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The Complexity of Revision

GIAN ALDO ANTONELLI

Abstract  Inthispaper we show that the Gupta-Belnap systems S* and S* are l‘l%.
Since Kremer hasindependently established that they are IT3-hard, thiscompletely
settles the problem of their complexity. The above-mentioned upper bound is
established through areduction to countabl e revision sequencesthat isinspired by,
and makes use of a construction of McGee.

1 Introduction Inhis[1], Kremer providesan answer to aquestion raised by Gupta
and Belnap in their [2]:

Is a[sound and] complete calculus for S* possible? If not, what is the complexity
of the theorems of S* relative to that of D? (p. 185)

Kremer settles the first part of the question and provides a partial answer to the
second one by showing, first, that the set of (Godel numbers of) arithmetical truths
is reducible to the set of (Godel numbers of) S* or S* validities, which is therefore
at least A%. This part is established by showing that for any arithmetical sentence ¢
one can uniformly find a sentence v that is atheorem of S* (or S) if and only if ¢ is
true in the standard model of arithmetic. Thisfact isthen used to characterize all I}
subsetsof the natural numbers. Thisallowsoneto represent, in S* (or S*), therelation
D k=i ¢, (Whose definition is given below). Since this relation is T13-complete, it
follows that the complexity of S* (or S*) isat least 1‘[%.

This paper shows that this lower bound is optimal, in that the (Godel numbers
of) (S*- or) S*-validities can be written in 13 form.

2 The Lower Bound In this section, for the sake of completeness, we are going
briefly to rehearse the argument given by Kremer establishing a IT3 lower bound for
the complexity of S* and S*.

We first define |, the notion of validity mentioned above. Fix a countable
first-order language £, and let L™ be obtained by expanding £ by a new predicate
constant G. Let D comprise the definition G&A(G), where A(G) isaformulain
which G occurs positively. Then we say that D | ¢ if and only if for every model
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M, the sentence ¢ is true in M when G is interpreted over the least fixed point of
the inductive definition D over M. This can be easily extended to the case in which
the language is expanded by finitely many new predicate constants and D comprises
finitely many definitions.

The set of (codes of) sentences ¢ suchthat D & ¢ is H%-compl ete, in the sense
that for any D it can bewrittenin IT3 form, and it is [13-hard for at |east some D’s.*We
first show that this set can be written in IT3-form. Observe that *Y is afixed point”
can be expressed arithmetically:

VXX €Y « AX,Y)).
However, the property of being the least fixed point is 1‘[}:
VZVX(X € Z < AX,Z2)) = Z CY).

Moreover, it is easy to convince oneself that the following properties are all A} (in
X and Y) oncethe syntax of £ has been arithmetized (in fact, the first two properties
below can be expressed arithmeticaly in X and Y):

e X isamode for L;
e X assignsY astheinterpretation of G;
e gistruein X.

Therefore, the following sentence isindeed 1‘[%: “Fordl X, fordl Y: if Xisamode
for L and Y isthe least fixed point of A(G) over X and X assignsY to G, then ¢ is
truein X.”

It only requires a bit more work to show that for any I13 set Sthereis asystem
of definitions D such that S is many-one reducibleto {¢ : D &; ¢}. Let Sbe H%.
This means that for an arithmetical predicate R and aset X of natural numbers, we
have

I ¢ S < VY=R(, X,Y).

Let N[ X] be the standard model of arithmetic expanded by X. We know that aset is
N[ X] if and only if it is many-one reducible to aset P that isinductively definable
over N[ X]. So let I'x inductively define such aP for

{i :VY=R(, X, Y)).

If Tx isthe least fixed point of I'y over N[ X], then thereis atotal recursive function
f such that o
i ¢S« f(i)eTx.

As shown in Kremer [1], let F; be the inductive definition fixing the extension of a
new predicate constant G1 to be isomorphic to the natural numbers, and let F» be
the inductive definition fixing the extension of a new predicate constant G, to be the
isomorphic image of T'x in (the extension of) G1. For each natural number i let Al
be the sentence “VYxG1(X) — —G»(i).” Then we have

i eTx <= Fu, F2 5 A[Gy, Gyl
Hence, as promised,

i €S < Fi, R A'[GL, Gy
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It only remains to observe that the systems S* and S* can mimick any inductive
definitionover N, asshownin[1] (towhichthereaderisreferredfor thedetails). The
ideaisfirst to mimick the inductive definition fixing the extension of a predicate P to
be isomorphic to the natural numbers, and then mimick inductive definitions over P.

3 Reduction to Countable Sequences In this section, we are going to show that
in a sense we can dispense with revision sequences of length unbounded in O, the
collection of al ordinals, and only look at revision sequences of countable length. In
order to show this, we will crucially employ ideas from atheorem dueto McGee (see
his[4], p. 135, and also Gupta & Belnap [2], p. 176). Wefirst restrict our attention to
the system S*, and deal with S |ater.

Definition 3.1 We say that ¢ isvalid in S* if and only if ¢ istruein every model
M + h, where h is reflexive in some revision sequence for 53\/[,0-2

Theorem 3.2 Let h be a reflexive hypothesis of a revision sequence § for y¢ p,
and let « = max(|M|, Rg). Then h isa-reflexive for somea < «t,i.e, |a| = k.

The import of thistheorem, dueto McGee (see[2], p. 176), isthat if wewant to
find out wheter a sentence ¢ isvalidated by some model M + h, where h isrecurring
for M, we only need to look at revision sequences of length bounded by «. The
theorem can indeed be strengthened (as shown in [4]) by taking « to be cardinality
of the language (which in our caseis assumed to be countable). Our main purposein
this section is to establish the following result.

Theorem 3.3 A sentence ¢ isvalid in S* if and only for any hypothesis h that is
reflexive in a countable revision sequence § relative to a countable model M, ¢ is
truein M + h.

Proof. For the “only if” direction of the theorem it suffices to show that if ¢ isfalse
in acountable model M + h, where h isreflexive in acountable revision sequence, it
isnot valid in S*. We use a construction due to McGee (see [4], p. 135).

So assume the antecedent, and let S be a countable revision sequence in which
h isreflexive. Let 8 be thelength of 8. Since any ordinal can be written in the form
(B-y)+8,withé < B, wecan definearevision sequence T by setting for any ordinal
Vs

JBy)+s = Ss-

Now h isreflexivein T, which showsthat ¢ isnot valid in S*.

Now for the “if” direction. Let ¢ be a sentence, and assume that ¢ istruein
N+ h, whereh isany hypothesisthat isreflexive in some countabl e revision sequence
relative to a countable model N. Let M be any model, § arevision sequence for M,
and h ahypothesisthat is reflexivein §. We need to show that ¢ istruein M + h.

Assume for contradiction that ¢ isfalsein M + h. We will show that thereis
a countable model M’, a countable revision sequence 8’ for M’ and a hypothesis h’
that isreflexive for 8’ such that ¢ isfalsein M + h'.

By the downward Lowenheim-Skolem, let M’ + h’ be a countable elementary
submodel of M +h (whereh = §g). Observethat also M’ isan el ementary submodel
of M (relative to the original language L). We define a new revision sequence 8’ by
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setting 8y = I, and 8,1 = 8y (8;,)). Inoder to define 8 at limit stages, for limit
ordinals x (and in particular for limit ordinals < w1) we set:

S, ={deM :des,}.

This definition makes sense since M’ € M.

We need to establish (i) that 8’ is a revision sequence; (ii) that h’ is recurring
for 8'; and (iii) that ¢ isfasein M' + h'. In order to do so, we will first prove the
following auxiliary results.

Lemma34 M + 8, isan eementary submodel of M + 8, for each ordinal «,
and in particular for o < ws.

Proof. We proceed by induction on . We already know that M’ < M. The lemma
holds by definition for « = 0. We now deal with the case o + 1. We first argue that
8,1 and Sq11 agree on M:

des,

d € 8yp 5(80)
M +8,,d = AG)
M+ 84, d = AG)
d € 83 p(Sa)

/

des§, ;.

111171

Inparticular, thisshowsthat M’ +8, . ; isasubmodel of M +8,.1. Aneasy induction
on the complexity of formulas ¢ (X1, . .., X,) (which isleft to the reader) now shows
that for dy, ..., d, in M/,

M,-"_S(I)[-HL IZ(P[dla---adn] — M+8a+1 IZ(P[dla---,dn],

asrequired. We now deal with the limit case. Let A be alimit ordinal. By definition
of 8" weaready know that M’ + 8/ isasubmodel of M +8;,, when  isalimit ordinal.
In order to show that it is an elementary submodel we need to verify the condition
on ¢(X1, ..., Xn) above. Proceeding by induction on the complexity of ¢, the only
non-trivial case is for the new constant G, which is interpreted on §;. But then we
only need to notice that by definition of 8', as required, 8/ is the restriction of §; to
the universe of M.

Lemma3.5 §'isarevision sequence.

Proof. We need to show that for each limit ordinal 2, 8} cohereswith {8/, : & < A},
in the sense that if somed € M isstably in 8/, as« approaches A, thenitisin 8.
Using the previous lemma we have:

de8, <= des,

— del ) 8

a<ia<f<i

— deld N S

a<ra<B<i

which establishes the lemma.
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Now we go back to the proof of theorem 3.3. By lemma 3.4, we know that each
8. istherestriction of 8, to the universe of M. It followsthat if h = 8 isreflexive
for 8, thenh’ = 8jisreflexivefor M'. But M’ iscountable, so by McGee'stheorem h’
isreflexive for some countable sequence T for M’. Moreover, M’ + h’ iselementarily
equivalent to M + h, so that ¢ isfasein M' + h’. This completes the proof of the
theorem.

In order to see that this section establishes a reduction to countable sequences
aso for §, recall the definition:

Definition 3.6 We say that ¢ isvalid in S* if and only if for all hypotheses h that
are reflexive in some revision sequence for 5M,D’ thereis n such that for all p > n,
¢ istrue the model

M+ 3M,D - 'SM,D(h)'
__"_—1
p times

We now notice that the construction of the theorem can be easily modified to
apply to S*. Let M, M/, h and h’ be asin the theorem. Then, as we already know,
M+ S (S’ ) isan elementary submodel of M + S p(Sa)- This shows that for
every n therels p > nsuch that ¢ isfalsein the model

M+8M,D . "SM,D(h)’
—_———

p times

as required.

4 TheUpper Bound Giventhereduction of the previous section, we now show how
to write S* in H%—form. This will be accomplished by writing out formally along
series of definitions and by some simple quantifier manipulations. Leaving much of
the work to the reader, we will point out how this can be accomplished.

Let o be afunction from pairs of natural numbers into {0, 1}. It is easy to see
that “a codes alinear ordering” can be written out arithmetically in «. However, as
iswell known, the condition on well-orderings cannot be so expressed, asit requires
a second-order universal quantifier in an essential way. We need to say that there
are no infinite descending sequences; writing “x <, y” for “x precedes y in the
well-ordering (coded by) o

vivn(f(n+1) <, f(n)) -» an(f(n) = f(n+ 1))].

Let us write W(«) for “« is a well-ordering of the natural numbers,” i.e, “«a isa
countable ordinal.” (For this and other recursion-theoretic details see for instance
[31.)

Likewise, we can code amodel by means of afunction over the natural numbers
satisfying certain conditions, and in turn we can code a countabl e sequence of models
by means of such a function satisfying certain other conditions. These restrictions
can be expressed arithmetically in the corresponding second-order variables. We
will write, e.g., VM or 38 as second-order quantifiers with the above-mentioned
restrictions.

We introduce predicates Rev(M, S, D, «) and Ref(h, §, @) meaning, respec-
tively, “S is a revision sequence for SM.p of length «” and “h is reflexive for 8.
Predicates Rev and Ref can be written arithmetically in their parameters. (We need
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a asan explicit parameter in Ref becausewewant to say §p = h and for some 8 < «,
aso 8g =h.)

Finally, using the reduction to countabl e sequences given in the previous section,
we seethat “¢ isvalid for S can be written in I13 form as follows:

YMVYhVYSVa[W(x) A Rev(M, 8, D, o) A Ref(h, 8§, ¢) = M + h = ¢].

Finally, it is again easy to see how to modify the above argument for S*. Since
the “jump” ¢ , can be expressed in A7 form, we can write g isvalidin S* in 13
form by replacing the consequent M + h = ¢ of the above sentence by

an(vp = n)M + 5324,0(*1) = o,

Whereaj‘;/[’D(h) iSSni - S p ().
————— e —

p times
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NOTES

1. Kremer [1] mentions that a proof for this was sketched by Yiannis Moschovakis in
private correspondence.

2. The origina definition of [2] is formulated with respect to recurring hypotheses, i.e.,
hypotheses that occur cofinally in some revision sequence. By theorem 5C.13, p. 174
of [2], these are the same as the reflexive hypotheses.
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