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Iteration One More Time

Roy T. Cook

Abstract A neologicist set theory based on an abstraction princigener\Vj
codifying the iterative conception of set is investigatedd its strength is com-
pared to Boolos’dNew\. The new principle, unlikeNew\, fails to imply the
axiom of replacement, but does secure powerset. hige/\| however, it also
fails to entail the axiom of infinity. A set theory based on ttanjunction of
these two principles is then examined. It turns out that skistheory, supple-
mented by a principle stating that there are infinitely maogsets, captures all
(or enough) of standard second-order ZFC. Issues pergaioirthe axiom of
foundation are also investigated, and | conclude by argthag this treatment
provides the neologicist with the most viable reconstarciof set theory he is
likely to obtain.

1 Motivation

There are (at least) two reasons for investigating abstragtrinciples for set the-
ory. The first concerns the technical feasibility of a neasg foundation for all of
mathematics. The second concerns the connection betweedhebry of Fregean
extensions (as codified in various restriction®asic Law \J and the mathematical
notion of set (as codified in various axiomatic set theogash as ZFC}.

Neologicists argue that we can reproduce (the most impopars of) mathe-
matics using abstraction principles. An abstraction ppiecis any second-order
formule’ of the form

(VPY(VQI@(P) = @(Q) < E(P, Q).

‘@’ here is a function from properties (or relations) to atige andE is an equiv-
alence relation on the properties (or relations). Absiwagbrinciples are intended,
in some sense, to be implicit definitions of the abstractiparator @ occurring on
the left-hand side of the biconditional, and as a resulvalls to take, as objects,
characteristics that the properties (or relations) hawwmmon.
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Frege’'sBasic Law Vis
BLV  (YP)(YQ)[EXT(P) = EXT(Q) < (¥X)(Px < QX)].

Frege derives all of arithmetic froBLV plus second-order logic, but Russell’s dis-
covery thaBLV is inconsistent with the second-order comprehension axérders
this result less noteworthy. The resurrection of logicigams from the observa-
tion that Frege’s only ineliminable use BLV occurs in his derivation oflume’s
Principle:®

HP (YP)(VQ)[NUM(P) = NUM(Q) < P =~ Q].

(P ~ Q is the second-order formula asserting that there is a 14kgmondence
between théPs and theQs.)

The ‘NUM’ operator is, in effect, a number generating function, magproper-
ties onto the number corresponding to the cardinality o&tttension of the property.
Unlike BLV above HP is consistent. Frege’s derivation of arithmetic in Geindge-
setze[8] can be reconstructed in second-order logic pii% thereby avoiding the
troublesomeBLV. This result, quite remarkable as a mathematical fact iadéent
of any philosophical implications, has come to be calesije’s Theorem

Given the success éfume’s Principle neologicists have attempted to extend this
treatment to more powerful mathematical theories. Althotitge results are some-
what promising in the case of real analysis (see Héle the attempts to capture set
theory within the neologicist framework have so far beeapiminting (see Shapiro
and Weir [L3]). The purpose of this paper is to further investigate susth-Rregean
treatments of set theory.

Two issues arise when one is reconstructing mathematieatigss within the ne-
ologicist framework, one purely mathematical and one gufet primarily) philo-
sophical. First, one has to formulate abstraction primsiplhich provide one with
what is recognizably the mathematical theory in questiorcofid, one needs to
defend these principles as neologicistically acceptatihere the notion of “accept-
able” might be fleshed out in terms of analyticity, implicéfahition, stipulation and
so on. | shall have little to say here with regard to the sedssuk, and that only in
passing. It is the first issue that is addressed by the reseitsv.

Even if one is not amenable to the philosophy of mathemasps@sed by neo-
Fregeans, the framework provided by neologicist styleavdas ofBasic Law Vnev-
ertheless provides an elegant and powerful setting withiickmo study and compare
various intuitive notions of set (or of collection). BoowslewV|[3] was formulated
in order to capture one popular idea underlying attemptsdwvige a foundation for
set theory (and thus for all of mathematics), the limitatidisize conception of set.
NewerV the abstraction principle introduced below, is intendedadify its main
rival, the iterative conception of set. As we shall sBewV and NewerV provide
quite different theories of Fregean extensions (i.e. fesities), and neither provides
an account of sets as strong as second-order ZFC. As a resuicemed forced
to accept that the notion of set and the accompanying foretatheory accepted
and studied by mathematicians and philosophers outstigpantent of both the
limitation of size doctrine and the iterative conceptiorsef.

2 Two Notions of Set

Historically there are (at least) two competing notions eff that have motivated
mathematicians and philosophers studying the foundatibngthematics, the iter-
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ative conception and the limitation of size conception.
Boolos, in his insightful comparison of the two notions iteflation Again”, char-
acterizes two versions of the limitation of size notion:

On a stronger version of limitation of size, objects form aitand only if
they are not in one-one correspondence with all the objeéetetare. On a
weaker, there is no set whose members are in one-one concspze with
all objects, but objects do form a set if they are in one-ormeespondence
with the members of a given set. (Under certain natural ¢mmdi, this last
hypothesis can be weakened to: if there are no more of themtligae are
members of a given set.) The difference between the twooresss that the
weaker does not guarantee that objects will always form & gty are not
in one-one correspondence with all objects],(p. 90)

Boolos’'sNew\, which will be examined briefly in Sectiofy corresponds to a neo-
logicist reconstruction of the stronger version of the tation of size conception of
set.

The iterative notion of set, founded on the idea that eacis $efilt up from other
sets or objects that are simpler, or at least prior, is charaed by Boolos as follows:

According to the iterative, or cumulative, conception dfkseets are formed
at stages; indeed, every set is formed at some stage of toevifad “pro-
cess”: at stage 0 all possible collections of individuals farmed. ... The
sets formed at stage 1 are all possible collections of setsf at stage.Q. ..
The sets formed at stage 2 are all possible collections sffeghed at stages
0 and 1. The sets formed at stage 3 are all possible collsotibsets formed
at stages 01, and 2 .... The sets formed at stage.4.. In general, for any
natural numben, the sets formed at stageare all possible collections of sets
formed at stages earlier thani.e., stages ., ..., n — 1. Immediately after
all stages 01, 2, ... there is a stage, stage The sets formed at stageare,
similarly, all possible collections of collections of sétsmed at stages ear-
lier w, i.e., stages AL, 2, .. .. After stagew comes stage + 1 : at which. . ..

In general, for each, the sets formed at stageare all possible collections
of sets formed at stages earlier thanThere is no last stage: each stage is
immediately followed by another. Thus there are stages2, w + 3, .. ..
Immediately after all of these, there is a staget+ w, aliasw - 2. Then
w-2+ 1 w- -2+ 2, etc. Immediately after ab, w - 2, w - 3,... comes
w - w, aliasw?. Thenw? + 1, ... and so it goes. {, p. 88)

Boolos gives a formal axiomatization of stages, and setnddrat stages, and in-
vestigates which set-theoretic axioms follow from this refeéerization. In many
respects we will end up agreeing with Boolos’s conclusiombere is one major
point of (possible) disagreement, however, concerningii@m of infinity. Thus, a

brief look at Boolos’s discussion of infinity is in order.

Boolos argues that the axiom of infinity follows from the #&tve conception of
sets, but this is only because, in characterizing sets assfbin stages, he assumes
that there is a limit stage, that is, stage After providing an axiom calledéhf he
writes:

Inf states that there is a “limit” stage, a stage later than sdageut not
immediately later than any stage earlier than it: the eristeof stage»r and
hence of such a stage b¥ claims to exist is a notable feature of the con-
ception we have describethf is too weak to capture the full strength of the
claims about the existence of infinite stages made in thehrdegcription; a
further axiom would be needed to guarantee the existencesiaigew + o,
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for example. It suffices, however, for the derivation of thatence of set the-

ory customarily called “the axiom of infinity’Inf, it should be noted, is used

only in the derivation of the axiom of infinity. &, p. 92)
Even if too weak to capture all of the iterative conceptiodescribed in the passage
quoted earliefnf is still, as Boolos puts it, quite “notable,” since it amositd noth-
ing less than assuming the truth of the axiom of infinity. Tikisot to say that Boolos
has given an incorrect description of (the intuitions behihe iterative conception,
rather, he has described one conception of set, which wetmd@diBoolos-iterative
set theory, that is codified by something like ZFC-replacetné what follows, a
more general conception of iteration (based on abstrgctiidhbe presented, one
that does not itself imply the axiom of infinity. Within thisafnework we can iso-
late additional principles of varying strength that imphn{ong other things) the
existence of an infinite set. In particular, we will see ekaathat assumptions are
needed in order to arrive at a theory akin to Boolos-iteesgiet theory.

3 NewV

As the first step toward a neologicist account of the limatatdf size conception
of set theory, a variation dLV due to Boolos J] called NewV has been proposed
(where Big(P)’ is an abbreviation for the second-order formula assertirag the
Ps are equinumerous with the entire domain):

New\/ (VP)(VQ)[EXT(P) = EXT(Q) < ((¥X)(PX < QX)
V(Big(P) A Big(Q)))].
A set is the extension of smallproperty:

Se(x) < (AP)[x = EXT(P) A =Big(P)].
The membership relation is defined in terms of EX&@ operator:
X ey <« (@P)[PxAy=EXT(P)].

Restricting the relevant quantifiers to seliewV entails the second-order exten
sionality, separation, empty set, pairing, and replacemeaoms® Oddly, however,
NewVproves the negation of thenion axiom

Union: (YX)(Setx) — 3y)(Sety) A (V2)(ze Yy« Yw)(Ze w Aw € X)))).
The reason for this failure is that the singleton of tBad extension (i.e., the single-
ton of the extension of alBig’ properties) is a set, but its union, thead extension
itself, is not.

We can reformulate the union axiom so that, for any set, thenaasserts the ex-
istence of another set that contains exactly the elememtgany set that is contained
in the original set, that is, we ignore any elements of thgioail set that are not sets
themselves:

Union®: (YX)(Selx) — Ay)(Sely) A (V2)(zey

< Yw)(Selw) A (Zew Aw € X))))).
NewV entails this variant of the axiom, sinc§@} = U{EXT(X = X)} = &. Here
I do not wish to get embroiled in debates regarding which e&¢his the “correct”
formulation of the union axiom, so in what follows we shalkexine the behavior of
both principles.

There are a number of ways that we might further restrict thteon of set. First,
we lay down two conditions concepts might satisfy:
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BoolosClosefF) <« (Yy)((Sety) A (V2)(ze y — F2) — Fy)
TransitivF) < (VY)((Sety) A Fy)(V2)(zey — F2)

We can then define several useful conditions that sets magjisfys
BoolosPuréx) < (YF)(BoolosClosefF) — Fx)

Transitivex) < (YF)((YY)(Fy < y € X) — TransitivgF))
Hereditary(x) < (3F)(TransitivdF) A (YY)(Fy — Sely)) A FX).

Intuitively, Boolos-puré sets are those that we can “build up” from the empty set.
A set is hereditary if its members are sets, and the membéismembers are sets,
and the members of the members of its members are sets. . fidthin. We can
straightforwardly prove thdllewV (in fact, any consistent restriction 8asic Law
V) implies that all Boolos-pure sets are hereditary. Theipdig, within NewV set
theory, of hereditary sets that are not Boolos-pure has brtmsively studied in
Uzquiano and Jané.f].

If we restrict the quantifiers to Boolos-pure sets or heegglisets we can still
derive the axioms of extensionality, separation, emptymeting, union (the original
formulation, in addition to unigf), and replacemeniNewV also proves the axiom
of foundation when relativized to the Boolos-pure setfialgh foundation may fail
for the hereditary sets (se&4]). The failure of foundation for hereditary sets will
become important in the discussion of the iterative conoaftelow.

Neither the axiom of infinity nor the powerset axiom (nor eittof them rela-
tivized to any of the restrictions discussed above) folloanf NewV alone, how-
ever? We should note that the failure of these axioms does not dkeperihe par-
ticular way in which we interpreted ‘set’ and™ within the theory ofNew\, since
the conditions relevant to the satisfaction of infinity amdverset can be formulated
independently of these definitions (namely, that the usiearontain a nonBig’
extension holding of infinitely many extensions on the onechand that the collec-
tion of extensions must be either countably infinite or oéslg for a limit o on the
other). Thus, if we wish to formulate a neologicist set tlysafra strength similar to
that of ZFC,NewVis mathematically inadequate.

4 The Basic Formal Theory

The first step in formulating the iterative conception of wéthin the neologicist
framework is to generate, in some neologicistically acalelat way, an ordering of
some definite collection of objects that can serve to enutraatages. We achieve
this by utilizing a variant of th©rder-Type Abstraction Principié

OAP.  (VR)(VS[OT(R) = OT(S) < R= S|.
Of course,OAP is inconsistent—th&urali-Forti Paradoxcan be derived from it.
Consider, however, thBize-Restricted Ordinal Abstraction Principie
SOAP  (YR)(VS)[ORD(R) = ORD(S) <> (((-WO(R) Vv Big(R))

A(=WO(S) V Big(S) v (WO(R) A WO(S)

AR = SA =Big(R) A —Big(9)))].
We first note thaBOAPIs satisfiable (our metatheory throughout the paper will be
first-order ZFC-foundation):
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Theorem 4.1  SOAP can be satisfied on any infinite set.

Proof Given an infinite seX, we can construct a model 8OAPwith X as domain:
Let « be the cardinality ofX. Then there is a 1-1 mappinfgfrom « onto X. For
each norBig well-orderingR on X, ORD(R) is f (y +1) wherey < « is the ordinal
such thatR is isomorphic toy. For any relationR on X whereR either is not a
well-ordering or isBig, ORD(R) is f (0). O

Additionally, SOAPis only satisfied on infinite models.

Theorem 4.2  Any model of SOAP has an infinite domain.

Proof Assume thaiM is a model ofSOAPwith domainD where| D |= n for some
finite n. Then there are distinct objects given 8APfor each of the well-ordering
types Q1,...,n — 1, and there is an object that is the valued®D(R) for any R
that isBig or not a well-ordering. Since this latter object is distifroim the objects
given by SOAPfor each of the nomig ordering typesD contains at leash + 1
distinct objects. Contradiction. O

The following abbreviation will be useful:
ON(«) < (AR)(a¢ = ORD(R) A —Big(R) A WO(R)).

It is important to emphasize that ordinal numbers (i.e.,dhgcts in the range of
the ORD operator), upon which we will be building our neologicistaant of set
theory, are not (or are not necessarily) identical to the ettt we usually call ordi-
nals (i.e.,.o, {¢}, {2, {@}}, ..., w, etc.). Thus, in what follows we will be careful
to distinguish between ordinal numbers (i@RD(R) for someR) and ordinals (i.e.,
transitive pure sets well-ordered by membership). Neede#ls, there is a clear cor-
respondence between the class of ordinals and the clasdinAbnumbers, and we
shall, for convenience, use lower case Greek letters fdr.bot

We define the ordering on the ordinal numbers generate8@4Pin the usual
way:

ORD(R) < ORD(S) < @A) NRX,y) — S(f(x), f(y)
A @) Vw) (@A) (R, w) — S(f(w), 2))).

The common theorems about well-orderings can be provedltbdfahe ordinal
numbers generated [OAPby standard proofs and are assumed in what follows.
Most important is the fact that Theorerms and4.2imply the following corollary.

Corollary 4.3  For any model of SOAP, the collection of ordinal numberseced
by <, is isomorphic to an infinitg FC cardinal number.

This implies that, in any model SOAR there is no last ordinal number.

Next, we have a principle telling us what objects we havessteeprior to “apply-
ing” the iterative operation of set formation. Thaasis Axionwill be some instance
of the following schema:

BA: BASEX) < ®.
The strength of our iterative set theory will depend greatiyvhat formula we select

for @, as we shall see in Sectiosand11 below when we examine some particular
candidates. There is no restriction that the members ofdkis lare not sets, and we
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allow that the Bad extension (Bad within the present context is defined below)
might be contained in the basis.

We now define the notion of ‘stage’. (In what follows, threfetient membership
symbols will appear.es is used when defining our notion of stagey is the set-
theoretic membership relation defined within the neolagiset theory. Finallye
without subscripts is to be understood as the memberstaporlof first-order ZFC-
foundation, used when we are working in the metatheory. Sigis—or their lack
thereof—will also be used to label notions defined in termhefvarious notions of
membership.)

X €sStg@) < ON(a) A BASEX) v (3P)(x = EXT(P)
A (3B)ONPB) AB <an(VY)(PYy—yesStygh)))).

The first stage consists of the elements of basis, and eachealiog stage contains
the basis (if any) plus the extension of every property alivbbse instances are
contained in some prior stage. This definition guaranteasitix s Stg(«) for
some ordinal numbar, thenx s Stg(8) for all 8 > «. The following abstraction
principle “generates” extensions of properties withiniteeative hierarchy:

Newer\/ (VPY(YQ)[EXT(P) = EXT(Q) < ((VX)(Px < QX)
V(—=(3a)(ON(@) A (VX)(PX — X €s Stg(@)))
A=(Fa) (ON(a) A (VX)(QX — X €s Stg(@)))))].

To clarify things, we can reworNewerValong the lines of Boolos'Blew\V.

Newer\/ (VPY(YQ)[EXT(P) = EXT(Q) < ((VX)(Px < QX)
v(Bad(P) A Bad(Q)))]

where

Bad(P) < —(J3a)(ON(a) A (VX)(PX — X €s Stg(a))).
Boolos’s definitions of set and membership can be reforredlat the present con-
text to obtain similar notions withilNewerVset theory NewerVset theory should

be understood to denote the theory that follows from thewsmtjon ofNewerVand
SOAR:!

Sei{x) <« (AP)[x =EXT(P) A —=Bad(P)],
Xeny < @AP)[PxAy=EXT(P)].

Along these lines, we can define notions of Boolos-pure betgditary sets, and so
on just as was done fotewVabove.

A clarification at this point is useful to avoid confusion. \8&n define the notion
of urelement in the standard way as follows:

Ure(x) < —Setx).

Again, there is no guarantee that the elements of the basallarrelements, or vice
versa.

If we restrict the relevant quantifiers to sets, tidgwerVentails the extension-
ality, empty set, separation, uniofbut not union), pairing, and powerset axioms.
Derivations are given in the appenditewerV like NewV, proves the axiom of foun-
dation if restricted to Boolos-pure sets, although fouimtatnay fail to hold of the
hereditary sets or sets in general. Similarly, the unioom@holds when restricted
to Boolos-pure or hereditary sets.
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5 NewerV and Abstraction

NewerV as formulated above, is circular—it contains referenstages on the right-
hand side of the biconditional yet our definition of stagetaors explicit use of the
extensions forming operator supposedly being defined. ©ffeite of it this objec-
tion does not seem overly compelling—as is well known, ferithplicit definitions
codified in abstraction principles suchtdsme’s PrincipleandNewVto do the work
intended, the quantifiers on the right-hand side of the @itmmal must range over
all objects, including the abstracts being introduced @&fihed) on the left. Once
this is accepted, there seems little reason not to explifier to extensions in our
definition of the identity conditions for extensions, singe are already forced to
quantify over them in such a definition. Nevertheless, a oethy which to avoid
this outright circularity would no doubt be welcomed, anddioately such a method
exists.

In order to avoid such circularity, we could have our extensiforming operator
‘EXT apply, not to concepts, but to pait®, «) whereP is a concept and is an
ordinal number. We then define the notion of stage

X €sStg' (@) < ON(A) A BASEX) v (38)(3P)(ON(B) A B < «
A X =EXTY(P, B) A (YY)(Py — Yy €s Stg*(B)).
The appropriate abstraction principle would be
Newer\*:  (VP)(Va)(YQ)(VB)[EXT*(P, a) = EXT*(Q, B) < ((¥X)(Px < QX)
V(—(ON(a) A (VX)(PX — X €5 Stgf(@)))
A=(ON(B) A (VX)(QX — X €5 Stg"(8))))],
and we would define set and membership as
Se(x)* < (3AP)(3a)[x = EXT*(P, a) A =Bad(P, o)],
Xeny <« @AP)Fa[PxAy=EXT(P, )],
where
Bad(P, a) <> =(ON(&) A (YX)(PX — X €5 Stg*(a))).
In order to insure that this method works, we need to verigf th
(YP)(Va) (VB) ((—Bad(P, @) A =Bad(P, 8)) — EXT*(P, ) = EXT*(P, B)),
that is,
(VPY(YQ) (Vo) (VB) ((—(ON(a) A (VX)(PX  — X €5 Stg'(@))) A
—=(ON(B) A (VX)(QX — X €s Stg"(B)))) — EXT*(P, ) = EXT*(Q, B)).

This can be straightforwardly derived froBOAP+ Newer\*.

Essentially, we have replaced the circular definition oéagtons with a recursive
definition, where at each “level” we introduce new extensidefined in terms of the
ones at previous levels. To make things more intuitive, wetbhank of the recursive
formulationNewer\* as schematic for infinitely many noncircular definitionsrof i
finitely many extension-forming operators. First, we obthie level-0 extensions:
Newer\: VPY(YQ)[EXTo(P) = EXTo(Q) < ((VX)(PX < QX)

V((@AX)(Px A =BASEX)) A (AX)(Qx A =BASEX))))]1,
that is, level-0 extensions correspond to those collestwinose members are mem-
bers of the basis. We then define level-1 extensions in tefieyel-0 extensions:
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Neweri: (VP)(VQ)[EXT1(P) = EXT1(Q) < ((VX)(PXx < QX)
V((@X)(Px A =BASEX) A —=(3F)(X = EXTo(F)))
AEX)(QXx A =BASEX) A =(FF)(X = EXTo(F)))],

where level-1 extensions correspond to those collectidisse members are either
members of the basis or are level-0 extensions. We can cmnitirthis way, explic-
itly defining more general extension operators, where thelde extensions corre-
spond to those sets whose members are either members ofsiseobare levemn
extensions for some < n.

While this method will only take us (at best, assuming botbugyh objects and
enough abstraction principles) as far as lavadxtensions fow < &g, we should
note that each instance Newer\ is, within the neologicist framework, an abstrac-
tion principle implicitly defining an abstraction operatT,, in terms of previously
defined operators. Newer\* is a generalization of this process, allowing us to han-
dle all cases simultaneously (including ranks numberedriynals for which we
might not have names) and thus does not, perhaps, desertidelod abstraction
principlein a literal sense. Nevertheled&gwer\* is a natural generalization of such
a piecemeal process of abstraction and seems well withisptini, if not the letter,
of the neologicist approach.

With NewerV* in place, we can define the notion of extension simpliciter:

X =EXT(P) < (Ja)(ON(@) A (VY)(Py — vy €s Stg*(a))
A X =EXT"(P,a)) VvV (Ya)(ON(a) — (3y)(Py
A Y ¢sStg (o)) AX = EXT*(Xx = x,0)).

In other words, the extension of a concépis the extensiohof P and any ordinal
a such thai P, «) is notBad, and is theBad extensionEXT*(x = x, 0)) if there is
no such ordinal. We can then define stages in terms of extenambefore:

X €sStgla) < ON(a) A BASEX) v (AP)(X = EXT(P)
A (3B)ONB) AB <an(VY)(PYy—yesStygh)))).

The resulting derivation olewerV (using this definition) fromNewer\* is left to
the reader.

This way of proceeding, using bounded quantification, agidismes what the
simpler formulationNewerV does, and in addition makes the recursive nature of
iterative extensions more expliciEXT*(P, «) is defined in terms o€s Stg", and
es Stg" is defined in terms oEXT*(Q, B) for B < «. Of course, it is possible
that neo-Fregeans (or their opponents) might firelver\* as objectionable as the
explicitly circular NewerV At this point | have no additional positive argument for
the acceptability oNewer\* other than its intuitive plausibility.

What can be noted, however, is that if the neo-Fregean refissaccept both
NewerVandNewer\*, then he will most likely find himself unable to formulate any
version of the iterative conception of set. There seems tadomeans by which
one can formulate a general iterative principle for absimas within the neologicist
framework other than by providing identity criteria for ttveo extensions occurring
on the left-hand side of the biconditional in terms of coimis being imposed (on
the right-hand side of the biconditional) on other extensithat might be members
of the original pair of extensions.
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The reader should note thewerVis meant to be the “official” formulation of
the neologicist iterative conception of sets and will beduigselow. The “recursive”
reformulationNewerV* is provided only to assuage worries regarding circularity.

6 Standard Models

Given a particulaBASE we constructanks within standard second-order ZFC-
foundation as follows:

Vease0) = {x:BASEXx)}
Veasea +1) = V(o) U(p(V(@))
Veasey) = Ui,y V() (y alimit ordina).

(The intuitive idea is that the members of the basis that waatovant to be sets
in the model based o¥igasgx) can be represented, in the model, by sets of cardi-
nality greater than the cardinality &Masgk).) Letting ® be an arbitrary set not
in Veasgk), to serve as thBad extension, we can now construct what we will call
standard models (consisting of domain and interpretatimction) of NewerV set
theory?!®

M@easer) = (Veasek) U {®}, I)
where for all relation symbolR,

I (ORD(R)) = «if o isanordinalinVgasg«)
and(«, €) is isomorphic tal (R)
I(ORD(R)) = ® otherwise
and for any predicat®,
I (EXT(P)) = {Xe€ Vpasegk):Xxel(P)}

if {X € Veasgk) : x € | (P)} € Veasgk)
I (EXT(P)) = ® otherwise

Note that it might be the case that € BASE in which caseVpasgx) U {®} =
Veasex). The fact that models of our neologicist iterative set thietwok” like
the standard iterative hierarchy is unsurprising. Let Ustes structuresM and
N extension-isomorphii there is a one-one onto functioh from the domain of
M to the domain ofN such thatf is an isomorphism with respect EXT (but not
necessarily\ORD).

Theorem 6.1  Any model of SOAR- NewerV of cardinality contains a substruc-
ture that is extension-isomorphic to M.

Proof Given a modeM of cardinalityx with domainD and interpretation function
I, letO c D be the domain of theDRD' operator undet . SinceD is of cardinality
«, andM is a model ofSOAR O (with its ordering) is isomorphic te. We can then
construct the copy 0¥z («x) (and thusMg ,)) recursively usingO, where thexth
rank is just the collection containing the extension of gvyaoperty all of whose
instances occur in ranks less thawhereVg (x) = 9). (I

The following result is useful in what follows.

Theorem 6.2 A standard model Masex) is a model of SOAR- NewerV if and
only if | Vease(x) |= « andk is infinite.
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Proof (=) AssumeM@gaser) is @ model ofSOAP+ NewerV If Mgasex) IS

a modelSOAR then Mgase«) must be infinite, but again b$OAR there must
be infinitely many ordinal numbers, somust be infinite. By an easy induction,
| VBase(y) |=| y | foranyy. Assumd Veasgk) |> k. Then, bySOAR there would
be| Veasek) | many ordinal numbers, but thévigase,) would not be a model of
NewerV(sinceNewerVentails a rank for each ordinal number). [Sésase«) |= .

(<) Assume| Veasek) |= « andk infinite. For anyx, Mpasgx ) iS @ model of
NewerV If | Veasek) |= «, thenSOAPgenerates many ordinal numbers, the right
amount fork ranks, soMaskex ) is a model ofSOAR O

Restricting our attention further, to models with emptyibase have the following
theorem.

Theorem 6.3  For infinite cardinalsk, | Vg (k) |= « if and only if eitherd, = «
or Kk = w.

Proof Evident from the fact that, firstyz(«) is the hereditarily finite sets, and
second, fok > w, | Vg(x) |= J. O

In other words Mg ) is @ model ofSOAP+ NewerVif and only if Vg (x) is the
collection of hereditarily-less-thansets.

7 The Axiom of Replacement

Our next step is to examine the axiom of replacentént:
Replacement: (VX)(Vf)@y)(V2)(zen X — f(2) en y).

In the specific case of standard modelsS&®JAP+ NewerVwhereBASE= & we
have the following.

Theorem 7.1  For any cardinalx, if Mg ) is a model of SOAR- NewerV, then
Mz, satisfies the axiom of replacement if and only i§ regular.

Proof (=) Assume thaM gz ) is a model ofSOAP-+ NewerVand the axiom of
replacement and assume, for reductio, tha not regular, that is;f () < «. Then
there is an ordingy < « and a functionf such thatf mapsy unboundedly into
k. Let Sbe the range of restricted toy. Then there is no ordinal numbersuch
that, for allx in S, x €s Stg@), so Sis Bad, that is, not a set. Contradiction, so
cf(x) = k andk is regular.

(«<=) Assume thaMl (g, is a model ofSOAP+ NewerVand thatc is regular. Leix
be any set and any function onVz(x), and letS be the range of restricted tox.
Clearly,| S|<| x |. x € Vg(«), and, sinceMg ) is a model ofSOAP+ NewerV
© (X) € Vg(k), so it follows thatp (X) € Vg (k). Thus,| X |<| Vg(k) |, and, since
M(z.«) is @ model ofSOAP+ NewerV | x |< «. So| S |< «. Thus, sincec is
regular and there is no function froginto « whose range is unbounded«nthere
must be ay < « such that, for ally in S, y €s Stg(y). ThusSis not ‘Bad, so
EXT(S) is a set. O

This allows us to prove that the axiom of replacement doeatiotv from SOAP+
Newer\V Definerr as follows:®
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T = o
TTn41 = :ﬂn
7 = Supm i < wl.

M.z is @ model ofSOAP+ NewerVsinced, = 7'° (in fact, it is the least such
cardinal) butr is not regular, sincef(zr) = w. Thus the axiom of replacement
does not follow fronSOAP+ NewerV The failure of replacement is, in this context,
equivalent to the failure of the followin§ame Size Principle

SSP (YP)(YQ)(—Bad(P) A P ~ Q) — —Bad(Q)).

On the other hand, the followingize Restriction Principldoes hold:
SRP (VP)(—Bad(P)) — —=(AQ)((VX)(QX) A P =~ Q)).

That is, no sets are equinumerous with the entire domain.

The failure of replacement should not come as too much of priseron the
iterative conception of set theory, however. Boolos, inéTterative Conception of
Set,” writes that

There is an extension of the stage theory from which the axiofmeplace-

ment could have been derived. We could have taken as axidnmst@nces

... of a principle which may be put, “If each set is correlatath at least

one stage (no matter how), then for any aétere is a stage such that for

each membew of z, sis later than some stage with whiahis correlated.”

This boundingor cofinality principle is an attractive further thought about the

interrelation of sets and stages, but it does seem to us tdusthar thought,

and not one that can be said to have been meant in the rougtipdiescof

the iterative conception. . . . Thus the axioms of replacd¢rdemot seem to

us to follow from the iterative conception. (Booldd,[p. 2627}
In the later paperd], after considering ways in which the iterative conceptiaight
be strengthened to secure replacement, he writes that

Whether some such strengthening. . . can be plausibly thaugho involve a

new principle that is not really part of the iterative conttep seems doubtful.

(131, p- 97)
Although Boolos’s examination is not conducted within trelogicist framework,
his comments regarding replacement agree both with thétseshtained here and
with intuition. Unlike the limitation of size conceptiorhe iterative conception re-
gards the size of a collection as irrelevant to whether oiitrreceives the honorific
‘set’. All that matters is whether the objects containedhia tollection are formed
at some point in the hierarchy.

8 The Basis and Infinity

SOAP+ NewerVplus the followingBasis Axiom

BAg: BASEX) < X # X,

that is,NewerVset theory with an empty basis, or what we might gaite NewerV
set theory, is extremely weak. Of the standard axioms, theares that hold here
are those proved above. In addition to the failure of the raxad replacement, the
axiom of infinity,'8

Infinity: @X)(DN en XA (VY)Y N X = YU{YIN EN X))

fails.

Theorem 8.1 Mg ) is a model of SOAR- NewerV but fails to satisfy infinity.
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Proof Mg, is just the collection of hereditarily finite sets (plus tiBad exten-
sion) which is countable, spVg(w) |= Ro, and Mg . is a model ofSOAP-+
NewerV There are no infinite sets Mz, ,), however, so the axiom of infinity is not
satisfied. O

TheorenB.1, combined with the results of the previous section, sufficgiow that,
relative toSOAP+ NewerV the axiom of infinity and the axiom of replacement
are independent, sindd ., satisfies replacement but fails to satisfy infinity, and
Mz, (with = defined as in the last section) satisfies infinity but failsettissy re-
placement. As far as providing the infinite sets needed tgtcoct real and complex
analysisNewerVset theory is no better off thavewVwas.

There seems to be no principled reason why we should not allwselves access
to some preliminary collection of objects which we can thetiect into sets, sets
of sets, and so on, however. The elements of the basis are,oom taditional
approaches to set theory, often ignored since they do noaaglthing substantially
new to the theory. From the present perspective, howevsiisthot the case.

In order to guarantee that we have an infinite set, we needassyme that the
basis contains infinitely many objects. Consider

BA,: BASEX) <> (ON(X) A X < w).
We might justify this axiom by noting that the finite ordinailmbers were guaranteed
to exist bySOAPalone, prior to any set theoretic theorizing, so there iseason

why we cannot form sets of these, or sets of sets, and so one IO be the
(countable) collection of finite ordinal numbers, then weéhthe following.

Theorem 8.2  For infinite«, |Vro(k) |= « if and only ifJ, = «.
Proof Similar to that of Theoremni.1 above. O

With 7 defined as before, the smallest madedf SOAP+ NewerV + BA, is
MEo,7)-

Theorem 8.3 SOAP-+ NewerV+ BA,, implies the axiom of infinity.

Proof For any finite ordinal numbew, (i.e., any object in the range @RD),

a €s Stg0). So for any collection of finite ordinal numbeys y e€s Stg(1). In
particular,@n €s Stg(1). Since the ordinal numbers are infinite (see Theofei)
the collection of collections of finite ordinal numbers (ahds Stgl)) is uncount-
ably infinite, and therefore so is the universe (this can lpgessed in second-order
logic, see ShapirolZ], p. 104). Thus all countably infinite well-orderings aret no
Big, so there must be a limit ordinal numbgi(i.e., an ordinal numbes such that,
for everyy < B, there is & such thaty < § < B.) So there is a set containing
all sets formed befor@ (sinces > 1, &N €N 2z, and, sinces is a limit ordinal
number, for anyw, if w ey zthenw U {w}n €n z since ifw s Stg(n), then
w UN {w}n €s Stgin + 2)). O

Note that we did not construct the set that is intuitivelyoasasted with the axiom of
infinity, that is,w, the set containing exactly the finite ordinals. The axiorimbhity
does not assert the existence of this particular (infingg)sowever, but asserts the
existence of a particular kind of infinite set, specificadlygme set containingy and
closed under the operation mappixgntox Uy {X}n. Here we have constructed
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a set (much) larger thab satisfying the relevant constraintg» can be obtained
immediately, however, by an application of separation.

There are other variants of the axiom of infinity, and the faatSOAP+ NewerV
+ BA,, implies these variants is nontrivial. Uzquianto] has shown that, if the
axiom of infinity is formulated as above, then second-ordemlo set theory
does not imply the following variant of the axiom of infinity:

Zermelo Infinity @X) (DN eN XA (YY)(Y N X = {VIN EN X)).

If we formulate Zermelo set theory usittgermelo Infinityto express the idea that
there is an infinite set, then the original axiom of infinityedanot follow. One can
easily prove thaZermelo Infinityfollows from SOAP+ NewerV+ BA,,, however.
Thus,SOAP+ NewerV+ BA,, is stronger than Zermelo set theory if the axiom of
infinity is formulated in either of these ways.

Once we accepBOAP+ NewerV+ BA, and see that every model contains at
leastwr ordinal numbers (again with defined as before), we might be tempted to
argue that, since we are guaranteedrdinal numbers, we should allow all ordinal
numbers less tham to be elements of the basis, adopting the followlasis Axiom
BA;: BASEX) <> (ON(X) A X < 7).

Of course, all models dOAP+ NewerV+ BA; will be much larger thaM ko ).
We could continue, formulating stronger and stronger siriles by allowing more
and more of the ordinal numbers into the basis. Once we haxtedtdown this route
it becomes difficult to know when to stop.

Additionally, it seems reasonable to require that we onlgl acstances of the
Basis Axionof the form
BAs : BASEX) <> (ON(X) A X < B8)
where the ordina is definable in terms of purely logical vocabulary suppletedn
if need be, by the abstraction operatoRD andEXT. Unlike the case of the finite
ordinal numbers, however, the proof thaexists cannot be formulated withivew-
erV set theory (even when supplementedB¥,), since it relies on replacement.
ThusBA, does not seem to be a promising candidate fBasis Axiont”

There is another option, however—since the ordinal numbe¥sgenerated by
SOAPwhich is, in some sense, theoretically pfioto Newer\/ why not just allow
all ordinal numbers to be contained in the basis? In othedsjor

BAorD: BASEX) <> ON(X).
We can, in this case, derive a version of the Burali-Fortagax.

Theorem 8.4 SOAP-+ NewerV+ BAorp is inconsistent.

Proof If every ordinal number is contained in the basis, and thusStgO),
then every collection of ordinal numbers is a set and is in(13tg Let us call
the set of ordinal number®. Let X = {S: Sis a set of ordinal numbers and
(Yn)(neny S— (Ym)y(m < n — mey S))}. Xis aset by the powerset and separa-
tion axioms. There is an isomorphism betwg¢én <} and{X, ¢}, f: O — X and,
forn ey O, f(n) = {m: m < n}. ThusX ordered byC is a well-ordering, and,
sinceX is a set, this relation is ndig, so there is an ordinal number corresponding
to it. But this ordinal number must be greater than any ofdioenber inO, since f
provides a mapping of the order type of each ordinal numbé&rinto, but not onto,
{X, C}. Contradiction. O



Iteration 77

Corollary 8.5 SOAP + NewerV impliesON(x)" is Bad.

Thus the best that we can do (if, in fa&4,, is acceptable) is to accefOAP+
NewerV+ BA, and as a result we obtain all of second-order ZFC except for th
axiom of replacement. It is worth noting th80OAP+ NewerV + BA, seems to
provide us with a good approximation to the iterative cotiogpof set attributed to
Boolos in Sectior? above.

9 NewV + NewerV

NeitherNewVnor SOAP+ NewerValone suffices to capture enough of second-order
ZFC for us to claim unequivocally that either provides a reathtically adequate
abstractionist account of contemporary set theory. Out tesk is to determine
whether combining the two principles suffices to providerthelogicist with such a
reconstruction. We will consider the conjunctiSB®AP+ NewerV+ NewVwhere
we understand occurrences &XT’ in each principle to be distinct occurrences of
the same operator.

Before looking at the formal attributes 8OAP+ NewerV+ New\, however,
we should take note of an obvious line of objection. For the-Reegean, at least,
an abstraction principle for extensions is meant to prosataething like an implicit
definition of the abstraction operat@XT’. In the investigation abovelewV was
understood as providing one candidate for such a definidindNewerVas provid-
ing an alternative such definition. In considering a theanmytaining botiNewVand
NewerV, however, we are faced with a situation in which we have, fieotf simulta-
neously accepted two such definitions. We might legitinyagelestion whether this
is coherent, much less desirable. More pointedly, we migirtder which of the two
principles is responsible for truly defining the abstractiperator in question, that
is, for introducing the new piece of mathematical languagg@roviding its mean-
ing. If one of the abstraction principles amounts to suchaplicit definition, what
is the role of the other within the neologicist framework?

It is tempting to think that we can avoid the objection by esihg the conjunction
of NewV andNewerVwith a single abstraction principle that combines the fdrma
features of both. For example, we might conclude that set®densions that are
both reachable in the iterative heirarchy and not B@" Let ‘Badyewy’ be the
predicate asserting that a propertig, that is,

Bathew(P) < EH(Y)(YY((f(X) = f(y) > x=Y)
A (YX)@EYPY A T(y) =X)),
and let Badvewerv be the corresponding condition for the iterative concaptas
developed above, that is,
Badvewer( P) < —(3)(ON(@) A (¥X)(PX — X €s Stg(@))),

with es Stg defined as before. Then the idea that sets are the extsmmsiooncepts
that are neither todig’ nor unreachable in the iterative heirarchy can be fornadat
as
NewestV (VPY(YQ)[EXT(P) = EXT(Q) < (VX)(PXx < QX)

V((Bad\lewv( P) Vv Bad\lewer\/( P))

A(Badvew(Q) Vv Badewerd Q))))].

Unfortunately, this principle is no more powerful thilewerValone.
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Theorem 9.1  Any model of NewerV is a model of NewestV.

Proof A consequence of the fact thidewerVimplies the size restriction principle
from Section?, that is, in any model dNewerV, every Big' conceptis Bad. [

Similar problems plague
NewestV:  (YP)(VQ)[EXT(P) = EXT(Q) < ((¥X)(PX < QX)
v (Batkew(P) A Batewer P)
ABatew(Q) A Badhewer Q)))].
Thus some other strategy must be adopted in order to obthgoayt combining the
strength oNewV + NewerV/
Another option might be simultaneously to adopt the two ggles but to treat

them as implicit definitions of two distinct abstraction ogiers, EXTnewy and
EXTnewervs that is, we rewritdNewVandNewerVas

NewV. (YP)(VQ)EXTnew(P) = EXTnew( Q) < ((YX)(PX < QX)
V(Bathew(P) A Batvew( Q))1;
NewerV. (VP) (VQ)[EXTNewer\/( P) = EXTNewer\/(Q)

< (YX)(Px < Qx) Vv (Badvewer P) A Bathewerd Q)1

This approach will, from a formal perspective, accomplighatwve want, since the
constraint on the cardinality of the domain imposedN&wVwill guarantee that the
replacement axiom holds when interpreted in termB0fyewerys and the constraints
imposed byNewerVwill imply that the powerset axiom will hold when interprete
in terms ofEXTnewv-2*

There is philosophical problem, however. Do we identifgsefNewVextensions
or asNewerVextensions? The problem is exacerbated by the following.

Theorem 9.2 There is a model M such that M is a model of NewV, NewerV, and
(V P)(EXTNeWV( P) 7’é EXTNewer\/( P))

Proof Let f : w — Vig, &, (w) be any enumeration of;g, g, (). Then (ex-
tending the notion of standard model in the obvious wiily)= (Vg, .} (@), )
where”®

| (EXTnew(P) = 1(P)if 1(P) € Vigy.0y (@)
| (EXTnew(P)) = ®1  otherwise
and
[ (EXTNewer(P)) = (f(2n+1)if | (P) € Vig,,®,) (@) andl (P) = f(2n)
| (EXTnewerdP)) = F(20)if 1(P) € Vig,. 00 (@) andl (P) = f(2n+ 1)
| (EXTnewer(P)) = ®2 otherwise

O

What we have here is a particularly vicious version of thesaaproblem: given two
distinct abstraction principles for two distinct extensigperators, we cannot even
determine whether the empty extensi@XTnew(X # X)) arising fromNewV is
identical to the empty extensigEXTnewerX 7 X)) provided byNewerV
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What we need are necessary and sufficient conditions fod#aity of two ab-
stracts that are generated by different abstraction plesi InThe Limits of Ab-
straction[7] Fine discusses this problem at length, and his solutioersffis a way
out of our present difficulty. After considering and rejactithe idea that abstracts
provided by different abstraction principles must be distisince, for example, the
finite numbers generated byume’s Principleand restrictions of it, such dsnite
Hume?® ought to be the identical), he suggests that we

. . . face the possibility that the criteria of identity [ofstihct abstraction
principles] might be different in a way that is not relevamthe identities of
the abstracts in question. And this might lead one to. . . takeabstracts to
be the same when their associated equivalence classes aanib, regardless
of the means of abstraction by which they were obtaified7], p. 49)

The ideais simple: each abstraction principle divides egtillection of concepts on
the domain into one or more equivalence classes, and eadf thmese corresponds
to an abstract. If we think of the abstracts as going proxytferequivalence classes,
then any two abstracts that correspond to the same colteofi@oncepts should
be identical regardless of what abstraction principle wssito “generate” thertt.
We can formalize this as th@eneral Abstract-ldentity Schema Given any two
(legitimate) abstraction operators;@nd @:

GAS: (VP)(VQ)(@1(P) = @2(Q) < (YF)(@1(F) = @1(P)
<~ @2(F) = @2(Q))).

Of interest at present is the instance governing our twonsioa operators:

(V P)(VQ)(EXTNewV( P) = EXTNewerV(Q)
< (VF)(EXTnew(F) = EXTnewd(P)
< EXTnewerF) = EXTnewerdQ))).

If we haveGAS we can define sethood and membership in terms of those etsstra
that are th&EXTnewy aNAEXTnewerv Of the same (dually) noBad concept:

A —Badyew(P) A ~Badvewer( P)]
Xxey < (AP)[PxAX=EXTnew(P) A X = EXTnewer( P)].

On these definitions, the conjunction Mew\, NewerV and the relevant instance
of GASentails the axioms of extensionality, separation, emptysring, uniori
(but not union), powerset, and replacement axioms. TBASprovides us with a
means for combining two abstraction principles for extensithat is consistent with
neo-Fregean ideas about implicit definition yet deliveesdhsired results.

In what follows, however, we shall as a matter of convenierseNewV+ New-
erV, assuming that the same abstraction operator occurs irpbottiples, since this
allows us to straightforwardly adopt results that were prbearlier (or elsewhere)
for one or the other of these two principles. The reader shkeép in mind that
this conjunction of ‘definitions’ of the extension operatB KT’ can be replaced by
a richer (but formally less tractable) account of identignditions across distinct
abstraction principles’
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10 NewV + NewerV and Infinity

With SOAP+ NewV+ NewerVin place, we define notions such as set, membership,
ordinal, Boolos-pure set, and hereditary set as beforst &ff, we note thaSOAP
+ NewerV+ NewVis consistent.

Theorem 10.1  SOAP+- NewerV+ NewV is satisfied by k) «)-
Proof Straightforward, left to the reader. O

This also shows that the axiom of infinity fails to follow fro80AP+ NewerV
-+ New\. The results of previous sections suffice to show B@AP+ NewerV+
NewV proves the axioms of extensionality, separation, emptyting, uniorf,
powerset, and replacement.

As one might expect, interesting consequences follow frieendonjunction of
these two “definitions” of set that do not follow from eithdoae. As an example
we have the following.

Lemma 10.2 SOAP-+ NewerV+ NewV implies that, for all P, P is Big if and only
if P is Bad.

Proof Straightforward, left to the reader. O

More significantlySOAP+ NewerV+ NewVproves that every object is either a set
or is in the basis (although as we shall see some objects imighdth).

Theorem 10.3 SOAP+ NewerV+ NewV impliegvVx) (UR(x) — BASEX)).

Proof Assume for arbitrara thata is an urelement, that is is not a set. Since
both NewV and NewerV are only satisfied on infinite models, the property corre-
sponding to X = &’ is not Big, and thus noBad, that is,(3«) (ON(«@) A (YX)(X = a

— X €s Stg(w))). Let g be the least ordinal such thatx) (x = a — X €s Stg(8))),
thatis,p is the least ordinal such thates Stg(b)). Assume thag > 0. Then by the
definition of stage$3P)(a = EXT(P) A (38)(8 < B A (VY)(Py — y €5 Stg(8)))).
So(AP)(a = EXT(P) A (38)(ON(S) A (VY)(Py — y €5 Stg(§)))). Thusa is a set.
Contradiction, s = 0 anda is in the basis. O

As a result of this we have the following.
Corollary 10.4 SOAP+ NewerV+ NewV implies the Urelement Axiom:
@) (Setx) A (YY) (UR(Y) < Yy N X)).

Corollary 10.5  Every model of SOAR NewerV+ NewV is extension-isomorphic
to Masex) for some cardinak such that eithexk = w and BASE is finite ok is
inaccessible and >| BASE].

Corollary 10.6 If Mpase«) is a model of SOAP+ NewerV + NewV, then
® € BASE.

Thus,SOAP+ NewerV+ NewVcaptures all of ZFC except for the axiom of infinity
and the axiom of foundatiof. We set aside foundation until Secti@f.

As already notedSOAP+ NewerVplus the claim that there are infinitely many
elements in the basis implies the axiom of infinldewVplus the claim that there are
uncountably many objects implies the axiom of infinity. Heseconsider a principle
that is independent of each of these assumptiéns:
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InfNonSets  “There are infinitely many urelements.”

NewV has models with uncountably many sets but only finitely maorysets, and
models with infinitely many nonsets but only a countable ibfinf sets. Similarly,
SOAP+ NewerVhas models with infinitely many nonsets but only finitely many
objects in the basis and, as we shall see in Sedtioit also has models with finitely
many nonsets but infinitely many objects in basis. Thus tHevfing is not trivial,
even if its proofis.

Theorem 10.7 SOAP+ NewerV+ NewV+ InfNonSets implies the axiom of infin-
ity.

Proof Assume that there are infinitely many urelements. Then, bgofdm9.2,
there are infinitely many objects BASE NewerVplus the claim thaBASEhas
infinitely many members implies the axiom of infinity. O

This provides the following.

Corollary 10.8  SOAP+ NewerV+ NewV+ InfNonSets is satisfied by (M), . if
and only ifx is an inaccessible cardinal.

Thus every model o6OAP+ NewerV+ NewV + InfNonSetss also a model of
second-order ZFC-foundation.

Of course, the crucial question is not what principles camadded toSOAP+
NewerV+ NewVin order to derive the axiom of infinity, but what additionaas
logicistically acceptable principle will provide the axrioof infinity. Provided that
GASprovides the correct account of identity between abstaiseng from distinct
abstraction principles, however, a neologicist justifmabf InNfNonSetss straight-
forward.

The neologicist need only accept, in additionS®AP+ NewerV + New\, a
restricted version oflume’s Principlesuch agFinite Hume®?

FHP:  (YP)(VQ)[NUM(P) = NUM(Q) < (P ~ Q

V(= Finite(P) A = Finite(Q)))].
(‘ Finite(P)’ is an abbreviation of the second-order formula assertirggrtonexis-
tence of a 1-1 correspondence from Binto, but not onto, th@s).2*

If we combineFHP with SOAP+ NewerV+ NewVand the relevant instance of
GAS

VPY(VQ)Y(NUM(P) = EXT(Q)
< (YF)(NUM(F) = NUM(P)
< EXT(F) = EXT(Q))

we obtain the following.

Theorem 10.9 FHP + SOAP+ NewerV+ NewV-+ GAS implies InfNonSets.

Proof Combine the standard proof of (part #fege’s Theoreni.e., the claim that
there are infinitely many numbers) with the fact that, sinmedachFHP number
X wherex # 0, (AP)(FQ)(X = NUM(P) = NUM(Q) A =(YY)(Py < Qy)), all
numbers (other than 0) are not extensiéns. O

This provides the necessary corollary.
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Corollary 10.10 FHP + SOAP+ NewerV+ NewV+ GAS implies the axiom of
infinity.

11 Foundation and Non-well-founded Sets

In this section we will examine the status of the second+oagm of foundation:

Foundation  (YP)((¥X)(Px — Se(x)) — ((3y)(Py)
— @AY(PYA—=32)(PzAzen ¥)))),

and the prima facie weaker axiom of regularity:

Regularity (VX)(Setlx) — (3y)(y en X)
— @YY en XA (T (Zen XA ZENY))))

within NewerV+ NewVset theory:®

As was the case withNewV or NewerValone, SOAP+ NewerV+ NewVproves
foundation when the quantifiers are restricted to Boolag@ets, but foundation,
and the weaker axiom of regularity, can fail to hold of allss@tr even all hereditary
sets. To show that regularity restricted to the hereditatg &ils to follow from
SOAP+ NewerV+ NewV (and thus the unrestricted versions fail to follow as well),
it suffices to show that the@Axiom,*’

QAxiom @AX)(YY)(Yy € X < Yy =X),
can be consistently added$®AP+ NewerV+ New\,

To show this we will construct models within Aczel's (firstder) Non-well-
founded set theory (se€]). Since Aczel's systems are all interpretable within
first-order ZFC-foundation, the results below can be pravighin ZFC-foundation
directly, although the presentation is less straightfedv@hus our adoption of non-
well-founded set theory is a matter of convenience only,@nd'official” metathe-
ory remains first-order ZFC-foundation. (It should be nateat none of the results
used below depend on the particular formulation of the Aotindation Axiom—
any of the variants discussed in the literature will suffiéee Rieger]1] for a nice
discussion of the popular variants).

The following demonstrates that we can, in a sense, haveaily many non-
well-founded sets itNewV + NewerVset theory.

Theorem 11.1  SOAP+ NewerV+ NewV+ InfNonSets is satisfied by (BAsex)
where BASE is the pairwise union of any transitive set of weti-founded sets and
{®} and« is any inaccessible such that>| BASE]|.

Proof The transitivity ofBASEguarantees that for any set that is also in the basis,
all of its members are in the basis. The remainder is strinighéard. O

The consistency a2 Axiomis immediate.

Corollary 11.2  SOAP+ NewV+ NewerV+ InfNonSetsi- QAxiom is consistenit:

Proof Since, letting be a set such th& = {Q}, {Q} is a transitive set of non-
well-founded setsM o, 1.¢) IS @ model oSOAP+ NewerV+ NewV+ InfNonSets
+ QAxiom O

SinceQ is a hereditary set, we have the desired corollary.
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Corollary 11.3  SOAP+ NewV+ NewerV fails to imply foundation or regularity
restricted to hereditary sets.

If we combine Theoreml0.9 with the following lemma we obtain a corollary
promised in Section.

Lemma11.4 SOAP+ NewerV+ NewV implies that if ey X, then x is an element
of the basis.

Proof Assume for an arbitrary thata €N a. Eithera is a set ora is not
a set. By Theorenm®.2, if a is not a set, thera is in the basis. So assume
thata is a set. Thus the property corresponding %o €N @’ is not Bad, so
(Ja) ((« is an ordinal numbera (VX)(Xx eny @ — X €s Stg(w))). Let B be the least
ordinal such thatvx)(x ey a — x €s Stg(B))). Assume thag > 0. It follows
from the definition of stage&vy)(y en a — (38)(8 < B A Yy €s Stg(§)). Since
a en a, we have(35)(§ < B A a €s Stg(d)). Contradiction, s = 0 anda is in
the basis. O

Corollary 11.5 SOAP+ NewerV+ NewV has models with finitely many nonsets
but infinitely many members of the basis.

Proof Let BASEbe any infinite transitive set of non-well-founded sets anan
inaccessible cardinal such that>| BASE|. ThenMgasgg).«) iS @ model of
SOAP+ NewerV+ New\, [l

Thus,SOAP+ NewerV+ NewVdoes not rule out the existence of non-well-founded
sets.SOAP+ NewerV+ NewVdoes rule out the simultaneous existence of all non-
well-founded sets, however. The following is a theorem ohNeell-founded Set
Theory:

vX)3AY)(V2)(ze y < (Z=YV Z € X)).
In other words, given any s&tthere is a sey (not necessarily distinct) that contains
exactly the members of and itself. This can be expressed wittNewV + NewerV
set theory as
WeakNWE (VP)(—Bad(P) — (3Q)(—Bad(Q)

ANVX)(QX < (PXV x = EXT(Q))).

This principle, far weaker than any of the popular formwas of the Anti-
foundation Axiomis nevertheless incompatible wikewerV+ NewVset theory.

Theorem 11.6  SOAP+ NewerV+ NewV+ WeakNWEF is inconsistent.

Proof There is an obvious correspondence between the ordinal ensnals pro-
vided by SOAPand the sets usually referred to as ‘ordinals’ (i.e., theditave pure
sets well-ordered by). By previous results, the property correspondingxads
an ordinal number’ iBad, and thusBig, so the collection of ordinals Big. Con-
sider a functionf such thatf(x) = y if and only if forall z, z ey vy if and
only if eitherz ey x or z = y (the existence of such a function is guaranteed by
WeakNWFand choice). Note that if (x) = v, it follows thaty ey y. Assume that
f(x) =y = f(2) for x, y ordinals. Then for allv, w en y if and only if w en X
orw = yifandonlyifw ey zorw = y. So, for an arbitraryw, if w en X
then eitherw en z or w = y. But since foundation holds of the ordinais,# y.
Thusx Cy z, and similarlyz Cn X. Thus,x = z, so f restricted to the ordinals is
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1-1. So the image of the ordinals unders Big. But for anyy, if y is in the image
of the ordinals undeff, theny is in the basis. Thus the property corresponding to
‘X € BASE s Big. Contradiction. O

Thus although set theory based NewV plus NewerVis consistent with the ex-
istence of (some) non-well-founded sets, it cannot todethe addition ofall of
them?°

12 Philosophical Lessons

There are four main areas of interest that arise in the casgaof the limitation

of size conception of set (as codified New\) and the iterative conception of set
(as codified inNSOAP+ Newer\). Each is associated with the status of one of the
standard set-theoretic axioms. The axioms at issue arexibms of powerset, re-
placement, infinity, and foundation.

As we have seeiNewVimplies the replacement axiom but fails to secure the truth
of powerset; alternativelpOAP+ NewerVimplies the powerset axiom but fails to
secure replacement. Thus, if we are forced to choose a sabgkeaction principle
that provides the “definition” of set, then we are left her¢étma dilemma—given a
choice, would we rather have the powerset axiom and forgglacement, or have
replacement and forego powerset?

Of course, this choice is not just a matter of personal pesfee. The power-
set axiom is necessary for the formalization of much of caomperary mathematics
within set theory, taking us from the naturals (modeled, &ygthe finite ordinals) to
the reals (modeled by the sets of finite ordinals), from tlaésrto the theory of func-
tions on the reals (modeled by sets of sets of finite ordirzald)so on. The axiom of
replacement, however, is for the most part only used in rathecure and esoteric
branches of pure set theory such as accounting for the bmtaitransfinite ordinals
and cardinalé? If we are interested in using our set theory to provide a faiod
for much or all of mathematics, including but not limited teetmathematics nec-
essary for doing science, then when faced with the optionasfriy powerset or
replacement but not both, the appropriate choice seems—€fgaverset is more cru-
cial to formulating modern mathematics within set theorgvattheless, in failing to
imply one or the other of these central axioms, neither abgtm principle seems to
satisfy the demand for mathematical adequacy.

Adopting SOAP+ NewerV+ NewV (or, perhaps more plausibly, by adopting
SOAP+ NewerV+ NewV+GASas discussed in Sectid), the worries about re-
placement and powerset evaporate—both are derivable fremoinjunction of these
abstraction principles. Additionally, this approach diais nicely with the historical
development of axiomatic set theory, motivated as it wasnmydompeting concep-
tions of set each corresponding to one of the abstractiowiptes in question. Of
course, we have not dissolved all problems for a neologsestheory, or even all
problems relating to replacement and powerset, in thisip&yevertheless, the the-
ory based oMewV+ NewerVseems to be the most promising candidate so far for
a neologicist account of sets.

The most pressing problem for a neologicist reconstruatioset theory, how-
ever, whether based on one abstraction principle or marikigigxiom of infinity.
Unfortunately, the axiom of infinity does not follow frofddew\, SOAP+ NewerV
or SOAP+ NewerV+ New\. Thus the neologicist needs to find some additional
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principle that implies that there is an infinite set. Somespinkties have been ex-
plored above. AgaimlewV+ NewerVset theory comes out on top, as the axiom of
infinity follows merely from the additional assumption tlla¢re are infinitely many
nonsets (i.e.,InfNonSety which in turn follows from other neologicist principles
plus our identity principlé&sAS Even ifGASturns out not to be neologicistically ac-
ceptablenfNonSetgertainly seems less problematic than the assumptionsedeed
to obtain the axiom of infinity when working withiNewV set theory or the theory
of SOAP+ NewerValone.SOAP+ NewerV+ NewV+ InfNonSetss a promising
candidate for a sufficiently powerful neologicist accouigets.

With regard to the foundation axiom, howevBQOAP+ NewerV+ NewVis, in
one sense, little better than the weaker theories. Fowndadilds of the Boolos-pure
sets but can fail on the hereditary sets. Perhaps this isheuid be, since the axiom
of foundation is of a different character than the otherdsad axioms of ZFC. Each
of the other axioms is of one of two forms. First we have straaxistential claims:

@NVa)(zey < 2(2).

Infinity and empty set are axioms of this type. Second, we bauditional existence
claims:

(VX)) (¥X2) ... (¥VXn)@AY)(V2)(z € Y < P (Z, X1, X2, ..., Xn))

These axioms state that, given any sequence of sets (ot®hjesecond set with a
certain relation to the given sequence of sets (objects)edsts. Separation, pow-
erset, replacement, union, and pairing are all conditieratence axioms. Foun-
dation, on the other hand, is of a very different logical eleéer, displaying the
following logical form:

(VX)) D (X).

Foundation does not imply the existence of any new sets lstead imposes a re-
striction on what sorts of characteristics sets can havataréby restricts what sets
can in fact exist. This restriction was originally motivadtiey a certain view about
how sets should be structured, a view motivated by the idatatkie set theoretic
paradoxes were caused by circularity. Even if this restricis motivated by an in-
tuitive picture that also underlies the iterative conaapbf set, a conception that we
have accepted in the form dfewer\/ we need not feel forced to thereby accept a
wholesale ban on circularity.

Instead we can view the neologicist as replacing one regporthe set theoretic
paradoxes (an overwhelming fear and avoidance of anythinglar) with another
response (the idea that acceptable abstraction pringptesde secure foundations
for mathematical theories irrespective of circularity) réconstructing contemporary
set theory he is forced to adopt some of the restrictionsebalived from the prior
view of the nature of sets (i.e., those following from theaté/e picture of sets as
codified byNewer\}, but he is free to countenance circular sets to the extantik
new set theory allows. On this way of viewing things it is getfy reasonable that
neologicist set theory implies that certain sorts of setydhe axiom of foundation
but leaves open the question of whether all do.

Another way of making the same point is to note that the necistgcan construct
a set theory that implies all of the axioms of second-ordet #fhe merely modifies
his definition of ‘set’. Instead of having sets be the extensiof properties that are
not ‘Big’ (or Bad), let sets be those objects that are both extensions of giepthat
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are not Big' and contained in every Boolos-closed concept (i.e., thel@®pure

sets). As we have seeBOAP+ NewerV+ NewV + InfNonSetgproves all of the

axioms of second-order ZFC restricted to these objectss,Témsuming that all of
these principles are neologicistically acceptablewerV+ NewV set theory (with

a principle guaranteeing an infinite set) in a sense “costdinl second-order ZFC,
but also leaves room for the existence of other non-welhétad sets.

To sum up,SOAP+ NewerV+ NewV + InfNonSetprovides the neologicist
with a set theory that is (roughly) as strong as full secordenZFC. As already
noted, detailed philosophical defense of the acceptatufithese principles is still
necessary. Nevertheless, the mathematical problem—ndieieg whether there is a
mathematically adequate neologicist set theory—seems solved.

Appendix A

Although | have given these proofs (and the ones in the madly bbthe text) rather
informally, each of them can be straightforwardly (thougtibusly) rewritten as a
formal deduction within second-order logic.

Lemma A.1 (—=Bad(P) A (YX)(QX — PXx)) — —Bad(Q).

Proof Assume thatP is not Bad and that(vx)(Qx — Px) holds. Then
(o) ((« is an ordinal numbera (VX)(Px — X €s Stg))). So (o) ((« is an
ordinal number A (Vx)(Qx — X €s Stg(«))). SoQ is notBad. O

Lemma A.2 (—Bad(P) A EXT(P) = EXT(Q)) — —Bad(Q).

Proof AssumeP is notBad andEXT(P) = EXT(Q). Then eitherP is Bad and
Q is Bad, or (Vx)(Px < QXx), so by LemmaA.1, sinceP is notBad Q is not
Bad O

Lemma A.3 —BadP) — (VX)(X en EXT(P) < PX).

Proof Assume thatP is not Bad Given an arbitraryx, if x ey EXT(P)
then (3Q)[Qx A EXT(P) = EXT(Q)]. Since P is not Bad this implies that
HQIQX A (VY)(Py <« Qy)], that is,Px. Similarly, given an arbitrarx such that
Px, it follows that[Px A EXT(P) = EXT(P)], so(3Q)[QX A EXT(P) = EXT(Q)],
that is,x ey EXT(P). O

Theorem A.4  NewerV entails Extensionality:

(VX)(Setx) — (Yy)(Sety) - (VO((Zen X <> Z€Y) = X =Y)).

Proof Letx andy be sets. Thex = EXT(P) andy = EXT(Q) whereP and
Q are notBad It follows, by LemmaA.3, that (Vz)(z en EXT(P) < P2
and (V2)(z en EXT(Q) <« Q2. Assume thatVz)(z € x < z € y) holds,
that is, (Vz)(z en EXT(P) < z en EXT(Q)). Then (Vz)(Pz < Qz), so
EXT(P) = EXT(Q), orx =y. O

Theorem A.5 NewerV entails Empty Set:
(Fx)(Setx) A (VY)Y ¢n X)).
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Proof Letx = EXT(Yy # y). Then Setx), since 1 is an ordinal number and
YY)y #y — y €s Stg1)). Additionally, (Vy)(y ¢ X), since for noz is it
the case that # z. O

Theorem A.6  NewerV entails Separation:
(YP)Y(VX)(Sel(x) — 3y)(Sely) A (Y2)(zen Y < (Zen X A P2).

Proof Let P be a property andl a set. Therx = EXT(Q) whereQ is notBad Let
y = EXT(P A Q). Then Sety), sinceP A Q is notBadby LemmaA.1. Also, for
anyz, z ey yifand only if (PzandQz) if and only if Pzandz en X. O

Theorem A.7 NewerV entails Unioh

(VX)(Setx) — (3y)(Sety)
AVZ)(zen Y < @w)(wisasetA (Zeny w A w EN X))))).

Proof Let X be a set, so that = EXT(P). Thus3«)((« is an ordinal number

A (VX)(PX — X e€s Stgw))). If w en X, then by LemmaA.3, Pw, so

w €s Stgw). In other words, eithemw is in the basis(w e€s Stg0)) or
AQw = EXT(Q) A @B)(B < a A (YY)(QY — Y €s Stygp)). Soifwis

a set, then for any en w, Qz soz €s Stg(8), and thus, for alz andw such that

Z € w € X, Z€s Stg(w). Let S be the property holding of just the members of
members ok. Then(Vy)(Sy — y €s Stg(a)), SOEXT(S) is a set and is the union
of x. O

Theorem A.8 NewerV entails Pairing:
(VX)(Setx) — (Yy)(Sety) — (F2)(Sel)A(Vw)(w eN Z< (w = XVw =Y))))).

Proof Let x andy be sets. Then there is B such thatx = EXT(P) where
(3a)((« is an ordinal numbera (VX)(PXx — x €s Stg(x))) and there is & such
thaty =EXT(Q) where((38)((8 is an ordinal numben (¥x)(Qx— X €s Stg(B))).
Letsd = max(, B). Thenx es Stg(§ + 1) andy €s Stg(d + 1). Let F be the prop-
erty that holds of exactly andy. ThenEXT(F) is a set and is the pair set »fand
y. O

Theorem A.9 NewerV entails Powerset:
(Yx)(Setx) — Ay)(Sety) A (Y2)(zen Y < (Yw)(w EN Z— w EN X)).

Proof Let X be a set, that isx = EXT(P) where (3a)((« is an ordinal number
A (VX)(PX — X €s Stg(w))), and lety be a subset of, that is, there is & where
y = EXT(Q) and(Vx)(Qx — PXx). So(Vx)(QX — X €s Stg(w))) and it follows
thaty es Stgle + 1). Let S be the property holding of exactly the subsetscof
EXT(S) is a set and is the powersetxaf O

Notes

1. This paper is intended, among other things, to further timepasison of the iterative and
limitation-of-size conceptions of set begun by Boolosdhgnd [3].
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| assume standard set theoretic semantics for secondiogierwhere the second-order
predicate variables range over the full powerset of the dormad which contains the
second-order axiom of choice and the full comprehensiorrseh For details seé 7).

. Every abstraction principle considered in this paper caexpeessed using only the re-

sources of second-order logic (plus, in some cases, pigyidefined abstraction oper-
ators). | give the formal expressions in the notes as negeSdae second-order formula
expressing that there is a one-to-one correspondence éretivePs and theQs is

AR ((VX)(PXx = @A'Y)(QY A RxyY) A (V2)(Qz— (AX)(PX A RX2))
where(3!x)(®x) is an abbreviation for
@) (DX A (YY)(PY — Y = X)).

. There have been a number of careful and thorough studieg diigtorical development

of, and interactions between, these two notions of setetdil(] being one of best. |
do not propose to make any contribution to this historicajgut here, but intend rather
to examine the technical merits of the iterative concepéi®formulated within the neo-
logicist framework.

AH)EANTX) = F(y) = x = y) A (X)EY(PYyA f(y) = x). Inlight of
the Schrdder-Bernstein theorem, which can be proved innskeorder logic (seell],
pp. 102-103), this can be simplified @®f ) (VX)) @y)(Py A f(y) = x).

The axiom of choice for sets follows immediately from thetfd@at we have assumed
that choice holds in second-order logic.

Boolos-closed and Boolos-pure are the conditions Boollis ‘@dosed” and “pure” on
p. 100 of [B]. The formulation of the notion of hereditary sets, and theayvation that
the class of hereditary sets need not be coextensive witbldiss of Boolos-pure sets,
appears for the first time in Uzquiano and Jah4 [as does the terminology “Boolos-
pure”).

. To see that the axiom of infinity does not follow frddewVwe need merely note that the

model (Vg (), 1) satisfiesNewVwhere (for® an arbitrary object, not a hereditarily
finite set):

Vigi(0 = (&}
Vigi(n+1) = Vg U (0 (Vig)(M))
V{®}(w) = UV{®}(n)(n € w)
LEXT(P)) = (Xe€ Vig)(@):xel(P)if {x e Vg)):x e | (P)} finite.
I(EXT(P)) = ® otherwise

Demonstrating the independence of the powerset axiom isradse complicated. (See
Shapiro and Weir13].)

R = Sabbreviates the claim that the relati@is isomorphic toS. We can give the
second-order formula foR and S being isomorphic as follows. First, the following
abbreviations: AX) < @AYRX YV R(Y,X)
We then have Bly) < @y(SX,y) Vv Sy, X).
R=ES « AHY)AX) — B(f(X)) A (¥X)(BX) — Ay)(f(y) =x)
A YOI = fly) > x=Y)
A (YO YY(RX, Y) < S(F(x), F(Y)))).
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WO(R) abbreviates the claim th& is a well-ordering. DefinéA(x) as in footnoted
above. Then
WO(R) <« (YX)(=R(X, X)) A (¥X) (YY) (Y2)((R(X, ¥) A R(Y, 2))
— RX,2) AP)Y(3EX)(PX) A (VX)(PX = A(X)))

- @ANPYAVD)(Pz— (z=yV R(Y.2))).

Although it is tempting to identifyes and ey, the reader should be careful not to.
‘X €g Stglw)’ is a defined binary relation holding between an obje@nd an ordinal
numbera, and asserts, intuitively, thatis “formed” by theath stage. In other words,
‘eg’ and ‘Stg(«)’ are not separable pieces of vocabulary. On the other hang, éx-
presses a relation holding between an object and an exterfsia resultx e Stg(w)’

is not well-formed in the language given above. Neverttsles

(YX) (Vo) (ON(ar) — (X €5 Stgar) <> x €N EXT(Y €5 Stg@)))).
is a theorem.

Providing abstraction principles whose right-hand sidestain abstraction operators
defined previously is (at least accepted as) neologiclktiaaceptable methodology, as
the literature on reconstructing the reals attests. Seexmple, Haleq].

Note that € Stg(w)’ is defined in terms of ‘'EXT’, so we need not include an additib
clause.

Thatis,(Vx)(Setx) — (¥ f)(VY)((y en X— Sel f (y))) — F2)(Se(2) A(Vw)(w €N X
— f(w) en 2).

Note thatM g )+, although failing to satisfy replacement, also fails tassatSOAR

This construction shows that we can prove, in second-or&€r, hatSOAP+ NewerV
has uncountable models, sinegand thusMg ), can be constructed within second-
order ZFC. This is significant since Shapiro and Wef prove that the claim thatewV
has uncountable models is independent of second-order ZFC.

Boolos writes of “axioms of replacement” in the plural siteeis considering first-order
set theory.

That is,(3x)(Selx) A (TN eN X A (YY) (Sely) — (Y en X = YUN {YIN €N X))).

The statement tha¥l Fo ) is the smallest model dBOAP+ NewerV+ BA,, should

not be understood to imply that there are no other nonisonmiomodels of the same
cardinality sinceMrouie), ) clearly is such a model. Instead, all models have domains
at least as large as that ®frg ).

Zermelo set theory is just first-order ZFC without replacet@ad choice. Second-order
Zermelo set theory is second-order ZFC without replacement

That is,(3x)(Setx) A (TN €N X A (YY) (Sely) — (Y en X — {YIN € X)))).

This does not rule out the possibility thatcould be definable within some extended,
neologicistically acceptable language.

One needs to be careful here since the number of ordinal msngle@erated bOAP
depends on the number of objects that exist, which couldraepaNewer\V/

This is a result of the fact that whether or not powerset éeginent) holds in the context
of NewV (Newer)) is a function of the cardinality of the domain.
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In order to get the result in its full generality we requirattthere be twoBad objects,
one for each principle.

Finite Humeis a restricted version dilume’s Principlewhich provides each finite posi-
tive integer and a single pre-Cantorian infinite number éh&ract of all finite concepts).
For the exact formulation see Sectibn

Fine immediately rejects this analysis in favor of one tltEniifies abstracts whose
equivalence classes are necessarily identical. He spbed®mainder of the chapter
exploring the difficulties such a modalized account muse féeortunately, the simpler
nonmodal formulation suffices for our present purposes. flrtier discussion of this
aspect of the Caesar problem, see Cook and Ebrt [

I do not intend this to be read as a defense of this particaleerto solving (this variant
of) the Caesar problem but am content merely to briefly skedehsuch a solution might
proceed.

While acceptance of this principle has no impact on the stahdersion of the Caesar
problem, which concerns identities between abstracts andbstracts, its acceptance
completely solves the analogous problem of determiningnwiiv® abstracts generated
by different abstraction principles are identical. We cal this latter problem th€-R
problem, since determining whether the real numbers ardeo#action of the com-
plex numbers is a particular case of the problem, and the t€rR’ has a convenient
similarity to the word ‘Caesar’.

In addition, we can in the present context elimina@APaltogether, reformulatintyew-
erV (or NewestY so that the stages are ordered by the ordinals (i.e., theitige pure
sets well-ordered by) provided byNewV (or NewestY. Although this would be a bit
more elegant than the methods employed in the text, ironitghe details of the rele-
vant reformulation oNewerV(or NewestY would add considerable length to this paper
without any significant gain.

In fact, SOAP+ NewerV+ NewVis strictly stronger than second-order ZFCU minus
the axioms of infinity and foundation since the former, but the latter, implies that
there is a set containing all urelements. Thanks go to anyamous referee for pointing
this out.

That is, @P)((VX)(Px — =Setx)) A @) (V) (¥Y)(f(x) = f(y) > x =)
A () (P(X) = P (X)) A @) (PXA (YY)(F(Y) # X))

One drawback to this general approach is thiame’s Principleor evenSmall Hume
(YPY(YQ)INUM(P) = NUM(Q) < (P ~ Qv (Big(P) A Big(Q)))].

is inconsistent witiNewV + NewerV+ GAS If all the numbers (or all the small num-

bers) other than 0 are not extensions, then they must bemeats, but then there must

be a set of all numbers, and further, the powerset of this get axist. But since the uni-

verse must be the size of a strong inaccessible, there mestdotly as many numbers

as there are objects in the universe. Contradiction.

That is, @3f)((VX)(Px — Pf(x) A VY)(V2)(f(y) = f(2) > ¥ = 2) A Gw)(Pw
A (YN (PN = f(N) # w))).

Interestingly,GASimplies that NUMXx # X) = EXT(X # x), that is, 0= @. Signifi-
cantly, anti-zero, the number of the universe, which has lagepic of controversy since
Boolos ], (p. 314), is (provably) not identical (modu®AS to theBad extensiony.
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Uzquiano [L5] proves that second-order Zermelo set theory with the axibragularity
has models where second-order foundation fails. This gesvus with another way in
which NewerVis stronger than Zermelo set theory, siféewerVimplies the equiva-
lence of foundation and regularity.

That is,(3x)(Setx) A (VY)(Y €N X <> Y = X)).
Note that®2 is a member of the basis but not an urelement.

It is worth noting that the following principle dfirelement-Basis

Ur-Base (VX)(BASEX) < UR(X)),

provides us with the following:

Fact SOAP+ NewerV+ NewV+ Ur-Baseimplies the axiom of foundation.

I am not arguing either for the claim that replacement is edee in mathematics (the
fact that we cannot prove that every Borel game is determingiibut replacement rules
this out) nor for the claim that powerset is necessary tonstact modern mathematics
(the fact that many mathematicians, either out of constiigtscruples or mathematical
curiosity, have formulated interesting versions of analynd other theories that do
not depend on uncountable infinities rules this out). Thatpisimerely that, given the
situation as it stands now, if the neologicist can have asetryy with one or the other but
not both of these principles, choosing powerset over repient seems well motivated
given that powerset allows for elegant and natural recoostms of the continuum and
other central mathematical structures while there are eoaigly fewer constructions
and (currently identified) results that depend on replaceme

Of course, there are abstraction principles, such as thstréaditions” found in Shapiro
and Weir [L3] and Weir [L6] that provide all of ZFC and more. For example, we can
define Bad(P)’ as ‘P is the size of an inaccessible’ (a notion definable in secodér
logic) and then consider:

YPY(VQ)[EXT(P) = EXT(Q) < ((VX)(PXx < QX) v (Bad(P) A Bad(Q)))].
This principle will give us all of ZFCU. The point, howeveg thatSOAP+ NewerV
+ NewV s likely the best candidate for a theory based on abstragtiociples that

defines extensions in terms of conditions that are well ratgi and can be justified
independently of an extensive prior knowledge of set theory
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