM(∅,ω) satisfies replacement but fails to satisfy infinity, and
M(∅,π) (with π defined as in the last section) satisfies infinity but fails to satisfy re-
placement. As far as providing the infinite sets needed to construct real and complex
analysis,NewerVset theory is no better off thanNewVwas.

There seems to be no principled reason why we should not allowourselves access
to some preliminary collection of objects which we can then collect into sets, sets
of sets, and so on, however. The elements of the basis are, on more traditional
approaches to set theory, often ignored since they do not addanything substantially
new to the theory. From the present perspective, however, this is not the case.

In order to guarantee that we have an infinite set, we need onlyassume that the
basis contains infinitely many objects. Consider

BAω: BASE(x) ↔ (ON(x) ∧ x < ω).

We might justify this axiom by noting that the finite ordinal numbers were guaranteed
to exist bySOAPalone, prior to any set theoretic theorizing, so there is no reason
why we cannot form sets of these, or sets of sets, and so on. If we let FO be the
(countable) collection of finite ordinal numbers, then we have the following.

Theorem 8.2 For infiniteκ, |VFO(κ) |= κ if and only ifiκ = κ .

Proof Similar to that of Theorem7.1above. �

With π defined as before, the smallest model19 of SOAP+ NewerV + BAω is
M(FO,π).

Theorem 8.3 SOAP+ NewerV+ BAω implies the axiom of infinity.

Proof For any finite ordinal numberα, (i.e., any object in the range ofORD),
α ∈S Stg(0). So for any collection of finite ordinal numbersy, y ∈S Stg(1). In
particular,∅N ∈S Stg(1). Since the ordinal numbers are infinite (see Theorem4.2),
the collection of collections of finite ordinal numbers (andthus Stg(1)) is uncount-
ably infinite, and therefore so is the universe (this can be expressed in second-order
logic, see Shapiro [12], p. 104). Thus all countably infinite well-orderings are not
Big, so there must be a limit ordinal numberβ (i.e., an ordinal numberβ such that,
for everyγ < β, there is aδ such thatγ < δ < β.) So there is a setz containing
all sets formed beforeβ (sinceβ > 1, ∅N ∈N z, and, sinceβ is a limit ordinal
number, for anyw, if w ∈N z thenw ∪ {w}N ∈N z, since ifw ∈S Stg(n), then
w ∪N {w}N ∈S Stg(n + 2)). �

Note that we did not construct the set that is intuitively associated with the axiom of
infinity, that is,ω, the set containing exactly the finite ordinals. The axiom ofinfinity
does not assert the existence of this particular (infinite) set, however, but asserts the
existence of a particular kind of infinite set, specifically,some set containing∅N and
closed under the operation mappingx onto x ∪N {x}N . Here we have constructed
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a set (much) larger thatω satisfying the relevant constraints.ω can be obtained
immediately, however, by an application of separation.

There are other variants of the axiom of infinity, and the factthatSOAP+ NewerV
+ BAω implies these variants is nontrivial. Uzquiano [15] has shown that, if the
axiom of infinity is formulated as above, then second-order Zermelo set theory20

does not imply the following variant of the axiom of infinity:21

Zermelo Infinity: (∃x)(∅N ∈N x ∧ (∀y)(y ∈N x → {y}N ∈N x)).

If we formulate Zermelo set theory usingZermelo Infinityto express the idea that
there is an infinite set, then the original axiom of infinity does not follow. One can
easily prove thatZermelo Infinityfollows from SOAP+ NewerV+ BAω, however.
Thus,SOAP+ NewerV+ BAω is stronger than Zermelo set theory if the axiom of
infinity is formulated in either of these ways.

Once we acceptSOAP+ NewerV+ BAω and see that every model contains at
leastπ ordinal numbers (again withπ defined as before), we might be tempted to
argue that, since we are guaranteedπ ordinal numbers, we should allow all ordinal
numbers less thanπ to be elements of the basis, adopting the followingBasis Axiom:

BAπ : BASE(x) ↔ (ON(x) ∧ x < π).

Of course, all models ofSOAP+ NewerV+ BAπ will be much larger thanM(FO,π).
We could continue, formulating stronger and stronger set theories by allowing more
and more of the ordinal numbers into the basis. Once we have started down this route
it becomes difficult to know when to stop.

Additionally, it seems reasonable to require that we only add instances of the
Basis Axiomof the form

BAβ : BASE(x) ↔ (ON(x) ∧ x < β)

where the ordinalβ is definable in terms of purely logical vocabulary supplemented,
if need be, by the abstraction operatorsORD andEXT. Unlike the case of the finite
ordinal numbers, however, the proof thatπ exists cannot be formulated withinNew-
erV set theory (even when supplemented byBAω), since it relies on replacement.
ThusBAα does not seem to be a promising candidate for aBasis Axiom.22

There is another option, however—since the ordinal numbersare generated by
SOAPwhich is, in some sense, theoretically prior23 to NewerV, why not just allow
all ordinal numbers to be contained in the basis? In other words,

BAORD: BASE(x) ↔ ON(x).

We can, in this case, derive a version of the Burali-Forti paradox.

Theorem 8.4 SOAP+ NewerV+ BAORD is inconsistent.

Proof If every ordinal number is contained in the basis, and thus inStg(0),
then every collection of ordinal numbers is a set and is in Stg(1). Let us call
the set of ordinal numbersO. Let X = {S : S is a set of ordinal numbers and
(∀n)(n ∈N S → (∀m)(m < n → m ∈N S))}. X is a set by the powerset and separa-
tion axioms. There is an isomorphism between{O,<} and{X,⊆}, f : O → X and,
for n ∈N O, f (n) = {m : m < n}. ThusX ordered by⊆ is a well-ordering, and,
sinceX is a set, this relation is notBig, so there is an ordinal number corresponding
to it. But this ordinal number must be greater than any ordinal number inO, since f
provides a mapping of the order type of each ordinal number inO into, but not onto,
{X,⊆}. Contradiction. �
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Corollary 8.5 SOAP + NewerV implies ‘ON(x)’ is Bad.

Thus the best that we can do (if, in fact,BAω is acceptable) is to acceptSOAP+

NewerV+ BAω and as a result we obtain all of second-order ZFC except for the
axiom of replacement. It is worth noting thatSOAP+ NewerV+ BAω seems to
provide us with a good approximation to the iterative conception of set attributed to
Boolos in Section2 above.

9 NewV + NewerV

NeitherNewVnorSOAP+ NewerValone suffices to capture enough of second-order
ZFC for us to claim unequivocally that either provides a mathematically adequate
abstractionist account of contemporary set theory. Our next task is to determine
whether combining the two principles suffices to provide theneologicist with such a
reconstruction. We will consider the conjunctionSOAP+ NewerV+ NewVwhere
we understand occurrences of ‘EXT’ in each principle to be distinct occurrences of
the same operator.

Before looking at the formal attributes ofSOAP+ NewerV+ NewV, however,
we should take note of an obvious line of objection. For the neo-Fregean, at least,
an abstraction principle for extensions is meant to providesomething like an implicit
definition of the abstraction operator ‘EXT’. In the investigation above,NewVwas
understood as providing one candidate for such a definition,andNewerVas provid-
ing an alternative such definition. In considering a theory containing bothNewVand
NewerV, however, we are faced with a situation in which we have, in effect, simulta-
neously accepted two such definitions. We might legitimately question whether this
is coherent, much less desirable. More pointedly, we might wonder which of the two
principles is responsible for truly defining the abstraction operator in question, that
is, for introducing the new piece of mathematical language and providing its mean-
ing. If one of the abstraction principles amounts to such an implicit definition, what
is the role of the other within the neologicist framework?

It is tempting to think that we can avoid the objection by replacing the conjunction
of NewVandNewerVwith a single abstraction principle that combines the formal
features of both. For example, we might conclude that sets are extensions that are
both reachable in the iterative heirarchy and not too ‘Big’. Let ‘ BadNewV” be the
predicate asserting that a property isBig, that is,

BadNewV(P) ↔ (∃ f )((∀x)(∀y)(( f (x) = f (y) → x = y)

∧ (∀x)(∃y)(Py ∧ f (y) = x)),

and let ‘BadNewerV’ be the corresponding condition for the iterative conception as
developed above, that is,

BadNewerV(P) ↔ ¬(∃α)(ON(α) ∧ (∀x)(Px → x ∈S Stg(α))),

with ∈S Stg defined as before. Then the idea that sets are the extensions of concepts
that are neither too ‘Big’ nor unreachable in the iterative heirarchy can be formulated
as

NewestV: (∀P)(∀Q)[EXT(P) = EXT(Q) ↔ ((∀x)(Px ↔ Qx)

∨((BadNewV(P) ∨ BadNewerV(P))

∧(BadNewV(Q) ∨ BadNewerV(Q))))].

Unfortunately, this principle is no more powerful thanNewerValone.
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Theorem 9.1 Any model of NewerV is a model of NewestV.

Proof A consequence of the fact thatNewerVimplies the size restriction principle
from Section7, that is, in any model ofNewerV, every ‘Big’ concept is ‘Bad’. �

Similar problems plague

NewestV∗: (∀P)(∀Q)[EXT(P) = EXT(Q) ↔ ((∀x)(Px ↔ Qx)

∨(BadNewV(P) ∧ BadNewerV(P)

∧BadNewV(Q) ∧ BadNewerV(Q)))].

Thus some other strategy must be adopted in order to obtain a theory combining the
strength ofNewV+ NewerV.

Another option might be simultaneously to adopt the two principles but to treat
them as implicit definitions of two distinct abstraction operators, EXTNewV and
EXTNewerV, that is, we rewriteNewVandNewerVas

NewV: (∀P)(∀Q)[EXTNewV(P) = EXTNewV(Q) ↔ ((∀x)(Px ↔ Qx)

∨(BadNewV(P) ∧ BadNewV(Q)))] ;

NewerV: (∀P)(∀Q)[EXTNewerV(P) = EXTNewerV(Q)

↔ ((∀x)(Px ↔ Qx) ∨ (BadNewerV(P) ∧ BadNewerV(Q)))].

This approach will, from a formal perspective, accomplish what we want, since the
constraint on the cardinality of the domain imposed byNewVwill guarantee that the
replacement axiom holds when interpreted in terms ofEXTNewerV, and the constraints
imposed byNewerVwill imply that the powerset axiom will hold when interpreted
in terms ofEXTNewV.24

There is philosophical problem, however. Do we identify sets asNewVextensions
or asNewerVextensions? The problem is exacerbated by the following.

Theorem 9.2 There is a model M such that M is a model of NewV, NewerV, and
(∀P)(EXTNewV(P) 6= EXTNewerV(P)).

Proof Let f : ω → V{⊗1,⊗2}(ω) be any enumeration ofV{⊗1,⊗2}(ω). Then (ex-
tending the notion of standard model in the obvious way)M = 〈V{⊗1,⊗2}(ω), I 〉
where25

I (EXTNewV(P)) = I (P) if I (P) ∈ V{⊗1,⊗2}(ω)

I (EXTNewV(P)) = ⊗1 otherwise.

and

I (EXTNewerV(P)) = ( f (2n + 1) if I (P) ∈ V{⊗1,⊗2}(ω) and I (P) = f (2n)

I (EXTNewerV(P)) = f (2n) if I (P) ∈ V{⊗1,⊗2}(ω) andI (P) = f (2n + 1)

I (EXTNewerV(P)) = ⊗2 otherwise.

�

What we have here is a particularly vicious version of the Caesar problem: given two
distinct abstraction principles for two distinct extension operators, we cannot even
determine whether the empty extension(EXTNewV(x 6= x)) arising fromNewV is
identical to the empty extension(EXTNewerV(x 6= x)) provided byNewerV.
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What we need are necessary and sufficient conditions for the identity of two ab-
stracts that are generated by different abstraction principles. InThe Limits of Ab-
straction[7] Fine discusses this problem at length, and his solution offers us a way
out of our present difficulty. After considering and rejecting the idea that abstracts
provided by different abstraction principles must be distinct (since, for example, the
finite numbers generated byHume’s Principleand restrictions of it, such asFinite
Hume,26 ought to be the identical), he suggests that we

. . . face the possibility that the criteria of identity [of distinct abstraction
principles] might be different in a way that is not relevant to the identities of
the abstracts in question. And this might lead one to . . . taketwo abstracts to
be the same when their associated equivalence classes are the same, regardless
of the means of abstraction by which they were obtained.27 ([7], p. 49)

The idea is simple: each abstraction principle divides up the collection of concepts on
the domain into one or more equivalence classes, and each oneof these corresponds
to an abstract. If we think of the abstracts as going proxy forthe equivalence classes,
then any two abstracts that correspond to the same collection of concepts should
be identical regardless of what abstraction principle was used to “generate” them.28

We can formalize this as theGeneral Abstract-Identity Schema.29 Given any two
(legitimate) abstraction operators @1 and @2:

GAS: (∀P)(∀Q)(@1(P) = @2(Q) ↔ (∀F)(@1(F) = @1(P)

↔ @2(F) = @2(Q))).

Of interest at present is the instance governing our two extension operators:

(∀P)(∀Q)(EXTNewV(P) = EXTNewerV(Q)

↔ (∀F)(EXTNewV(F) = EXTNewV(P)

↔ EXTNewerV(F) = EXTNewerV(Q))).

If we haveGAS, we can define sethood and membership in terms of those abstracts
that are theEXTNewV andEXTNewerVof the same (dually) non-Badconcept:

Set(x) ↔ (∃P)[x = EXTNewV(P) ∧ x = EXTNewerV(P)

∧ ¬BadNewV(P) ∧ ¬BadNewerV(P)]

x ∈ y ↔ (∃P)[Px ∧ x = EXTNewV(P) ∧ x = EXTNewerV(P)].

On these definitions, the conjunction ofNewV, NewerV, and the relevant instance
of GASentails the axioms of extensionality, separation, empty set, pairing, union∗

(but not union), powerset, and replacement axioms. ThusGASprovides us with a
means for combining two abstraction principles for extensions that is consistent with
neo-Fregean ideas about implicit definition yet delivers the desired results.

In what follows, however, we shall as a matter of convenienceuseNewV+ New-
erV, assuming that the same abstraction operator occurs in bothprinciples, since this
allows us to straightforwardly adopt results that were proved earlier (or elsewhere)
for one or the other of these two principles. The reader should keep in mind that
this conjunction of ‘definitions’ of the extension operator‘EXT’ can be replaced by
a richer (but formally less tractable) account of identity conditions across distinct
abstraction principles.30
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10 NewV + NewerV and Infinity

With SOAP+ NewV+ NewerVin place, we define notions such as set, membership,
ordinal, Boolos-pure set, and hereditary set as before. First off, we note thatSOAP
+ NewerV+ NewVis consistent.

Theorem 10.1 SOAP+ NewerV+ NewV is satisfied by M({⊗},ω).

Proof Straightforward, left to the reader. �

This also shows that the axiom of infinity fails to follow fromSOAP+ NewerV
+ NewV. The results of previous sections suffice to show thatSOAP+ NewerV+

NewV proves the axioms of extensionality, separation, empty set, pairing, union∗,
powerset, and replacement.

As one might expect, interesting consequences follow from the conjunction of
these two “definitions” of set that do not follow from either alone. As an example
we have the following.

Lemma 10.2 SOAP+ NewerV+ NewV implies that, for all P, P is Big if and only
if P is Bad.

Proof Straightforward, left to the reader. �

More significantly,SOAP+ NewerV+ NewVproves that every object is either a set
or is in the basis (although as we shall see some objects mightbe both).

Theorem 10.3 SOAP+ NewerV+ NewV implies(∀x)(UR(x) → BASE(x)).

Proof Assume for arbitrarya that a is an urelement, that is,a is not a set. Since
both NewV andNewerVare only satisfied on infinite models, the property corre-
sponding to ‘x = a’ is not Big, and thus notBad, that is,(∃α)(ON(α) ∧ (∀x)(x = a
→ x ∈S Stg(α))). Letβ be the least ordinal such that(∀x)(x = a → x ∈S Stg(β))),
that is,β is the least ordinal such thata ∈S Stg(b)). Assume thatβ > 0. Then by the
definition of stages(∃P)(a = EXT(P) ∧ (∃δ)(δ < β ∧ (∀y)(Py → y ∈S Stg(δ)))).
So(∃P)(a = EXT(P) ∧ (∃δ)(ON(δ) ∧ (∀y)(Py → y ∈S Stg(δ)))). Thusa is a set.
Contradiction, soβ = 0 anda is in the basis. �

As a result of this we have the following.

Corollary 10.4 SOAP+ NewerV+ NewV implies the Urelement Axiom:

(∃x)(Set(x) ∧ (∀y)(UR(y) ↔ y ∈N x)).

Corollary 10.5 Every model of SOAP+ NewerV+ NewV is extension-isomorphic
to M(BASE,κ) for some cardinalκ such that eitherκ = ω and BASE is finite orκ is
inaccessible andκ >| BASE|.

Corollary 10.6 If M(BASE,κ) is a model of SOAP+ NewerV + NewV, then
⊗ ∈ BASE.

Thus,SOAP+ NewerV+ NewVcaptures all of ZFC except for the axiom of infinity
and the axiom of foundation.31 We set aside foundation until Section11.

As already noted,SOAP+ NewerVplus the claim that there are infinitely many
elements in the basis implies the axiom of infinity.NewVplus the claim that there are
uncountably many objects implies the axiom of infinity. Herewe consider a principle
that is independent of each of these assumptions:32
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InfNonSets: “There are infinitely many urelements.”

NewVhas models with uncountably many sets but only finitely many nonsets, and
models with infinitely many nonsets but only a countable infinity of sets. Similarly,
SOAP+ NewerVhas models with infinitely many nonsets but only finitely many
objects in the basis and, as we shall see in Section11, it also has models with finitely
many nonsets but infinitely many objects in basis. Thus the following is not trivial,
even if its proof is.

Theorem 10.7 SOAP+ NewerV+ NewV+ InfNonSets implies the axiom of infin-
ity.

Proof Assume that there are infinitely many urelements. Then, by Theorem9.2,
there are infinitely many objects inBASE. NewerVplus the claim thatBASEhas
infinitely many members implies the axiom of infinity. �

This provides the following.

Corollary 10.8 SOAP+ NewerV+ NewV+ InfNonSets is satisfied by M({⊗},κ) if
and only ifκ is an inaccessible cardinal.

Thus every model ofSOAP+ NewerV+ NewV+ InfNonSetsis also a model of
second-order ZFC-foundation.

Of course, the crucial question is not what principles can beadded toSOAP+

NewerV+ NewV in order to derive the axiom of infinity, but what additional neo-
logicistically acceptable principle will provide the axiom of infinity. Provided that
GASprovides the correct account of identity between abstractsarising from distinct
abstraction principles, however, a neologicist justification of InfNonSetsis straight-
forward.

The neologicist need only accept, in addition toSOAP+ NewerV+ NewV, a
restricted version ofHume’s Principlesuch asFinite Hume:33

FHP: (∀P)(∀Q)[NUM(P) = NUM(Q) ↔ (P ≈ Q
∨(¬ Finite(P) ∧ ¬ Finite(Q)))].

(‘ Finite(P)’ is an abbreviation of the second-order formula asserting the nonexis-
tence of a 1–1 correspondence from thePs into, but not onto, thePs).34

If we combineFHP with SOAP+ NewerV+ NewVand the relevant instance of
GAS,

(∀P)(∀Q)(NUM(P) = EXT(Q)

↔ (∀F)(NUM(F) = NUM(P)

↔ EXT(F) = EXT(Q)))

we obtain the following.

Theorem 10.9 FHP + SOAP+ NewerV+ NewV+ GAS implies InfNonSets.

Proof Combine the standard proof of (part of)Frege’s Theorem(i.e., the claim that
there are infinitely many numbers) with the fact that, since for eachFHP number
x wherex 6= 0, (∃P)(∃Q)(x = NUM(P) = NUM(Q) ∧ ¬(∀y)(Py ↔ Qy)), all
numbers (other than 0) are not extensions.35

�

This provides the necessary corollary.
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Corollary 10.10 FHP + SOAP+ NewerV+ NewV+ GAS implies the axiom of
infinity.

11 Foundation and Non-well-founded Sets

In this section we will examine the status of the second-order axiom of foundation:

Foundation: (∀P)((∀x)(Px → Set(x)) → ((∃y)(Py)
→ (∃y)(Py ∧ ¬(∃z)(Pz∧ z ∈N y)))),

and the prima facie weaker axiom of regularity:

Regularity: (∀x)(Set(x) → ((∃y)(y ∈N x)

→ (∃y)(y ∈N x ∧ ¬(∃z)(z ∈N x ∧ z ∈N y))))

within NewerV+ NewVset theory.36

As was the case withNewVor NewerValone,SOAP+ NewerV+ NewVproves
foundation when the quantifiers are restricted to Boolos-pure sets, but foundation,
and the weaker axiom of regularity, can fail to hold of all sets, or even all hereditary
sets. To show that regularity restricted to the hereditary sets fails to follow from
SOAP+ NewerV+ NewV(and thus the unrestricted versions fail to follow as well),
it suffices to show that the�Axiom,37

�Axiom: (∃x)(∀y)(y ∈ x ↔ y = x),

can be consistently added toSOAP+ NewerV+ NewV.
To show this we will construct models within Aczel’s (first-order) Non-well-

founded set theory (see [1]). Since Aczel’s systems are all interpretable within
first-order ZFC-foundation, the results below can be provenwithin ZFC-foundation
directly, although the presentation is less straightforward. Thus our adoption of non-
well-founded set theory is a matter of convenience only, andour “official” metathe-
ory remains first-order ZFC-foundation. (It should be notedthat none of the results
used below depend on the particular formulation of the Anti-foundation Axiom—
any of the variants discussed in the literature will suffice.See Rieger [11] for a nice
discussion of the popular variants).

The following demonstrates that we can, in a sense, have arbitrarily many non-
well-founded sets inNewV+ NewerVset theory.

Theorem 11.1 SOAP+ NewerV+ NewV+ InfNonSets is satisfied by M(BASE,κ)

where BASE is the pairwise union of any transitive set of non-well-founded sets and
{⊗} andκ is any inaccessible such thatκ >| BASE|.

Proof The transitivity ofBASEguarantees that for any set that is also in the basis,
all of its members are in the basis. The remainder is straightforward. �

The consistency of�Axiomis immediate.

Corollary 11.2 SOAP+ NewV+ NewerV+ InfNonSets+ �Axiom is consistent.38

Proof Since, letting� be a set such that� = {�}, {�} is a transitive set of non-
well-founded sets,M({�,⊗},κ) is a model ofSOAP+ NewerV+ NewV+ InfNonSets
+ �Axiom. �

Since� is a hereditary set, we have the desired corollary.
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Corollary 11.3 SOAP+ NewV+ NewerV fails to imply foundation or regularity
restricted to hereditary sets.

If we combine Theorem10.9 with the following lemma we obtain a corollary
promised in Section10.

Lemma 11.4 SOAP+ NewerV+ NewV implies that if x∈N x, then x is an element
of the basis.

Proof Assume for an arbitrarya that a ∈N a. Either a is a set ora is not
a set. By Theorem9.2, if a is not a set, thena is in the basis. So assume
that a is a set. Thus the property corresponding to ‘x ∈N a’ is not Bad, so
(∃α)((α is an ordinal number) ∧ (∀x)(x ∈N a → x ∈S Stg(α))). Let β be the least
ordinal such that(∀x)(x ∈N a → x ∈S Stg(β))). Assume thatβ > 0. It follows
from the definition of stages(∀y)(y ∈N a → (∃δ)(δ < β ∧ y ∈S Stg(δ)). Since
a ∈N a, we have(∃δ)(δ < β ∧ a ∈S Stg(δ)). Contradiction, soβ = 0 anda is in
the basis. �

Corollary 11.5 SOAP+ NewerV+ NewV has models with finitely many nonsets
but infinitely many members of the basis.

Proof Let BASEbe any infinite transitive set of non-well-founded sets andκ an
inaccessible cardinal such thatκ >| BASE |. Then M(BASE∪{⊗},κ) is a model of
SOAP+ NewerV+ NewV. �

Thus,SOAP+ NewerV+ NewVdoes not rule out the existence of non-well-founded
sets.SOAP+ NewerV+ NewVdoes rule out the simultaneous existence of all non-
well-founded sets, however. The following is a theorem of Non-well-founded Set
Theory:

(∀x)(∃y)(∀z)(z ∈ y ↔ (z = y ∨ z ∈ x)).

In other words, given any setx there is a sety (not necessarily distinct) that contains
exactly the members ofx and itself. This can be expressed withinNewV+ NewerV
set theory as

WeakNWF: (∀P)(¬Bad(P) → (∃Q)(¬Bad(Q)

∧(∀x)(Qx ↔ (Px ∨ x = EXT(Q))).

This principle, far weaker than any of the popular formulations of the Anti-
foundation Axiom, is nevertheless incompatible withNewerV+ NewVset theory.

Theorem 11.6 SOAP+ NewerV+ NewV+ WeakNWF is inconsistent.

Proof There is an obvious correspondence between the ordinal numbers as pro-
vided bySOAPand the sets usually referred to as ‘ordinals’ (i.e., the transitive pure
sets well-ordered by∈). By previous results, the property corresponding to ‘x is
an ordinal number’ isBad, and thusBig, so the collection of ordinals isBig. Con-
sider a functionf such that f (x) = y if and only if for all z , z ∈N y if and
only if either z ∈N x or z = y (the existence of such a function is guaranteed by
WeakNWFand choice). Note that iff (x) = y, it follows thaty ∈N y. Assume that
f (x) = y = f (z) for x, y ordinals. Then for allw, w ∈N y if and only if w ∈N x
or w = y if and only if w ∈N z or w = y. So, for an arbitraryw, if w ∈N x
then eitherw ∈N z or w = y. But since foundation holds of the ordinals,w 6= y.
Thusx ⊆N z, and similarlyz ⊆N x. Thus,x = z, so f restricted to the ordinals is
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1–1. So the image of the ordinals underf is Big. But for anyy, if y is in the image
of the ordinals underf , theny is in the basis. Thus the property corresponding to
‘ x ∈ BASE’ is Big. Contradiction. �

Thus although set theory based onNewV plus NewerV is consistent with the ex-
istence of (some) non-well-founded sets, it cannot tolerate the addition ofall of
them.39

12 Philosophical Lessons

There are four main areas of interest that arise in the comparison of the limitation
of size conception of set (as codified inNewV) and the iterative conception of set
(as codified inSOAP+ NewerV). Each is associated with the status of one of the
standard set-theoretic axioms. The axioms at issue are the axioms of powerset, re-
placement, infinity, and foundation.

As we have seen,NewVimplies the replacement axiom but fails to secure the truth
of powerset; alternativelySOAP+ NewerVimplies the powerset axiom but fails to
secure replacement. Thus, if we are forced to choose a singleabstraction principle
that provides the “definition” of set, then we are left here with a dilemma—given a
choice, would we rather have the powerset axiom and forego replacement, or have
replacement and forego powerset?

Of course, this choice is not just a matter of personal preference. The power-
set axiom is necessary for the formalization of much of contemporary mathematics
within set theory, taking us from the naturals (modeled, e.g., by the finite ordinals) to
the reals (modeled by the sets of finite ordinals), from the reals to the theory of func-
tions on the reals (modeled by sets of sets of finite ordinals)and so on. The axiom of
replacement, however, is for the most part only used in rather obscure and esoteric
branches of pure set theory such as accounting for the behavior of transfinite ordinals
and cardinals.40 If we are interested in using our set theory to provide a foundation
for much or all of mathematics, including but not limited to the mathematics nec-
essary for doing science, then when faced with the option of having powerset or
replacement but not both, the appropriate choice seems clear—powerset is more cru-
cial to formulating modern mathematics within set theory. Nevertheless, in failing to
imply one or the other of these central axioms, neither abstraction principle seems to
satisfy the demand for mathematical adequacy.

Adopting SOAP+ NewerV+ NewV (or, perhaps more plausibly, by adopting
SOAP+ NewerV+ NewV+GASas discussed in Section9), the worries about re-
placement and powerset evaporate—both are derivable from the conjunction of these
abstraction principles. Additionally, this approach dovetails nicely with the historical
development of axiomatic set theory, motivated as it was by two competing concep-
tions of set each corresponding to one of the abstraction principles in question. Of
course, we have not dissolved all problems for a neologicistset theory, or even all
problems relating to replacement and powerset, in this paper. Nevertheless, the the-
ory based onNewV+ NewerVseems to be the most promising candidate so far for
a neologicist account of sets.41

The most pressing problem for a neologicist reconstructionof set theory, how-
ever, whether based on one abstraction principle or many, isthe axiom of infinity.
Unfortunately, the axiom of infinity does not follow fromNewV, SOAP+ NewerV,
or SOAP+ NewerV+ NewV. Thus the neologicist needs to find some additional
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principle that implies that there is an infinite set. Some possibilities have been ex-
plored above. Again,NewV+ NewerVset theory comes out on top, as the axiom of
infinity follows merely from the additional assumption thatthere are infinitely many
nonsets (i.e.,InfNonSets), which in turn follows from other neologicist principles
plus our identity principleGAS. Even ifGASturns out not to be neologicistically ac-
ceptable,InfNonSetscertainly seems less problematic than the assumptions needed
to obtain the axiom of infinity when working withinNewVset theory or the theory
of SOAP+ NewerValone.SOAP+ NewerV+ NewV+ InfNonSetsis a promising
candidate for a sufficiently powerful neologicist account of sets.

With regard to the foundation axiom, however,SOAP+ NewerV+ NewV is, in
one sense, little better than the weaker theories. Foundation holds of the Boolos-pure
sets but can fail on the hereditary sets. Perhaps this is as itshould be, since the axiom
of foundation is of a different character than the other standard axioms of ZFC. Each
of the other axioms is of one of two forms. First we have straight existential claims:

(∃y)(∀z)(z ∈ y ↔ 8(z)).

Infinity and empty set are axioms of this type. Second, we haveconditional existence
claims:

(∀x1)(∀x2) . . . (∀xn)(∃y)(∀z)(z ∈ y ↔ 8(z, x1, x2, . . . , xn))

These axioms state that, given any sequence of sets (or objects), a second set with a
certain relation to the given sequence of sets (objects) also exists. Separation, pow-
erset, replacement, union, and pairing are all conditionalexistence axioms. Foun-
dation, on the other hand, is of a very different logical character, displaying the
following logical form:

(∀x)8(x).

Foundation does not imply the existence of any new sets but instead imposes a re-
striction on what sorts of characteristics sets can have andthereby restricts what sets
can in fact exist. This restriction was originally motivated by a certain view about
how sets should be structured, a view motivated by the idea that the set theoretic
paradoxes were caused by circularity. Even if this restriction is motivated by an in-
tuitive picture that also underlies the iterative conception of set, a conception that we
have accepted in the form ofNewerV, we need not feel forced to thereby accept a
wholesale ban on circularity.

Instead we can view the neologicist as replacing one response to the set theoretic
paradoxes (an overwhelming fear and avoidance of anything circular) with another
response (the idea that acceptable abstraction principlesprovide secure foundations
for mathematical theories irrespective of circularity). In reconstructing contemporary
set theory he is forced to adopt some of the restrictions thatevolved from the prior
view of the nature of sets (i.e., those following from the iterative picture of sets as
codified byNewerV), but he is free to countenance circular sets to the extent that his
new set theory allows. On this way of viewing things it is perfectly reasonable that
neologicist set theory implies that certain sorts of sets obey the axiom of foundation
but leaves open the question of whether all do.

Another way of making the same point is to note that the neologicist can construct
a set theory that implies all of the axioms of second-order ZFC if he merely modifies
his definition of ‘set’. Instead of having sets be the extensions of properties that are
not ‘Big’ (or Bad), let sets be those objects that are both extensions of properties that
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are not ‘Big’ and contained in every Boolos-closed concept (i.e., the Boolos-pure
sets). As we have seen,SOAP+ NewerV+ NewV+ InfNonSetsproves all of the
axioms of second-order ZFC restricted to these objects. Thus, assuming that all of
these principles are neologicistically acceptable,NewerV+ NewVset theory (with
a principle guaranteeing an infinite set) in a sense “contains” full second-order ZFC,
but also leaves room for the existence of other non-well-founded sets.

To sum up,SOAP+ NewerV+ NewV + InfNonSetsprovides the neologicist
with a set theory that is (roughly) as strong as full second-order ZFC. As already
noted, detailed philosophical defense of the acceptability of these principles is still
necessary. Nevertheless, the mathematical problem—determining whether there is a
mathematically adequate neologicist set theory—seems to be solved.

Appendix A

Although I have given these proofs (and the ones in the main body of the text) rather
informally, each of them can be straightforwardly (though tediously) rewritten as a
formal deduction within second-order logic.

Lemma A.1 (¬Bad(P) ∧ (∀x)(Qx → Px)) → ¬Bad(Q).

Proof Assume thatP is not Bad and that (∀x)(Qx → Px) holds. Then
(∃α)((α is an ordinal number) ∧ (∀x)(Px → x ∈S Stg(α))). So (∃α)((α is an
ordinal number) ∧ (∀x)(Qx → x ∈S Stg(α))). SoQ is notBad. �

Lemma A.2 (¬Bad(P) ∧ EXT(P) = EXT(Q)) → ¬Bad(Q).

Proof AssumeP is not Bad andEXT(P) = EXT(Q). Then eitherP is Bad and
Q is Bad, or (∀x)(Px ↔ Qx), so by LemmaA.1, sinceP is not Bad, Q is not
Bad. �

Lemma A.3 ¬Bad(P) → (∀x)(x ∈N EXT(P) ↔ Px).

Proof Assume thatP is not Bad. Given an arbitraryx, if x ∈N EXT(P)

then (∃Q)[Qx ∧ EXT(P) = EXT(Q)]. Since P is not Bad, this implies that
(∃Q)[Qx ∧ (∀y)(Py ↔ Qy)], that is,Px. Similarly, given an arbitraryx such that
Px, it follows that[Px ∧ EXT(P) = EXT(P)], so(∃Q)[Qx ∧ EXT(P) = EXT(Q)],
that is,x ∈N EXT(P). �

Theorem A.4 NewerV entails Extensionality:

(∀x)(Set(x) → (∀y)(Set(y) → (∀z)((z ∈N x ↔ z ∈ y) → x = y)).

Proof Let x and y be sets. Thenx = EXT(P) and y = EXT(Q) where P and
Q are notBad. It follows, by LemmaA.3, that (∀z)(z ∈N EXT(P) ↔ Pz)
and (∀z)(z ∈N EXT(Q) ↔ Qz). Assume that(∀z)(z ∈ x ↔ z ∈ y) holds,
that is, (∀z)(z ∈N EXT(P) ↔ z ∈N EXT(Q)). Then (∀z)(Pz ↔ Qz), so
EXT(P) = EXT(Q), or x = y. �

Theorem A.5 NewerV entails Empty Set:

(∃x)(Set(x) ∧ (∀y)(y /∈N x)).
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Proof Let x = EXT(y 6= y). Then Set(x), since 1 is an ordinal number and
(∀y)(y 6= y → y ∈S Stg(1)). Additionally, (∀y)(y /∈ x), since for noz is it
the case thatz 6= z. �

Theorem A.6 NewerV entails Separation:

(∀P)(∀x)(Set(x) → (∃y)(Set(y) ∧ (∀z)(z ∈N y ↔ (z ∈N x ∧ Pz)).

Proof Let P be a property andx a set. Thenx = EXT(Q) whereQ is notBad. Let
y = EXT(P ∧ Q). Then Set(y), sinceP ∧ Q is notBadby LemmaA.1. Also, for
anyz, z ∈N y if and only if (Pz andQz) if and only if Pz andz ∈N x. �

Theorem A.7 NewerV entails Union∗:

(∀x)(Set(x) → (∃y)(Set(y)

∧(∀z)(z ∈N y ↔ (∃w)(w is a set∧ (z ∈N w ∧ w ∈N x))))).

Proof Let x be a set, so thatx = EXT(P). Thus(∃α)((α is an ordinal number)
∧ (∀x)(Px → x ∈S Stg(α))). If w ∈N x, then by LemmaA.3, Pw, so
w ∈S Stg(α). In other words, eitherw is in the basis(w ∈S Stg(0)) or
(∃Q)(w = EXT(Q) ∧ (∃β)(β < α ∧ (∀y)(Qy → y ∈S Stg(β)))). So if w is
a set, then for anyz ∈N w, Qz, soz ∈S Stg(β), and thus, for allz andw such that
z ∈ w ∈ x, z ∈S Stg(α). Let S be the property holding of just the members of
members ofx. Then(∀y)(Sy→ y ∈S Stg(α)), soEXT(S) is a set and is the union
of x. �

Theorem A.8 NewerV entails Pairing:

(∀x)(Set(x) → (∀y)(Set(y) → (∃z)(Set(z)∧(∀w)(w ∈N z↔ (w = x∨w = y))))).

Proof Let x and y be sets. Then there is aP such thatx = EXT(P) where
(∃α)((α is an ordinal number) ∧ (∀x)(Px → x ∈S Stg(α))) and there is aQ such
thaty=EXT(Q) where((∃β)((β is an ordinal number)∧(∀x)(Qx→x ∈S Stg(β))).
Let δ = max(α, β). Thenx ∈S Stg(δ + 1) andy ∈S Stg(δ + 1). Let F be the prop-
erty that holds of exactlyx andy. ThenEXT(F) is a set and is the pair set ofx and
y. �

Theorem A.9 NewerV entails Powerset:

(∀x)(Set(x) → (∃y)(Set(y) ∧ (∀z)(z ∈N y ↔ (∀w)(w ∈N z → w ∈N x)).

Proof Let x be a set, that is,x = EXT(P) where(∃α)((α is an ordinal number)
∧ (∀x)(Px → x ∈S Stg(α))), and lety be a subset ofx, that is, there is aQ where
y = EXT(Q) and(∀x)(Qx → Px). So(∀x)(Qx → x ∈S Stg(α))) and it follows
that y ∈S Stg(α + 1). Let S be the property holding of exactly the subsets ofx.
EXT(S) is a set and is the powerset ofx. �

Notes

1. This paper is intended, among other things, to further the comparison of the iterative and
limitation-of-size conceptions of set begun by Boolos in [2] and [3].
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2. I assume standard set theoretic semantics for second-orderlogic, where the second-order
predicate variables range over the full powerset of the domain and which contains the
second-order axiom of choice and the full comprehension scheme. For details see [12].

3. Every abstraction principle considered in this paper can beexpressed using only the re-
sources of second-order logic (plus, in some cases, previously defined abstraction oper-
ators). I give the formal expressions in the notes as necessary. The second-order formula
expressing that there is a one-to-one correspondence between thePs and theQs is

(∃R)((∀x)(Px → (∃!y)(Qy ∧ Rxy)) ∧ (∀z)(Qz → (∃!x)(Px ∧ Rxz)))

where(∃!x)(8x) is an abbreviation for

(∃x)(8x ∧ (∀y)(8y → y = x)).

4. There have been a number of careful and thorough studies of the historical development
of, and interactions between, these two notions of set, Hallett [10] being one of best. I
do not propose to make any contribution to this historical project here, but intend rather
to examine the technical merits of the iterative conceptionas formulated within the neo-
logicist framework.

5. (∃ f )((∀x)(∃y)(( f (x) = f (y) → x = y) ∧ (∀x)(∃y)(Py ∧ f (y) = x)). In light of
the Schröder-Bernstein theorem, which can be proved in second-order logic (see [12],
pp. 102–103), this can be simplified to(∃ f )(∀x)(∃y)(Py ∧ f (y) = x).

6. The axiom of choice for sets follows immediately from the fact that we have assumed
that choice holds in second-order logic.

7. Boolos-closed and Boolos-pure are the conditions Boolos calls “closed” and “pure” on
p. 100 of [3]. The formulation of the notion of hereditary sets, and the observation that
the class of hereditary sets need not be coextensive with theclass of Boolos-pure sets,
appears for the first time in Uzquiano and Jané [14] (as does the terminology “Boolos-
pure”).

8. To see that the axiom of infinity does not follow fromNewVwe need merely note that the
model〈V{⊗}(ω), I 〉 satisfiesNewVwhere (for⊗ an arbitrary object, not a hereditarily
finite set):

V{⊗}(0) = {⊗}

V{⊗}(n + 1) = V{⊗}(n) ∪ (℘ (V{⊗}(n)))

V{⊗}(ω) = ∪V{⊗}(n)(n ∈ ω)

I (EXT(P)) = {x ∈ V{⊗}(ω) : x ∈ I (P)} if {x ∈ V{⊗}(ω) : x ∈ I (P)} finite.

I (EXT(P)) = ⊗ otherwise.

Demonstrating the independence of the powerset axiom is a bit more complicated. (See
Shapiro and Weir [13].)

9. R ∼= S abbreviates the claim that the relationR is isomorphic toS. We can give the
second-order formula forR and S being isomorphic as follows. First, the following
abbreviations: A(x) ↔ (∃y)(R(x, y) ∨ R(y, x)

B(y) ↔ (∃y)(S(x, y) ∨ S(y, x).
We then have

R ∼= S ↔ (∃ f )((∀x)(A(x) → B( f (x))) ∧ (∀x)(B(x) → (∃y)( f (y) = x)

∧ (∀x)(∀y)( f (x) = f (y) → x = y)

∧ (∀x)(∀y)(R(x, y) ↔ S( f (x), f (y)))).
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10. WO(R) abbreviates the claim thatR is a well-ordering. DefineA(x) as in footnote9
above. Then

WO(R) ↔ (∀x)(¬R(x, x)) ∧ (∀x)(∀y)(∀z)((R(x, y) ∧ R(y, z))

→ R(x, z)) ∧ (∀P)(((∃x)(Px) ∧ (∀x)(Px → A(x)))

→ (∃y)(Py ∧ (∀z)(Pz → (z = y ∨ R(y, z))))).

11. Although it is tempting to identify∈S and ∈N , the reader should be careful not to.
‘ x ∈S Stg(α)’ is a defined binary relation holding between an objectx and an ordinal
numberα, and asserts, intuitively, thatx is “formed” by theαth stage. In other words,
‘∈S’ and ‘Stg(α)’ are not separable pieces of vocabulary. On the other hand, ‘∈N ’ ex-
presses a relation holding between an object and an extension. As a result ‘x ∈N Stg(α)’
is not well-formed in the language given above. Nevertheless,

(∀x)(∀α)(ON(α) → (x ∈S Stg(α) ↔ x ∈N EXT(y ∈S Stg(α)))).

is a theorem.

12. Providing abstraction principles whose right-hand sides contain abstraction operators
defined previously is (at least accepted as) neologicistically acceptable methodology, as
the literature on reconstructing the reals attests. See, for example, Hale [9].

13. Note that ‘∈N Stg(α)’ is defined in terms of ‘EXT’, so we need not include an additional
clause.

14. That is,(∀x)(Set(x)→(∀ f )(∀y)((y ∈N x→Set( f (y)))→(∃z)(Set(z)∧(∀w)(w ∈N x
→ f (w) ∈N z).

15. Note thatM(∅,ω+ω), although failing to satisfy replacement, also fails to satisfy SOAP.

16. This construction shows that we can prove, in second-order ZFC, thatSOAP+ NewerV
has uncountable models, sinceπ , and thusM(∅,π), can be constructed within second-
order ZFC. This is significant since Shapiro and Weir [13] prove that the claim thatNewV
has uncountable models is independent of second-order ZFC.

17. Boolos writes of “axioms of replacement” in the plural sincehe is considering first-order
set theory.

18. That is,(∃x)(Set(x) ∧ (∅N ∈N x ∧ (∀y)(Set(y) → (y ∈N x → y ∪N {y}N ∈N x)))).

19. The statement thatM(FO,π) is the smallest model ofSOAP+ NewerV+ BAω should
not be understood to imply that there are no other nonisomorphic models of the same
cardinality sinceM(FO∪{⊗},π) clearly is such a model. Instead, all models have domains
at least as large as that ofM(FO,π).

20. Zermelo set theory is just first-order ZFC without replacement and choice. Second-order
Zermelo set theory is second-order ZFC without replacement.

21. That is,(∃x)(Set(x) ∧ (∅N ∈N x ∧ (∀y)(Set(y) → (y ∈N x → {y}N ∈ x)))).

22. This does not rule out the possibility thatπ could be definable within some extended,
neologicistically acceptable language.

23. One needs to be careful here since the number of ordinal numbers generated bySOAP
depends on the number of objects that exist, which could depend onNewerV.

24. This is a result of the fact that whether or not powerset (replacement) holds in the context
of NewV(NewerV) is a function of the cardinality of the domain.
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25. In order to get the result in its full generality we require that there be two ‘Bad’ objects,
one for each principle.

26. Finite Humeis a restricted version ofHume’s Principlewhich provides each finite posi-
tive integer and a single pre-Cantorian infinite number (theabstract of all finite concepts).
For the exact formulation see Section10.

27. Fine immediately rejects this analysis in favor of one that identifies abstracts whose
equivalence classes are necessarily identical. He spends the remainder of the chapter
exploring the difficulties such a modalized account must face. Fortunately, the simpler
nonmodal formulation suffices for our present purposes. Forfurther discussion of this
aspect of the Caesar problem, see Cook and Ebert [6].

28. I do not intend this to be read as a defense of this particular route to solving (this variant
of) the Caesar problem but am content merely to briefly sketchhow such a solution might
proceed.

29. While acceptance of this principle has no impact on the standard version of the Caesar
problem, which concerns identities between abstracts and nonabstracts, its acceptance
completely solves the analogous problem of determining when two abstracts generated
by different abstraction principles are identical. We can call this latter problem theC-R
problem, since determining whether the real numbers are a subcollection of the com-
plex numbers is a particular case of the problem, and the term‘C-R’ has a convenient
similarity to the word ‘Caesar’.

30. In addition, we can in the present context eliminateSOAPaltogether, reformulatingNew-
erV (or NewestV) so that the stages are ordered by the ordinals (i.e., the transitive pure
sets well-ordered by∈) provided byNewV(or NewestV). Although this would be a bit
more elegant than the methods employed in the text, ironing out the details of the rele-
vant reformulation ofNewerV(or NewestV) would add considerable length to this paper
without any significant gain.

31. In fact, SOAP+ NewerV+ NewV is strictly stronger than second-order ZFCU minus
the axioms of infinity and foundation since the former, but not the latter, implies that
there is a set containing all urelements. Thanks go to an anonymous referee for pointing
this out.

32. That is, (∃P)((∀x)(Px → ¬Set(x)) ∧ (∃ f )((∀x)(∀y)( f (x) = f (y) → x = y)

∧ (∀x)(P(x) → P( f (x))) ∧ (∃x)(Px ∧ (∀y)( f (y) 6= x)))).

33. One drawback to this general approach is thatHume’s Principleor evenSmall Hume,

(∀P)(∀Q)[NUM(P) = NUM(Q) ↔ (P ≈ Q ∨ (Big(P) ∧ Big(Q)))],

is inconsistent withNewV+ NewerV+ GAS: If all the numbers (or all the small num-
bers) other than 0 are not extensions, then they must be urelements, but then there must
be a set of all numbers, and further, the powerset of this set must exist. But since the uni-
verse must be the size of a strong inaccessible, there must beexactly as many numbers
as there are objects in the universe. Contradiction.

34. That is, (∃ f )((∀x)(Px → P f (x) ∧ (∀y)(∀z)( f (y) = f (z) → y = z) ∧ (∃w)(Pw

∧ (∀n)(Pn → f (n) 6= w))).

35. Interestingly,GASimplies that NUM(x 6= x) = EXT(x 6= x), that is, 0= ∅. Signifi-
cantly, anti-zero, the number of the universe, which has been a topic of controversy since
Boolos [4], (p. 314), is (provably) not identical (moduloGAS) to theBadextension⊗.
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36. Uzquiano [15] proves that second-order Zermelo set theory with the axiomof regularity
has models where second-order foundation fails. This provides us with another way in
which NewerV is stronger than Zermelo set theory, sinceNewerV implies the equiva-
lence of foundation and regularity.

37. That is,(∃x)(Set(x) ∧ (∀y)(y ∈N x ↔ y = x)).

38. Note that� is a member of the basis but not an urelement.

39. It is worth noting that the following principle ofUrelement-Basis,

Ur-Base: (∀x)(BASE(x) ↔ UR(x)),

provides us with the following:

Fact: SOAP+ NewerV+ NewV+ Ur-Baseimplies the axiom of foundation.

40. I am not arguing either for the claim that replacement is unneeded in mathematics (the
fact that we cannot prove that every Borel game is determinedwithout replacement rules
this out) nor for the claim that powerset is necessary to reconstruct modern mathematics
(the fact that many mathematicians, either out of constructivist scruples or mathematical
curiosity, have formulated interesting versions of analysis and other theories that do
not depend on uncountable infinities rules this out). The point is merely that, given the
situation as it stands now, if the neologicist can have a set theory with one or the other but
not both of these principles, choosing powerset over replacement seems well motivated
given that powerset allows for elegant and natural reconstructions of the continuum and
other central mathematical structures while there are comparably fewer constructions
and (currently identified) results that depend on replacement.

41. Of course, there are abstraction principles, such as the “distractions” found in Shapiro
and Weir [13] and Weir [16] that provide all of ZFC and more. For example, we can
define ‘Bad(P)’ as ‘P is the size of an inaccessible’ (a notion definable in second-order
logic) and then consider:

(∀P)(∀Q)[EXT(P) = EXT(Q) ↔ ((∀x)(Px ↔ Qx) ∨ (Bad(P) ∧ Bad(Q)))].

This principle will give us all of ZFCU. The point, however, is thatSOAP+ NewerV
+ NewV is likely the best candidate for a theory based on abstraction principles that
defines extensions in terms of conditions that are well motivated and can be justified
independently of an extensive prior knowledge of set theory.
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