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The Strong Completeness of a
System Based on Kleene’s
Strong Three-Valued Logic

HIROSHI AOYAMA

Abstract The present work, which was inspired by Kripke and McCarthy, is
about a non-classical predicate logic system containing a truth predicate sym-
bol. In this system, each sentengas referred to not by a &del number but

by its quotation nameA'.

1 Introduction The aim of this paper is to prove the strong completeness theorem
for a system based on Kleene's strong three-valued logic. In the past, three logicians
(see Cleavd]], Kearns|[B], and Wang[[]) formalized Kleene’s strong three-valued
logic and presented completeness proofs for their systems, all of which are simple
predicate calculus systems without the equality symbolDur systenK is differ-

ent from theirs. It is a Gentzen type of sequent calculus containing a truth predicate
symbol as well as the equality symbol. To prove the strong completeness theorem for
K, we employ the technique used in Kearl [For the completeness theorems for
classical systems containing a truth predicate symbol, see Aoygma |

2 Syntax of K

2.1 Symbols of the Language £ of K

(i) Logical symbols:—, v, 3
(ii) Individual variables:xg, X1, X2, . ..
(i) Individual constantscy, c1, C, ...
(iv) Predicate symbols: Te:, Py, P[', Py, ...
(v) Punctuation symbols: ()
(vi) Quotation marks: *’

‘Tr’in (iv) is the truth predicate symbol.r’ i n (iv) indicates the number of arguments
the predicate symbol takes.
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2.2 Simultaneous Definition of Terms and wffs of £

(i) Individual variables and individual constants are terms.
(i) Ifeachofty, ..., tyis either a variable or a constant, theft; . . . tn) is a well-
formed formula (wff) for eactn andi.
(iii) If each of t; andt; is either a variable or a constant, thign= t, is a wif.
(iv) If AandB are wffs, then—-A and (A Vv B) are also wffs.
(v) If Ais awifandxis a variable, theridx) Ais a wif.
(vi) If Ais a wffwith no free variables, therX is aterm.
(vii) If Ais a wff with no free variables, then TrA’) is a wiff.
(viii) Only those terms and wffs obtained by (i) — (vii) are terms and wffLof

Free/bound (occurrences of) variables are defined in the usual way. Sentences are
those wffs with no free variables. The logical symbols—, =, andV are also de-
fined in the usual way:

(AAB) = —(=Av-B),(A— B)=(=AV B), (A= B)
= (A= B)A(B— A)), (YX)A=—(3x)-A.

Variables and constants are called ‘vc-terms’ and terms of the fAtrare called ‘g-
terms.” We often omit parentheses in wffs when no confusion arises.

2.3 Deductionsin K K is a Gentzen type of sequent calculus whose basic compo-
nents are sequents of the foilfr- A, whererl is a nonempty set of wffs and is a

wff. T" can be an infinite set. The wifs in are called the ‘premises of the sequent
' = A’ and Ais called the ‘conclusion of the sequdnt- A’

Each deduction iK is a finite tree of inferences, starting with a finite number of
initial sequents and ending with a single end sequent. Each inference in a deduction
can be written as:

S, S S
S

’ , or
S

S S S
S

whereS, S, S5, andS; are sequentss;, S, andS; are called the ‘upper sequents’
of the inferences an8the ‘lower sequent’ of the inferences. We call the end sequent
in a deduction a ‘theorem @&’ and say, synonymoushi™ Ais a theorem oK’

and T + Ais deducible irK.’

Definition 2.1  Initial sequents: Lel" be a nonempty set of wffs of.
(@) T' = A, whereT is a nonempty set of wffs and € T
(b) T+t =t, wheret is a vc-term and the wff =t may or may not be if".

Definition 2.2 Rules of inference: Ldt, I'y, I's, andI'3 be nonempty, unless oth-
erwise indicated, sets of wffs and Iat B, andC be wffs. (We often write, e.g.,
‘T'1, 'y’ instead of ' UT,.")

A IE——A
Rl (8 T©F—-—A ) TFA
A

R2 '-AvB



R3

R4

R5 (a)

R6

R7 (Cut)

R8

R9

R10 (UG)

R11 (UI)

R12

R13 (EG)
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Fl,Al—C Fz,Bl—C F3|— Av B

1,2, T'3-C
wherel'; andI', can be empty.

h+-A r,--B
Fl’ Fz = —'(A\/ B)

I'-=(AvVv B) I'-=(Av B)
'-A (b) I'--B

I'-AvB

'EBv A

TiFA T, AFB
T, T,FB

wherel's can be empty.

ri--A T,-AVB
[, T, B

't A ' - —-A
', - B

whereB can be any wiff.

A
TF (VXA

wherex does not occur free it andx may not occur free irA.

T (VXA
T F Ax/t

wheret is a vc-term free fox in A, Ax/t is the result of replacing
all free occurrences ofin A by t, andx may not occur free irA.

T+ (YX)(AV B)
T'FAvV (¥X)B

wherex does not occur free iA.

T+ Ax/t
T 3xA

wheret, Ax/t, andx are as in R11.
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r,, A-B o= @Ax)A
R14 ry,To+-B

wherel'; can be emptyx does not occur free ifiy, B, orI'y,
andx may not occur free irA.

T (YX)—-A F--3xA
R15(a) F-—=3x)A (b) TF (VX)—A
T ARt =t

RIG(EQ) TI,AFA

wherel can be emptyt; andt, are vc-termsA’ is obtained
from A by replacing some (possible zero) freet,ifs a variable,
occurrences df; in Aby ty, if t; is a variable, say, then those
occurrences of; within the scope ofvx) and(3x) should never
be replaced by,, and no replacement should be made in

g-terms inA.
A FETr¢A)
R17 (a) CETrA) (b) A
r--—-A 'E-=Tr(A")
R18(a) CE=Tr(A) (b) r'E-A

Note: Itis clear from the formalization & that for every sequerit = Ain a deduc-
tion o, " contains at least one wff, i.dl, # ¢ (or, we can easily prove this by an in-
duction on the number of applications of inference ruleg)irSecondlyArF Tr(* A’)
and T A’) = A are theorems df for each sentenc@. These theorems can be re-
garded as the truth definition f&r. We can also easily show the following three facts:

Fact 2.3 Let o beadeductionin K. Then each of theinitial sequentsin o contains
finitely many premises iff the end sequent of o contains finitely many premises.

Fact 2.4 If '+ Aisatheoremof K, thereisafinitesubset I'” of I suchthat ' - A
is also a theorem of K.

Fact 25 LetI' - Abededuciblein K and let I’ be a set of wifssuch that ' < I'.
Then TV - Aisalso deduciblein K.

2.4 Congruentwffs Let AandB be wifs of L. We say thatA is congruent with B

if Ais like B except that they differ only in the choices of bound variables in them.
SowhenAis congruent wittB, exactly those variables occurring freeAroccur free

in B, and vice versa. ‘Being congruent’ is an equivalence relation on the set of wffs
of L. Then we can easily show:
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Proposition 26 Let A and B be wffs of £L. Then if A is congruent with B, then
AFB,B+ A, —-AF —=B, and =B —A are all theorems of K.

3 Semanticsof K

3.1 Definition of an Interpretation M for £

(i) |M|, the universe oM, consists of two nonempty se®andSL,
whereSL is the set of sentences af Wewrite [M| = (D, SL).
(i) For each vc-term, M(t) is a member oD.
(i) Foreach g-termA’, M("A’) = Ae SL.
(iv) For eachn-ary predicate symbdP", M(P") = (G(P"), H(P")),
whereG(P") € D", H(P") € D", andG(P") N H(P") = ¢.
(v) For the truth predicate symbol ;T (Tr) = (G(Tr), H(Tr)),
whereG(Tr) C SL, H(Tr) € SL, andG(Tr) N H(Tr) = ¢.
(vi) Forthe equality symbok, M(=) = (G(=), H(=)),
whereG(=) = {(e,€) : ec D}, H(=) € D?, andG(=) N H(=) = o.
(vii) For each wff of the formP"(t; .. .tp),
M(Pi”(tl...tn)) = T (true) iff (M(ty), ..., M(ty)) € G(Pi”),
M(P"(t;...ty)) = F (false) iff (M(ty), ..., M(tn)) € H(P"),
M(P"(t1...ty)) = N (neither true nor false) iff
(M(ta), ..., M(tn)) & G(P™) U H(P").
(viii) For each wff of the form T¢' A’),
M(Tr(' A)) = Tiff M A) € G(Tr) iff M(A) =T,
M(Tr("A")) = Fiff M("A") € H(Tr) iff M(A) =F,
M(Tr(“A")) = Niff M A) & G(Tr) U H(Tr) iff M(A) =N.
(ix) For each wff of the fornt; = t,,
Mty =t) = Tiff (M(t2), M(t2)) € G(=),
Mty =tz) = Fiff (M(t2), M(t2)) € H(=),
M(ty =t2) = Niff (M(t2), M(t2)) ¢ G(=) U H(=).
(X) For each wif of the fornt- A,
M(=A) = Tiff M(A) =F,
M(—A) = Fiff M(A) =T,
M(—=A) = Niff M(A) = N.
(xi) For each wff of the form(Av B),
M(Av B) = Tiff M(A)= TorM(B) =T,
M(Av B) = Fiff M(A) = FandM(B) =F,
M(AvV B) = Niff either (1)M(A) = M(B) = N, (2)M(A) =F
andM(B) =N, or (3)M(A) = NandM(B) =F.
(xii) For each wff of the form(3x) A,
M((3x)A) = T iff for somex-variantMx of M, Mx(A) =T,
M ((3x) A) = Fiff for everyx-variantMx of M, Mx(A) = F,
M((3x) A) = N iff both, for everyx-variantMx of M, Mx(A) # T
and, for some-variantMx of M, Mx(A) = N, where arx-variantMx of M is,
by definition, an interpretation of just like M except thatMx may possibly
differ from M on the value assignment to the variakle
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The truth values of-A, Av B, AA B, A— B, and A = B can be determined
asin Table 1:

A B —-A AvB AAB A— B A=B
T T F T T T T
T F F T F F F
T N F T N N N
F T T T F T F
F F T F F T T
F N T N F T N
N T N T N T N
N F N N F N N
N N N N N N N
Table 1

For convenience sake, we write the truth condition of wffs of the f6vi) A below:
(xiii) M((¥x)A) = T iff for everyx-variantMx of M, Mx(A) =T,

M((VYX)A) = F iff for somex-variantMx of M, Mx(A) = F,

M((¥x)A) = N iff both, for everyx-variantMx of M, Mx(A) # F

and, for some-variantMx of M, Mx(A) = N.

We use the capital lettdd both as a metavariable for wifs and as a constituefiViof
but there will be no confusion. For arvariantMx of M and a predicate symbé]",
we write Mx(P™) = (Gx(P"), Hx(P")), and similarly forMx(Tr) andMx(=).

3.2 Some Definitions and Simple Facts
(i) GivenawffA, if M(A) =T, thenM is said to be anodel of A. Given a sef”
of wffs, if M(I") =T, i.e., if M(A) =T for eachA € T", thenM is said to be a
model of T.
(i) Givenanonempty sdt of wifs and awffA, I = A, which we readI logically
implies A’ means that every model éfis a model ofA.
(iii) For everyx-variantMx of M, we have:

(a) for each vc-termy, Mx(t) = M(t), if t # X,
(b) for each g-termA’, MX(‘A') = M('A') = Ae SL,
(c) for eachn-ary predicate symbdp", Mx(P") = M(P"),
(d) for the equality symbok, Mx(=) = M(=).
(iv) Let 'y andT", be nonempty sets of wifs such that C I'. Then ifI'y = A,
thenI's = A

3.3 The Soundnessof K  First, we list a few easy propositions.
Proposition 3.1  Let Abeawffinwhich variable x does not occur free, and let M x
be an x-variant of an interpretation M for £. Then Mx(A) = M(A).

Proposition 3.2 Let Mx be an x-variant of an interpretation M for language L.
Then Mx(Tr) = M(Tr).
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Proposition 3.3 Let A be a wff and t a vc-term which is free for variable x in A.
And let Mx be an x-variant of an interpretation M for £ such that Mx(x) = M(t).
Then Mx(A) = M(AX/1).

Given these propositions, it is straightforward to prove the soundess theor&m for

Theorem 3.4 (The Soundness Theorem fid)  Let I" beanonempty set of wifsand
Aawff. Thenif ' = Aisdeduciblein K, thenT = A.

Corollary 3.5 Let Aand B bewffssuchthat Aiscongruent with B. Then M(A) =
M (B) for any interpretation M for L.

Proof: Immediate from Proposition 2.6 and Theorem 3.4. O

3.4 Some Definitions and Facts In what follows,I" and A are nonempty sets of
wifs of L.

() Tisinconsistent iff for some wiff Aof £, bothI" = AandI’ = —Aare deducible
in K (or, equivalently, for every wfA of £, T - Ais deducible irK).
(i) T isdigunctiveiff for every wif of £ of the form (Av B), if (Av B) e I'" then
eitherAeT orBeT.
(iif) T ishenkiniff for every wif of £ of the form(3x) A, if (3X) A e I'thenAx/y e
I' for some variabley of £ not occurring in(3x) A.
(iv) T isclosed under deducihility in K iff for each wff Aof £, (I' - Ais deducible
inK iff Ael).
(v) T istheclosureof aset A under deducibility in Kiff T = {A: Ais awff of L
andA + Ais deducible irK }.

Concerning the closure of a set of wifs, we can easily get

Fact 3.6 LetT betheclosureof aset A of wifsunder deducibility in K. Then T is
closed under deducibility in K.

(vi) We will later in the strong completeness proof extend the languagenew
languages by adding new variables. Then the definitions we made above will
be extended to those new languages. Itis clear that the previous results (propo-
sitions, facts, etc.) also hold for those new languages.

3.5 The Strong Completenessof K Weare now ready to prove the stong complete-
ness theorem faf.

Theorem 3.7 (The Strong Completeness TheoremHKgr Let I" be a nonempty set
of wifsof £ and A awff of £. Thenif I' = A, then T - Aisdeduciblein K.

Proof: LetI andAbe as in the theorem. We show thaFif Ais not deducible in
K, then there is a model df in which A is not true. O

Outline of the proof: We first extendl” to a new sefl which is consistent, dis-
junctive, and henkin and which does not containUsing I, we then define an in-
terpretationM such thatB € IT iff M(B) =T.

Assume thal' - Ais not deducible ifk. Then A ¢ I" andI is consistent. Before
we extend" to IT containingl", we first define extensions af andK. We introduce
the following new variables:
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0 0 0 . 0 0 0 . 0 0 0 .
W11, "W12 "W13 --*; W21, "W22 "W23 -, W31, W32 "W33 -°*;
1 1 1 .1 1 1 .1 1 1 .
Wo,1, "Wo,2, "W0,3, ***; W11, "W12, "W13 - W21, "W22, "W23, -,
2 2 2 .2 2 2 .2 2 2 .
Wo,1, "Wo,2, "W,3, """ W11, "W12, W13 - W21, "W22, "W23, -,
3 3 3 3 3 3 3 3 3

Wo,1, "Wo,2, "WQ,3, -, W11, "W12 "W13 -, W21, "W22, "W23, -,

s oo e e s e cee oo ceey

Let Lyo = L and Ly 41 be obtained from4y ,, by adding the variable%wnﬂ,l,
Owni1.2, “wnyr3, . ... LetKgo = K andKg, be the system in which wffs afg
can be used in deductions. Thenigt= Une, Lo n and thensy induces an extension
K of Ko’o. Similarly, |et£/_|_,0 = LU {1w0,1, 1w0,2, le73, . andLl,nH =L,V
fwnir 1, twnpr2, twnga s, -} EachLy p inducesKy n. And Ly = UnewLan. L1
inducesK 1. Form = 2,n 2= 0, Lmn, Kmn, Lm, andK, are defined similarly. Fi-
nally, let £, = Uneo Lm and it induces ,,.

We assume that there is some fixed enumeration of the wff§,ofvhich also
yields an enumeration of the wifs di, for eachm € w, by deleting those wffs not
belonging toLy,; the same operation yields an enumeration for the wff&f for
eachn = 0. We now extend" to a larger sefl of wffs of £, as follows:

Sep 1: Letag = {A} and°T'y be the closure of under deducibility inKo,0. And let
r'n,1 be obtained fromI'y, n € w, asfollows, whereA,, 1 is then + 1st wff in the
enumeration of the wffs olfg 1:

(i) If Anp1 €0y, then let®Ty 4 =OT,.
(i) If Anyr €O, Anp1 # (3X) B, and A1 # (C Vv D), then let’T,, =T,

(iii) If Any1 € T, andAn 1 = (3x)B, then let’Tn, 1 = O, U {Bx/y}, wherey
is the first variable ofZy 1 not occurring in any wif il U ag.

(iv) If Anyq €T, Ayt = (C Vv D), and eithePT'y - C or °T', - D is deducible
in Ko,1, then 1et’T" 1 = O,

(V) If App1 €O, Anst = (C v D), and neithePT, - C nor°r, - D is deduc-
ible in Ko 1, then let

o _ raU{C}, if °T'y U {C} + Ais not deducible i 1,
171 or,u{D}, otherwise.

Let’T',, = Une,°T'n and'Tg be the closure diT",, under deducibility irko 1. Wethen
repeat the above procedure (i)—(v) to obtdlily, 1I'y, T5.. ., in Koo Letll, =

Unew'T'n @and?T be the closure ofl',, under deducibility inKq ». We repeat this
process so that we obtain an infinite series of 8Bt 1I'g, °I'g. ... Then letlly =

Uneo'To, Which is a set of wffs of’y.

Sep 2: Let each wif of Ly of the form(Vx) B, wherex occurs free irB, be associated
with a unique variabléwg ; of £; ¢ so that if(vVx) B is thenth wif in the enumeration
of the wffs of Lo, then it is associated withwg , and Bx/ wyq n is called the ‘distin-
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guished instance i, o of (Yx)B.” We define

B1 = {B:BisawffofLyandB ¢ Ilp}.

yi = {Bx/*won: (¥X)B € B1, wherex occurs free inB and
BX/len is the distinguished instance iy ¢ of (Vx)B},
and

a1 = the closure of; U y1 under disjunction,

i.e.,if Be a; andC € aq, then(BVv C) € «a3.

Now let®Aq = Iy and®A,,1 be obtained fron?A,, as follows, whereA, 1 is the
n—+ 1st wif in the enumeration of the wifs af; o:

(i) If Ans1 &OAn, thenlet®An, 1 =CA,.

(i) If Anyr €A, Anpr # (3X)B, and Ay, 1 # (Cv D), then let®A 1 = OA,.

(iii) If Anr1€%AnandAn, 1 = (3x)B, thenlet?An, 1 =AU {Bx/y}, whereyis
the first variable of£; o not occurring in any wif iPALU ;.

(iv) If Ayt e€®An, Aypr = (Cv D), and eithePA, - Cor®A, - D is deducible
in Ky 0, then let®Ap 1 = %A,

(v) If Api1€®An, Ayyr = (Cv D), andneithePAn - Cnor®A, - Dis deducible
in Kq,0, then let

OAnU{C}, iffornowff Aeay,°AnU{C}HF A
OAny1 = is deducible inKy o,
OAnU{D}, otherwise.

Let®°A, = Uneo’An and?Ag be the closure dtA,, under deducibility inKy o. Then
we repeat the above procedure (i)—(v) to obtaixy, 1A1, A5, .., in Ky 1. Let
1Aw = UneotAn and?Ag be the closure ofA,, under deducibility i -
o = Ynew £Sn 0 3 y Ir]Kl,l- Were
peat this process so that we obtain an infinte series oPgets'Ag, 2Ag. ... Then
let TT1 = Uneo"Ag, Which is a set of wffs off;.
Step 2 which was used to gdil; is now repeated infinitely to get

I, I3, g, ..., Oy, g, .. ., where we defing,, 1, Yni1, andan, 1 as follows:

Bnr1 = {B:BisawffofL,andB ¢ I},

Vel = {Bx/”“wo,m 1 (YX)B € Bni1, wherex occurs free inB and
Bx/™wo mis the distinguished instance i1 o of (Yx)B},
and

any1 = the closure offn,1 U yn1 under disjunction.

HavingIlp, Iy, I, ..., Setll = Upc,I1,. Note thatl” C I1,, € I1,,1 C I for each
n € w. We now prove a series of claims. The first two claims are immediate and the
third is straightforward.

Claim 3.8 EachIIn(n € w) and IT are all disjunctive and henkin.

Claim 3.9 EachIl,(nh € w) isclosed under deducibility in K, and IT is closed un-
der deducibility in K,,.

Clam310 A¢ I,
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Claim3.11 If B € apy1,then B € I41, for eachn € w.

Proof: We only prove the case where= 0; that is, we only show that B € «;,
then B ¢ I1;. The other cases where> 0 can be proven similarly. LeB be an
arbitrary wif in 1. Without loss of generality, we may assume tBds of the form
(BivByv...v By form=1and eachBi(1 <i < m) is distinct from the others
and is either i or in y;. We first show the following: O

Claim3.12 For eachn € w, °A, - Bisnot deduciblein Ky o.

Proof: Induction om. Note thatBis any wifin«;. Basis stefgn = 0): Weconsider

two cases: (1B contains none of the variablés 1, 1w 2, two s, . . ., of L1 0, and
(2) B contains some of them. O
Casel: Then each oy, ..., By is a member of3;. That is, each of them is a

wif of £y (and thereforeB itself is a wff of Ly), and by the definition o, we have
By g Tlg, Bo & 1Ig, ..., Bn eIl

We first show thatllp - B is not deducible irKg and B ¢ T1p. Suppose for a
contradiction thaB € ITy. By Claim 3.8,I1j is disjunctive. So, one 0Bq, ..., By
must ke inTIg, which is a contradiction. ThuB ¢ IT1y. Hencellg - Bis not deducible
in Ko, i.e.,°A¢ - Bis not deducible irky o.

Case?2: B contains some of the variabléwoﬁl, 1wo,2, ..., of L1 0. Suppose for a
contradiction thaflp - Bis deducible irK; o. Then for some finitél’ < Ip, IT' - B
is deducible irKy . Let o be one such deduction.contains only finitely many wifs
of L3 0. Let wo k1, two ke, - - - two i be the distinct variables of; o occurring inB.
Let z1, 2, ..., z be distinct variables ofy not occurring ino. Then, usindJ G, we
see that

'+ (Y21)(V22) ... (VZ) (B'woa woz - - - 'woki/212. . . 7)
is deducible inKy o, whereBlwo i twoke . . . twoki/212.. .. Z is
(... (Brwoka/z)  woke/2) - . ) woki/Z

and can be written a@ v B, v ... v By) in which for eachj(1 = j < m),

B = Bj’ if Bj € ,31,
J Bjlwo.kn/zn for someh < i, if Bj € y1.

Then by usindR12 and some other rules of inference, we can sedihat(B/ v
B, v ...V Bf) can be deducible i1 o, where for eachj(1 = j =< m),

v Bj. if B]:Bj,

J _{ (Vz)B;, if B} = B; Ywokn/zn for someh <.

Since(B] v By v ...V By) is a wff of Ly, we can deducdl’ - (B v By v ...V

B in Kg and alsollp - (B] v By ... v B) in K. Sincelly is disjunctive, one
of B, BY, ..., By, must ke inITo. Assume thaB]’(l < j < myisinIly. Suppose
B’J/ = Bj. Then B]/ = B} = Bj € By and by the definition o, B/j’ & Tp, which is
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acontradiction. SupposB}’ = (Vz,) B!, for someh <. Then(Vzh)B’j is congruent
with some(vYx)C € 81, whereB’j = B; lwo,kh/zh andB; is the distinguished instance
of (Vx)Cin L o. Since(Vzh)B} eIp, g+ (Vzh)B] is deducible inkg. Then using
Cut, we can deducHg I (VX)C in Kq, which yields(¥x)C € I1g. This contradicts
(YX)C € B1. We get a contradiction in either way. HenCR - B is not deducible in
K170.

Induction steptf > 0): Assume as the induction hypothesis that forBa# o1, °Ap,

F Bis not deducible irk; . We want to show that for alB € a1, 9An+1 F Bis not
deducible inKy o. Now suppose for a contradiction that for soBie o, An41 B

is deducible inKy g. Then®A,,, 1 # %Ay, So,°An, 1 is obtained either by the clause
(iii) or by (v) of Step 2.

Case3: If 9A,,4 is obtained by the clause (iii) of Step 2, we can easily get a con-
tradiction.

Case4: Suppos€A,,; is obtained by the clause (v). Thé%,1 € °Ap, Anpr =
(Cv D), neither’A, - C nor®Ap - D is deducible inKy o, and

OAnU{C}, iffor nowff A e ay,°AnU{C}+ Ais deducible inKy o,

0
A = .
n+1 %A, U {D}, otherwise.

If °Any1 = 9An U {C}, then for no wifA € ag, °A, U {C} - Alis deducible inKy,
which contradicts our assumption tfat,,, ; - B is deducible inKy o. S0%Ap, 1 =
9A,U{D} and there is some wh € o such thaP A, U {C} I Ais deducible irky .
Let A’ be one such wff inx;. Sincea; is closed under disjunctioiB v A') € aj.
Also, using the rules of inferend®2 andR6, we se that bot?A, U {D} - Bv A’
and®A, U {C} + B Vv A’ are deducible irk1.0. Then we can obtain the following
deduction inKy o by R3:

°Ap,CFBVA %A, DFBVA  %A,-CVvD
0Ap, OAn, OAL - BV A ‘

That is, for some wffA in a1, °Ap - Ais deducible inKy o, which contradicts the
induction hypothesis.

Thus in either case we get a contradiction. So, for noBv a1, °A,1 - Bis
deducible inKy . This completes the proof of the Claim. Now it is easy to see that

for eachB € a4, °A, - Bis not deducible irky o, from which we can also see that
for eachB € a1, 1Ag - B is not deducible irky . Similarly, we can show that for
eachn = 2 and eacB € o3, "Ag - B is not deducible irk; n_;. Finally, it is then
aroutine to show that for eacB < o4, I11 - B is not deducible irK; andB ¢ T1;.
This completes the proof of Claim 3.11.

The next two claims are straightforward.

Claim 3.13 A ¢ IT and IT is a consistent set of wifs of £,,.

Claim 3.14 Let (Vx)Abeawff of £, suchthat x occursfreein Aand (Vx)A ¢ II.
Then thereis some variable y of £, suchthat y isfreefor xin Aand Ax/y ¢ II.
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Claim 3.15 Thereisaninterpretation M for £, such that for every wff A € £,
(@) AeTIiff M(A) =T,
(b) —AcIliff M(A) =F and
(c) (AgTTand—A ¢ IT) iff M(A) = N.
Proof: Wefirst define an interpretatiol for £, as follows: O
() IM| = (D, SL,), whereD = {t:tisavc-term of{,} andt ={u:t=u e IT}
for each vec-term of £, and S, is the set of sentences 4f,.
(i) For each vc-ternt of £, M(t) =t e D.
(iii) For each g-term A’ of £,, M A') = A e SL,.
(iv) For eachn-ary predicate symbdpP" of £, i.e., of L,
M(P") = (G(P"), H(RM), where
G(P") ={(t1, T2, ..., Ta) 1 P"(ta t2.. . ty) € I}, and
HPM = {(T1, To, ..., Th) : =P (t1 t2. . . ty) € TT}.
(v) For the truth predicate TM (Tr) = (G(Tr), H(Tr)), where
G(Mr)={A: Ae SL,and T* A’) € IT} and
H(Tr)={A: Ae SL, and—Tr(‘ A') € I1}.
(vi) Forthe equality symbok, M(=) = (G(=), H(=)), where
G(=) = {{f;, )ty =t, e} and
H(=) = {{t1, o) : -ty = t, e T}

(vii) M also satisfies the clauses (vii) — (xiii) in the definition of an interpretation for
£in 3.1.

Note that sincell is consistent, the set§(P") N H(P"), G(Tr) N H(Tr), and
G(=) N H(=) are all empty. We can now easily establish the following four claims:

Claim 3.16 Letty, tp, and t3 be arbitrary vc-terms of £,,. Then the following hold:
(l) tp =11 €TIl,
(2) Ifty =ty € I, thent, =t; €I,
(3) |ft1it2 eIl andtzitg eI, thentlitg e I, and
(4) Ifty =ty elTand A II, then A’ € 1, wherety, to, A, and A’
satisfy the conditions in the inference rule EQ.

Claim 3.17 Lettand u bearbitrary vc-termsof £,. Thent =uifft =u e I1.

Clam 3.18 {({t;,t) :t1 =t, e 1} = {(1,1) : T € D}, wheret, t;, andt, arearhi-
trary vc-terms of £,,.

Claim 319 M(P") and M(=) arewell-defined. Thatis, e.g., ifti =T for all i (1 =
i <n), then

(D) (M(ty), ..., M(tn)) € G(PM) iff (M(Ua), ..., M(un)) € G(PD),
(2 (M(ty), ..., M(tn)) € H(BY iff (M(up), ..., M(un)) € H(PY),
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(3) (M(ty), ..., M(tp)) € G(P") U H(PM)
iff (M(U), ..., M(Un)) & G(PM U H(P").

We are now ready to prove Claim 3.15 by induction on the complexity of Avéif
L,. ThecaseA = P"(t;...th), A=ty =tp, A=Tr('B'), A=—-B, andA=(Bv
C) are easy. So we only consider the cdse- (3x)B. Then it is also easy to show
both (a)(3x)B € ITiff M((3x)B) = T and(c) ((IxX)B) & IT and—(3Ix) B ¢ 1) iff
M ((3x)B) = N. So we only show (by>(3x)B € IT iff M((3x)B) = F.
Suppose-(3x)B € I1. Then by the inference rulR15-(b), (vx)—B € I1. So
by Ul, =Bx/t € II for every vc-ternt of L, free forxin B. Then by the induction
hypothesis,

() M(Bx/t) = Ffor every vc-ternt of £, free forxin B.

We now would like to show thaM ((3x) B) = F, i.e., for everyx-variantMx of M,
Mx(B) = F. Suppose for a contradiction that for soMe, Mx(B) # F,i.e., forsome
Mx, eitherMx(B) = T or Mx(B) = N. Let Mx(x) = t for some vc-ternm of L.

Caseb5: Mx(B) = T:. We consider two subcaseSubcase (1) t is free forxin B,
andSubcase (2) t is not free forx in B.

Qubcasel: SinceMx(x) = M(t) =1, Mx(B) = M(Bx/t) =T by Proposition 3.3,
which contradictg*) above.

Subcase2: Then we can find a wiD of £, which is congruent witiB and in which
tis free forx. Then we easily geax) D < IT, which in turn yields(3x) B € I1. This
is a contradiction.

Case6: Mx(B) = N: Whent is free forx in B, we can get a contradiction as in
Subcase (1) of the above case. So supposd thaiot free forx in B. Then there is
a wif D of £, such thatD is congruent withB andt is free forx in D. By Corol-
lary 3.5,Mx(B) = Mx(D) = N. SinceMx(x) = M(t) =%, Mx(D) = M(Dx/t) =
N. Then by the induction hypothesiBx/t ¢ IT and—Dx/t ¢ I1. But (VX)—B €
IT and (VX)—B s congruent with'vx)—D, from which we see by Proposition 2.6 that
(YX)=B F (¥x)—D is deducible inK,,. Hence, using Cut¥yx)—D € T1. Then, us-
ing Ul, =Dx/u € II for every vc-termu of £, free forx in D, which contradicts
—Dx/t ¢ II.

Conversely, suppose thi ((3x) B) = F. Then for everyx-variantMx of M,
Mx(B) = F. If x does not occur free iB, then sinceM itself is anx-variant of M,
M (B) = F. Thus by the induction hypothesisB € IT, from which we can easily get
—(3x)B € T by some inference rules. Suppose now thdbes occur free ifB. Let
y be an arbitrary variable of,, free forxin B and letMx be anx-variant of M such
that Mx(x) = M(y) =V. Then by Proposition 3.3yIx(B) = M(Bx/y) = F. By the
induction hypothesis;Bx/y € I, i.e., (—B)x/y € I for every variabley of £, free
for xin =B. So(¥Yx)—B € IT by Claim 3.14. Using the inference ruR5-(a), we
see thafll - —(3x)B is deducible inK,. So—(3x)B e II.

This completes the proof of Claim 3.15.
Claim320 TI'#A
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Proof: The interpretatiorM given in Claim 3.15 is a model df, sincel” < IT and
(A e TTiff M(A) = T, for each wiff A of £,). But, sinceA ¢ IT by Claim 3.13,
M(A) # T. ThusT & A. O

Claim 3.20 completes the proof of Theorem 3.7.

Corollary 3.21 T+ Aiff T E A, where T is a nonempty set of wifsof £ and Ais
awff of L.

Proof: From Theorem 3.4 and Theorem 3.7. O

Corollary 3.22 (The Compactness Theorem ) LetI" and Abeasin Corollary
3.21. Thenif ' E A, then TV = A for some finite subset I’ of T.

Proof: From Theorem 3.7, Fact 2.4, and Theorem 3.4. O
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