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Natural Deduction Based upon
Strict Implication for
Normal Modal Logics

CLAUDIO CERRATO

Abstract We present systems of Natural Deduction based on Strict Impli-
cation for the main normal modal logics betwaerand S5. In this work we
consider Strict Implication as the main modal operator, and establish a natural
correspondence between Strict Implication and strict subproofs.

1 Introduction In this work we present systems of Natural Deduction based on
Strict Implication for normal modal logics. Natural Deduction shows clearly the re-
lationship between deducibility and implication (especially in the Fitch variant, see
[E], that allows subproofs), and Strict Implication has a central role in modal logics
(see Lewis and Langfor], and Corsilf]), so that it seems quite natural to construct
systems of Natural Deduction for modal logics by considering Strict Implication as
the main modal operator.

Systems of Natural Deduction for modal logics were developed in Prawitz
[€] only by adding peculiar rules for the introduction and the elimination of modal
operators; but that approach really worked well only3éandS5 (see Bull and Sege-
berg B). In [B] it was suggested that we also modify the structure of deductions by al-
lowing a modal kind of proof, the strict subordinate proof. In spite of their name, these
proofs were related to necessity. But necessity is a unary operator while proofs usu-
ally involve both hypotheses and conclusions, s@isfrict subproofs were forced
(really as a technical trick) to never have any hypothesis. Howdsieon]ly devel-
oped a system of Natural Deduction for (an Intuitionistic versiordf)

In Fitting @ Natural Deduction was merely treated as a variant of semantic
tableaux. Two different kinds of systems were presented, the A-style and the I-style
systems, depending on the interpretation given to strict subproofs. One is led to adopt
the former when one “thinks of strict subproofs as an argument about a generic alter-
nate world” (so that strict subproofs are related to necessity), while one is led to adopt
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the latter when one “thinks of strict subproofs as an argument about a particular al-
ternate world” (and so strict subproofs are related to possibility). In any case, all the
rules are only suitable modifications of the semantic tableaux rules. So, those sys-
tems work well because semantic tableaux work well, but lose the flavor of Natural
Deduction.

In this work we consider Strict Implication as the main modal operator, and
establish a natural correspondence between binary Strict Implication and strict sub-
proofs (here having both hypotheses and conclusions). Strict Implication represents
the direct link of deducibility between the hypothesis and the conclusion of a strict
subproof. That link is strict because it cannot be influenced (or it can be influenced
only in a ruled way) by formulas external to the subproof. We develop systems of
Natural Deduction for the fifteen main normal modal logics betweemdS5.

Finally, Hilbert style systems based both on Strict Implication and on Strict
Negation were presented [4][ where the equivalence of those systems with many
usual normal modal logics was also proved. The correspondence between our modal
rules of Natural Deduction and the modal axioms present@ irs] in most cases,
quite natural and immediate.

2 Natural Deduction for Strict Implication  We use the variant of the Natural De-
duction presented ifg], which allows us to construct within proofs further subordi-
nate proofs, nameslibproofs. As in [5], we graphically represent a proof as a vertical
sequence of items (formulas or subproofs), and explode a subproof into a vertical se-
quence of items parallel to the parent proof.

A subproofis to be conceived as gam of the parent proof and can have a con-
sequence (by applying some specific rule) in its parent proof. The introduction of a
subproof is an effect of a rule, namely of timroduction of hypothesis, andthe first
item of a subproof is called arypothesis. Finally, the vertical sequence of items in a
subproof stresses the deducibility relationship between the hypothesis and the other
items.

The use of subordinate proofs is unessential for the Propositional Calculus (es-
sentially because we can reiterate every formula into any subproof), but offers help
when treating modal logics. In fact, modal behaviors are usually characterized by a
peculiar kind of subproofs, tharict ones (sedd] and[&]), that we adopt and relate
to Strict Implication (instead of to necessity, as usual).

Ourlanguageit - ={P, A, v, =, =, =}, where= denotes Strict Implication.
We define the other operators as follows:

equivalence A<B 5 (A—>BA(B— A
strict equivalence A< B o (A= B)A(B= A)
necessity oA g A=A

possibility CA def TO—A

strict negation ~A o O-A
First we show which rules we assume for the Propositional Calculus (PC-rules)
(as to notation, we call the usual subproofs and the usual hypotimasasal ).
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Introduction of (Material) Hypothesis (hyp):

' FA hyp

Repetition (rep):
A
A rep
Reiteration (reit):

A
'>B
A reit

Introduction of Material Implication-{ 1):

—

A— B —

Elimination of Material Implication E):

A
A— B
B —E

Introduction of ConjunctionA I):

A
B
AAB Al
Elimination of Conjunction { E):
AAB AAB
A AE B AE

Introduction of Disjunctionny 1)

A B
AV B \ii Av B VI
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Elimination of Disjunction {E):

Av B
A
C
B
C
C VE

Introduction of Negation-l):
’> A
—A
_|A -

Elimination of Double Negation<{— E):

Contraposition (contrap):

B

’7 A
-B

—A contrap

These are the same rules useddh fvith the exception of those for negation
(since the negation i@ isnot the classical one) which are a suitable modification of
the rules for negation presented (in a different context) in Anderson and Bélhap [
So first, we must convince ourselves that such rules are PC-rules:

Lemma?2.1 Theabove system of Natural Deduction is a systemfor PC.

Proof: Wecompare our system with the system for PC presented in Sundhgjm [
that differs from ours only for the negation rules (besides our use of subproofs). So,
we need only prove that our rules for negation are equivalent to the following ones

(see[LO)):

Elimination of Double Negation ([18Ec):

A [10]-Ec
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Elimination of Negation ([10}+E):

A

—A

B [10]-E
Introduction of Negation ([16% I):
A

B
A

~A [0
First, the rules of elimination of double negatiofi;- E and [10}-Ec, are the
same in both systems; furthermore, by contrap andwe can prove [10} E and
[10]—-1:

1 A hyp of [10}-E

(2) —-A hyp of [10]-E

3 h —-B hyp

4 —-A reit, 2

(5) —-—B contrap 1, 3,4

(6) B ——E, conclusion of [10t+E

D A hyp of [10}-I

(2) B hyp of [10}-I

@ A—-B —-1,1,2

4 A hyp of [10}-I

(5) -B hyp of[10}-I

(6) A— B reit, 3

(7 A hyp

€)) A— B reit, 6

9 B —E, 7,8

(10) ’7 —-B hyp

(11 —-B rep 10

12 -—-B contrap 9, 10, 11
(13 -A contrap 5, 7, 12
(14 -—-A —I, 4, 13, conclusion

of [10]—I.
Vice versa, byl[0]—E and [L0]—I we canprove—l and contrap:
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D A hyp of =l

(2) —-A hyp of =l

(3) A hyp

(4) A rep, 3

(B) —-A [10]-1, 1, 2, 3, 4, conclusion ofl
@ A hyp of contrap

(2) B hyp of contrap

3) —A hyp of contrap

(4) A reit, 1

(5) -B [10]-E, 3,4

6 B hyp

7 B rep, 6

(8) —B [10]-lI, 2, 5, 6, 7, conclusion of contrap.

So the lemma is proved.

Now, to treat modalities, we increase the expressive power of systems of Nat-
ural Deduction by introducing strict subproofs and the corresponding rules related to
Strict Implication.

Strict subproofs are like usual proofs, and the behavior of propositional connec-
tives inside strict subproofs is the same as inside usual proofs. The only novelty is
that the communication between a strict subproof and its parent proof (conceived as
a metaproof) is subject to restrictions, and in this sense the link of deducibility be-
tween hypothesis and conclusion is strict. That link is represented in the parent proof
as a Strict Implication=&1 rule); vice versa a Strict Implication can be imported into
a strict subproof as an internal representation of a deducibility link, i.e., as a usual
material implication£ E rule). Furthermore, allowing free communication between
a strict subproof and its parent proof leads to the collapse of modalities, while im-
posing restrictions on that communication leads to the characterization of different
modal systems.

Formally, we allow the use of strict subproofs with the corresponding rule of
introduction of strict hypothesis, and of two related rules for the introduction and the
elimination of Strict Implications:

Introduction of Strict Hypothesis (shyp):

A shyp

Introduction of Strict Implication= I):
:A

B
A=B =1

Elimination of Strict Implication £ E):
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A>B =E

We denote strict a subproof by putting a double horizontal line (that recalls the
symbol “=") just where a strict hypothesis is introduced. The communication be-
tween a strict subproof and its parent proof is controlled by specific rules=ike
and=E, so that the usual (material) rules affecting parent proofs (i.e.ditl,
contrap) do not work for strict subproofs.

For example, we do not allow this kind of generic reiteration:

A
-B
A reit;
otherwise, we shall have:
A hyp
—-A shyp
A improper reiteration
—-A= A (=0A) =l
A— OA — |

and so,A — OAcould be provable: that leads to the collapse of modalities (when we
think of “— " asthe material implication) or to consider a different kind of implication
(seell)), that is out of our purposes. Since our main modal operator is Strict Impli-
cation instead of necessity, necessity needs expressing in terms of Strict Implication;
we could choose between:

oA = —-A= Aand
O(A— B) A= B;

since we prefer the former as a definition, we must prove the latter as a lemma:

Lemma22 A= BandO(A— B)areequivalent,i.e., wecanderiveeach of them
from the other.

Proof: For sake of simplicity we allow to use a tautology inside the proof; that is
sound (as proved in Lemmas 3.3 and 3.4), and permits to omit the tedious subordinate
proof of the tautology:
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1) A=8B

(2) -(A— B) shyp

3) A— B =E, 1

4 —-(A—-B)=(A—> DB =l,2,3

(5) D(A—) B) Odef 4.

(1) o(A— B)

2) -(A— B)= (A—> B) Odef, 1
(3) A shyp

4) -(A— B)— (A— B) =E, 2
(5) A— ((-(A— B)— (A— B)) — B) tautology
(6) (-~(A—-B)— (A— B)—> B —E, 3,5
@) B —E, 4,6
8 A=1B =l,3,7.

3 Thesystem of Natural Deduction for K We prove the system of Natural Deduc-
tion we have introduced is sound and complete for the minimal normal modaKogic
(seelR)), i.e., there exists a natural deductigrproof of a formulaA (as to notation,
“Ais K-provable”) iff there exists a Hilbert styl€-proof of it (as to notation, A is
aK-theorem”).

The language used for our systems of Natural Deduction is not the same as for
usual Hilbert style systems: in fact, we adapt , which has= (instead ofd) as
primitive operator, while Hilbert style systems use = {P, A, v, =, —, O}, where
A= ijfD(A — B), ¢ = —O0—-and ~= O0—, and the equivalence betweem and
—A = Ais provable. Thus we introduce two functiofA'sand=, that transform for-
mulas ofL _, into formulas ofL o, and vice versa (for simplicity of notation, we avoid

stressing the languages byandg, when clear from the context):

p- = P when P is an atomic formula
(=A)" = —A"Y

(AAB)" = A" AB"

(AvB®” = AZvB"

(A= B)"” = A" > B"

(A= B)"” = O(A— B)"

pP= = P when P is an atomic formula
=A)~ = —A”

(AAB)® = AT AB>

(AvB)~ = AZvB™

(A— B~ = A” > B~

(A~ = (A7 = A7,

The last two conditions mean théA =_, B)"” = A” = B" and that(ODg A)~ =
O_, A=, i.e., that the”-translation of a Strict Implication is a Strict Implication and
that the= -translation of a necessity is a necessity. Howevamnd= are not one the
inverse of the other (since, e. g7 A"~ = (-A= A7 = (O(-A - A)~ =
—(=A—> A) = (-A— A) # 0OA); anywayA~= is equivalent toA, and A= " is
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equivalent toA, too, and those equivalences are Natural Deduction and Hilbert style
provable, respectively.

So, when proving Soundness and Completeness we really show thadt jf a
formulaAis K -provable then the correspondibg-formula A" is aK -theorem” and
“if a Lo-formula A is aK-theorem then the correspondihg, -formula A= is K-
provable.” We recall what the systefnis in the Hilbert style (sedd]):

(1) it is a modal system, i.e., a system closed under the rule of inference RPL:
w whereA is a tautological consequence &f,Ao,. . ., An;
(2) it contains the axiom schema K{A — B) — (DA — OB);

(3) itis closed under the rule of necessitation Rc_l]ﬁp—\

We do not consider the axiom schema®fo A «<» —0—-A (see[B]), since our
language does not contain an explicit possibility symbol; furthermore, Condition 1
implies tha contains the usual Propositional Calculus, and itis equivalent to require
K

(1a) to contain all the tautologies,
(1b) to be closed under the Modus Ponens.

To prove Soundness of our system of Natural Deduction we need a technical lemma:

Lemma3.1l Thefollowing L o-sentences are K -theorems:

(@ o(A— A

(b) o(A— B) - 0(C— (A— B))

(c) o(A—- (B—-C)) - (0(A— B)— O(A— C))
(d o(A— B)— (O(A—C)—0(A— (BAC))
(e) o(——A—> A

(f o(A— B) - (o(B— C) »> o(A— C))
(91) O((AAB) —> A)
(92) O((AAB) — B)
(hl) o(A— (Av B))
(h2) 0(B— (AV B))

() cA—-o0B— A

() o(A— B) » (0—-B— 0-A)

(K O(A— B) —» (—OB — —OA).

Proof: Immediate.

Note that we can prove the above sentences only using tautologies, axiom K,
Modus Ponens and applying Necessitation to tautologies; thus, recalling thaB
andd(A — B) are alsdS1-equivalent, all of these proofs are still valid for the Lewis’
systenS1 (seelB] and [) when directly readingA = Binstead of1(A— B). That
could be useful when trying to develop systems of Natural Deduction based on Strict
Implication for the Lewis’ systems completely inta, .

Theorem 3.2 (Soundness) If aL_ -formulaisK-provablethenits-trandationis
a K -theorem.
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Proof: Weadapt to our case the quasi-proofdgfdnd [lJ. A quasi-proofis a proof
whose items can also be formulas of kinéiM (whereM is a theorem of the modal
systemK —possibly a tautology —5°M = M ando™1M = 0(0"M)). We gradu-
ally transform a Natural Deduction proof into a quasi-proof where the only used rules
are—E (that is MP), repetition (that is sound, but not necessary in a Hilbert style
proof), and=4e (that is sound, too). So, replacing the formutd$M by their cor-
responding proofs in the Hilbert style, we obtain the required Hilbert style proof.

As in [[1], we start from the innermost subproofs, i.e., proofs without any subor-
dinate proof (really they are quasi-proofs without formulas of kild/l) and trans-
form their parent proofs into innermost quasi-proofs. Step by step we transform all
of the proof into a quasi-proof where the only used rules-at&, rep, and= ges .

We start from a Natural Deduction in_, and arrive to a Hilbert style proof in
L o, so that we must transform the originaL, -formulas into the correspondings-
formulas: we can do it either at the first step, for all the formulas together, or step by
step, just for the formulas of the transforming parent proof. In any case, we handle
only formulas oflL 5: the translated formulas have the same connectives used in the
original ones, while the new formulas contain the necessity operatdvetransform
“=" into “0", and vice versa, by usingsqes .

We distinguish two cases:

1. the hypothesis of an innermost quasi-proof is material;
2. the hypothesis of an innermost quasi-proof is strict.

Casel: Let

TAO
An

be an innermost quasi-proof with a material hypothesis. We transform the parent
proof into a quasi-proof by substituting the “subproof item” with a sequence of items;
namely, for eachh; we add a sequence of items, the last one béing> A

() if A is Ag
thenwe add Ag — Ay tautology;

(i) if A; is obtained repeating some previodig(and soA; = Aj)
then we have already addedAy — A (= Ag— A))
so we add now Ag— A rep;

(i) if A is obtained reiterating aA; placed in the parent proof
then we have already (1
so we add now A — (Ag — A) tautology
(3) Ao — A —E, 1,2

(iv) if A;is obtained from some previou§ = Aj — A andAj by —E rule
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then we have already added (B — (Aj —> A) (= Ao~ AW
and (2)A0 — A
so we add now BYAs— (Aj— A)) —

((Ag — Aj) - (Ap — Aj)) tautology
(4) (Ao — A)) = (Ao— A) —E, 1,3
(5) Ag —> A —E, 2, 4;
we can also use that proof for the ruléby using the tautologyAg — B) —
((Ao > C) = (Ap—~> (BAC)));
(v) if Ajis obtained applying the rutle—E to apreviousAj = =——A
then we have already added @A) —> ——A
so we add now (2Ag — ——A) — (Ag — A) tautology
(3) Ap — A —E, 1, 2;
we can also use that proof for the rule& and vI by using the tautologies
(Ao— (BAC)) —» (Ac— B), (Ag—~> (BAC)) = (Ag— C), (Ao~ B) —
(Ao — (BVC)), (Ag—> C) = (Ag—~ (BVC));
(vi) if AjisO"M(n> 0) (this case is not allowed for the initial innermost subproofs)

thenwe add (1p"M quasi-proof def.
(2)o"M — (Ag — O"M) tautology
(3) Ao — 0" —E, 1,2

(vii) since the hypothesis of the innermost quasi-proof is material, none of its items
can be obtained by E; furthermore, since the quasi-proof is an innermost one,
none of its items can be consequence-gf VE, —I, = or contrap.

We need some final steps to complete the transformation of the parent proof into
aquasi-proof: in fact, in the parent proof there is a form@@athat was the conse-
guence of the subproof we have just transformed. So now, we must justify that for-
mula in some other way. Namely, just bef@gwe add a sequence of items that now
justify it:

(vii) if C was obtained applying the»>| rule (and saC = Ag — An)
then we have just added (&) — An
justifying (2) Ag > Ay rep;

(ix) if C was obtained applying theE rule (soC = A, = By, i.e., it is the last
item of two already transformed innermost quasi-proofs havingnd By as
first item, respectively)

then we have already (BoV Bo

we have already added (B) — C (= Bp— Bm)
we have just added (3Hpo—C (=Ao— An)
so we add now (4X AoV Bg) = ((Bg— C)

— ((Ap—~> C) — C)) tautology
justifying (5)C —E, 1,2,3,4;

(x) if C was obtained applying thel rule (and saC = —Ag = Ap)

then we have just added (B, — —Ag (=A0— An)
so we add now (20Ag — —Ag) > = Ay tautology

justifying 3)—Ag —E, 1, 2;
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(xi) if Cwas obtained by contraposition (andGe= —Ag and A, = —B, for some
previousB in the parent proof)
then we have already (1) B

we have just added (2o — —B (=A0— An)
so we add now (BB — ((Ag— —B) —» —Ap) tautology
and 4)(Ag — —=B) > = Ag —E, 1,3
justifying (5)—Ao —E, 2,4

(xii) finally, since the hypothesis of the innermost quasi-proof was mat€r@duld
not be obtained applying the-| rule.

Case2: Let
=Ao

Aq
be an innermost quasi-proof with a strict hypothesis. As in the previous case we trans-
form the parent proof into a quasi-proof by substituting the “subproof item” with a se-
guence of items; namely, for ea¢h we add a sequence of items, the last one being
O(Ao— A

@) if Ais Ag
thenwe add O(Ag — Ag) Lemma 3.13a;

(i) if A; is obtained repeating some previodig(and soA; = Aj)
then we have already addedd(Ag — A) (=0(Ag— Aj))
so we add now O(Ag— A) rep;

(iii) if A is obtained applying the rule-E to aformula A = B placed in the parent
proof (and scA; = A — B)
then we have already (B = B
so we add now (2p(A— B) =def, 1
(3)0(A— B) —>
O(Ag — (A— B)) Lemma 3.1b
4 oAy~ (A— B)) —E, 2,3
(=0(A0— A));

(iv) if A is obtained from some previou§ = Aj — A andA; by —E rule
then we have already added (1A — (A} — A)) (=0(Ac— Av))
and (2)0(Ao— A))
so we add now (BP(Ag — (Aj — A))
— (O(Ag— Aj)
— O0(Ag— A)) Lemma 3.1c
(4)0(A— A))
— O0(Ag—> A) —E, 1,3
(5)o(Ay— A) —E, 2, 4;

(we can also use that proof for the ruléby using Lemma 3.1d);
(v) if Ajis obtained applying the rutle—E. to a previousA; = —— A
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then we have already added @)A; — ——A) (=0(Ag— A)))
so we add now p(——A — A) Lemma 3.1e
() B(Ay —> ——A)
— (A=A = A)
— 0(A)— A)) Lemma 3.1f
@ o(—=—A - A) —>
O(Ag— A) —E, 2,3
(5) 0(Ay — A) —E, 1,4
(we can also use that proof for the rulek andvI by using Lemmas 3.1g1,
3.192, 3.1h1, 3.1h2);

(vi) if AjisO"M(n> 0) (this case is not allowed for the initial innermost subproofs)

thenwe add  (1p"t1Mm quasi-proof def.
(2) oM - O(Ag — O"M) Lemma 3.1i
(3) (A — O"M) —E, 1,2

(vii) since the hypothesis of the innermost quasi-proof is strict, none of its items
could be obtained by reiteration; furthermore, since the quasi-proof is an in-
nermost one, none of its items could be a consequeneelpf/E, —I, =1 or
contrap.

As in Case 1, to complete the transformation of the parent proof into a quasi-
proof, we must justify in the parent proof the conseque@esf the subproof we
have transformed; so, just befdfe we add a sequence of items that now justify it:

(viii) if C was obtained applying the>1 rule (and saC = Ay = An)
then we have just added (T Ay — An)
justifying (2) Ao = An = def, 1
(ix) finally, since the hypothesis of the innermost quasi-proof was s@ictpuld
not be obtained by applying the rulesl, VE, =l and contrap.

So, starting from the innermost subproofs and transforming step by step the in-
nermost quasi-proofs in such a way, we transform the Natural Deduction proof into
a quasi-proof that uses only the rulesE (i.e., MP), repetition ands 4 (that are
sound). So, this quasi-proof is really a Hilbert style proof that contains unjustified
formulasd"M. Then, we substitute every formutd M with the sequenc#l, 0'M,

..., 0"1M, 0"M where each item (except the first o) is obtained applying the
rule RN to the previous one: so, we have a Hilbert style proof whose only unjustified
formulas aréK -theorems (i.e.M); finally, we substitute all th& -theorems with their
corresponding Hilbert styl& -proofs, obtaining a full Hilbert style proof.

This finishes the proof of Theorem 3.2.

Before proving Completeness we need some other technical Lemmas (3.3-3.6)
concerned with formulas df_, (as to notation, hereinafter we simply call “proof” a
Natural Deduction proof):

Lemma3.3 If Aisatautology thenitis K-provable.

Proof: Every tautology is PC-provable (by Lemma 2.1) and every PC-prodfis a
proof (without strict subproofs).
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Lemma3.4 If AisK-provablethen it can be put as an item at every place inside
a proof (but not replacing a hypothesis or a consequence of a subproof).

Proof: If A'is K-provable then there existskaproof P of it, that is a sequence of
items (justified by rules) whose first member is a subproof and whose last éne is

P: TD hyp (or shyp)
A.

Given aK-proof Q, we can add P at every place in any subproofv@th the two
exceptions specified in the statement) giving rise koproof again. In fact, the new
items have no side effect on the old items of Q, and all of the proof P becomes a sub-
proof completely justified by the same rules. Formally, we distinguish two cases:

Casel: we want to putA before all the items of Q, so

the proof Q TF becomes TD

ATF
G .
Case2: we want to putA after a formulaB of Q, so
the proof Q B becomes
D beginning of P

A end d P
B rep (to reconnect to Q)

and in both cases we obtairkKaproof again.

The reason for the two (really unessential) exceptions in the statement is that
the role of hypothesis (conclusion) depends on its position in the proof (first item, for
hypothesis; just before the subproof, for conclusion). So, when shifting, a hypothesis
(conclusion) is no longer justified; moreover, the subproof P cannot assume that role,
since a hypothesis (conclusion) is required to be a formula.

Lemma35 If AisK-provablethen OAisK-provable, too.

Proof: Let us consider the following proof ofA:

—-A shyp
A Lemma 3.4 A is K-provable by the hypothesis)
-A= A (g2 A =l.

Lemma3.6 TheaxiomschemaK, O(A— B) — (0DA — OB), isK-provable.
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Proof:

1) . O(A— B) hyp

(2) A= B Lemma 2.2

3) -A= A de A hyp

4) A= B reit, 2

(5) — —B shyp

(6) A— B =E, 4

@) -A— A =E, 3

(8) (—A—> A)—> A tautology,
Lemmas 3.4
and 3.5

(9) A —E, 7,8

(20) B —E, 6,9

(11) -B=1B def OB =l, 5, 10

(12) OA— OB —1,3,11

(13) o(A— B) -» (DA— OB) - 1,1, 12.

Now we can prove the Completeness TheorenKfor

Theorem 3.7 (Completeness) If an Lg-formulais a K-theorem, then its = -trans-
lation is K-provable.

Proof: We prove the thesis by induction on the complexity of Hilbert style proofs:

(1a) the~-translation of a tautology is still a tautologylin,, sothat isK -provable,
by Lemma 3.4;

(1b) the system of Natural Deduction is closed underth&ganslation of Modus
Ponens: in fact, if bottA and A — B areK-theorems, then by the inductive
hypothesis, bottA= and (A — B)™ = A® — B~ areK-provable. So the
following proof:

A= — B~ Lemma 3.5
A= Lemma 3.5
B~ —E

is aK-proof of B, i.e., the thesis;
(2) the™-translation of the axiom schemaK (.8, (A~ — B™) — (0, A~ —
0O B¥))is K-provable, by Lemma 3.7;

(3) the system of Natural Deduction is closed underthianslation of the rule

of Necessitation, RN, (i.e%), by Lemma 3.6.
B A™)

4 Categorical strict subproofsandsystem T  In the previous section we considered
only hypothetical strict subproofs, i.e., those having a nonempty hypothesis. Now, we
also allow categorical strict subproofs, that have empty strict hypotheses. Actually,
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the following Natural Deduction proof

= empty shyp
A
-A shyp
B .
B conclusion,

should represent the Modus Ponens for strict implication:

A A= B

MP = B

In such an interpretation, the first occurrencetdin MP=) means that there exists
a grict proof of Awithout any hypothesis (i.e., a categorical strict proof). [4] consid-
ered the Ax.R.:A A (A = B) = B, which directly represent that situation. In this
work, we add these new rules:

Introduction of empty strict hypothesis (eshyp):
' ‘: eshyp
Introduction of empty strict implication ¢el):

R
A e=l

Elimination of empty strict implication (e E):

A

‘A esE

We remark that the rules-e| and e=E are the empty-strict version of the rulesl
and=E, respectively (that can be graphically seen just readiag\"—that must

not be confused witi" = A—instead ofA in the parent proof). Note that ruleseE
allows free reiterations into categorical strict subproofs. Finally, the e still
works for categorical strict subproofs; now, in the case of an empty strict hypothesis
it appears as:
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Elimination of Strict Implication £ E):
A= B

A>B  =E

We prove the system of Natural Deduction we have introduced is sound and complete
for the normal modal logi@ (= KT, see Chellas [3]), i.e., a formul&is T-provable
iffi tis aT-theorem. We recall is K plus the axiom schema

T:0A— A.

Theorem 4.1 (Soundness) If aL_ -formulaisT-provablethenits-trandationis
a T-theorem.

Proof: We use the same proof used fidrwith suitable modifications to also con-
sider categorical strict subproofs. Namely, we add the new case of an innermost
guasi-proof with an empty strict hypothesis (note that since we are proving Sound-
ness of the system of Natural Deduction Towe can usel -theorems into the quasi-
proofs):

Case 3: Let

Aq
An

be an innermost quasi-proof with an empty strict hypothesis. As in the other cases,
we transform the parent proof into a quasi-proof by substituting the “subproof item”
with a sequence of items; namely, for eaghwe add a sequence of items, the last
one being the sam&;. In most cases we can easily readapt the proofs in Step 2 using
tautologies instead of the modal theorems of Lemma 3.1:

(i) Ap does not exist since the hypothesis is empty;

(i) if A; is obtained repeating some previodg(and soA; = Aj)
then we have already addedA;
so we add now Aj rep;

(iiia) if A;is obtained applying the rule-E to aformula A = B placed in the parent
proof (and scA; = A — B)
then we have already (B = B

so we add now (22(A— B) =def,1
B)o(A—B)— (A— B) AxiomT
4HA—~B —E, 2, 3;

(iiib) if A is obtained applying the rule=eE to aformula A placed in the parent
proof (and sQA; = A)
then we have already (1A
so we add now (2A rep;
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(iv) if A is obtained from some previou§ = Aj — A andA; by —E rule
then we have already added @A) — A (= Ao
and (2)A;
so we add now (3A —E, 1, 2;

(that also holds for the rulel, by suitable uses of tautologies),
(v) if Ajis obtained applying the rutle—E. to a previousA; = ——A;

then we have already added @) A (=A))
so we add now (2y—A — A tautology
(3) A —E, 1,2

(that also holds for the rulesE and v, by suitable uses of tautologies),

(vi) if AjisO"M(n> 0) (this case is not allowed for the initial innermost subproofs)
then we add 0"M quasi-proof def;

(vii) since the hypothesis of the innermost quasi-proof is strict, we cannot have any
reiteration. Furthermore, since the quasi-proof is an innermost one, none of its
items can be obtained by |, VE, =I, =1, e=I or contrap.

As in Cases 1 and 2 of Theorem 3.2, to complete the transformation of the parent
proof into a quasi-proof we must justify in the parent proof the consequéha,

the subproof we have just transformed. So, just befyee add a sequence of items
that now justify it:

(viii) if C was obtained applying the=l rule (and saC = A,)
then we have just added (&),
justifying (2) An rep, 1;

(ix) finally, since the hypothesis of the innermost quasi-proof was s@icould not
be obtained applying the rules|, VE, —I, contrap, and, since the hypothesis
of the innermost quasi-proof was empB/could not be obtained applying the
rule=l.

So, proceeding as fdf, we transform the Natural Deduction proof ofLa, -
formula into an Hilbert styld -proof of its“-translation. This completes the proof
of Theorem 4.1.

Theorem 4.2 (Completeness) If a Lg-formula is a T-theorem then its = -tranda-
tionis T-provable.

Proof: Since the system of Natural Deduction fbris really an extension of the
system forK (and so all the previous lemmas still hold) we need only prove that the
=-translation of the axiom schema T is provable:

N L —=A=A def DA hyp

(2) — eshyp

(3) -A> A =E, 1

4 (A= A)—> A tautology,
Lemmas 3.3
and 3.4

(5) A —E, 3,4

(6) A e=l,2,5

(7) (~A=A) - A ZO0A> A S1,1,6.
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5 K4andS4 When we introduced strict subproofs, we showed that the reiteration
of generic formulas into strict subproofs cannot be allowed, so as to avoid the collapse
of modalities. Now, we allow the reiteration of some peculiar modal formulas, the
strict implications:

Reiteration of Strict Implication=reit):

A= B
—— C

A : B =reit.

That rule is the immediate translation of the [4] AX.TA= B) = (C= (A= B)),
and corresponds to the usual axiom schema

4:0A — OOA.

Adding the axiom schema 4 £ and toT we obtainK 4 and$4, respectively; adding
the rule=reit to the systems of Natural Deduction forand forT we obtain systems
of Natural Deduction foK 4 and for$4, respectively, as we prove in the following
theorems.

Theorem 5.1 (Soundness) If a L_-formula is K4-provable (S4-provable) its
H-trandlation is a K 4-theorem (S4-theorem).

Proof: For K4, we use the same proof used #rwith suitable modifications to
consider the new rulesreit. Namely, we add a subcase for strict subproofs (now we
allow the use oK 4-theorems):

If A; is obtained by the rulesreit reiterating a formulaA = B placed in the
parent proof (and sé = A= B)

then we already have (A= B

so we add now (2p(A— B) =def,1
(3)o(A— B) —» 0O(A— B) Axiom4
(4)oo(A— B) —E, 2,3
(5)oo(A— B) -
O(Ay — O(A— B)) Lemma 3.1i
(6) 0(Ag— O(A— B) —E, 4,5
(1) O (Ao~ (A= B)) 6, = qef, Eq
(=0(Ac—> A))

For $4, we use the same proof used foy merely adding the above subcase for
hypothetical strict subproofs. For categorical strict subproofs nothing changes, since
the reiteration of Strict Implication is a particular case of ruige.

Theorem 5.2 (Completeness) The = -trandation of the axiom schema 4 is prov-
able fromthe rule = reit (in a system of Natural Deduction containing the K one).

Proof:
(1) —A=A el A hyp
(2) ——— (A= A shyp
) -A= A =reit, 1

(4) —-(—A= A) = (A= A) dEDDA =l1,2,3
(5) OA — OOA —>|,1,4.
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6 Reiterating negationsof Strict | mplicationsinto strict subproofs(5-systems) In

this section we allow the reiteration of negations of modal sentences (i.e., negations
of strict implications) into strict subproofs. So we consider the following rule:
Reiteration of negation of strict implicatior(=reit):

—(A= B)

—-(A= B) — =reit.
That rule corresponds to the axiom schema

5:0A— OCA.

Adding the axiom schema 5 1, K4, $4 we obtainK 5, K45, S5 (= KT5), respec-
tively. Adding the rule-~ =reit to the systems of Natural Deduction #rK 4, S4we
obtain systems fdk 5, K45, S5, respectively, as we prove in the following theorems.

Theorem 6.1 (Soundness) IfaL_ -formula AisK5-provable (K 45-provable, S5-
provable) then its P-trandation is a K 5-theorem (K 45-theorem, S5-theorem).

Proof: For K5 (K45, S5), we use the same proof used for K4, S4) with suit-

able modifications to consider the new rule. Namely, we add a subcase for strict sub-
proofs (now we allow the use into quasi-proofskds-theoremsk 45-theoremsSs-
theorems, respectively):

if A is obtained by the rule: = reit reiterating a formula-(A = B) placed in the
parent proof (and sé = —=(A= B))

then we already have (1)—(A= B)

so we add now (2) -o(A— B) Sdef,1
(3) ©o—=(A— B) —> 00—(A— B) Axiom5
(4) —-0(A— B) - 0-0(A— B) <gef, 3

(5) o-O(A— B) —E, 2,4
(6) ob—-0(A— B)—
O(Ag— —O(A— B)) Lemma 3.1i
(7) o(Ay— —O(A— B)) —E, 5,6
(8) O(Ag— —(A=B)) 7, =def, EQ
(=0(Ao—> A))

Theorem 6.2 (Completeness) The = -trandation of the axiom schema 5 is prov-
able fromtherule — = reit (in a system of Natural Deduction containing the K one).

Proof:
D) —(—A=—-A) dzfﬂmﬁ%zfoA hyp
(2) (A= —A) CA shyp
3 (A= —A) GOA - =reit, 1
4 -OA= CA deCA =1,2,3

5) ©A— OCA -1, 1, 4.
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7 Necessity of negation asstrict negation (B-systems) Now, we consider the Nat-
ural Deduction counterpart of the axiom schema

B: A— OCA.

That axiom schema was introduced when considering the strict negatighds an
Intuitionistic negation: in fact, when rewriting the Intuitionistic axiom about double
negation with =" we obtain A — (0—)(0—)A, that is the axiom schema B; on

the contrary, when rewriting the classical converse axiom about double negation with
“0-"weobtain(0—-)(O0—-)A — A, that leads to the collapse of modalities ([7]). In
our systems of Natural Deduction, we considef;0— as the negation affected when
astrict subproof communicates (in both the directions) with its parent proof, while the
usual negation still works into the internal of any subproof. We should consider the
strict version of the rules:E, —I and contrap; but the first one works only inside the
subproofs, so that we do not have to change it; ad tds version for strict subproofs

appears as
—— A
~A
(in fact, the internal negation remains™, while the external one becomes-*);
that rule is really equivalent to the rutel, so that we do not consider it. Thus, the
only new rule for modal negation is a suitable version of contraposition for strict sub-
proofs:

B contraposition (B-contrap):

A:B

~B B-contrap,
where “~" has the role of negation from and to the strict subproof.

That rule is quite different from the [4] AX.S(A = (BVv ~ (A= B)), and
corresponds to the axiom schema B.

Adding the axiom schema B to the systelasK T (=T), K4 we obtain the sys-
temsK B, KBT (=B), KB4, respectively; adding the rule B-contrap to the rulesfor
(KT, K4) we obtain a system of Natural Deduction KoB (KBT, KB4), as we prove
in the following theorems.

Theorem 7.1 (Soundness)ifal _,-formula AisK B-provable (K BT-provable, K B4-
provable) then its “-trandlation is a K B-theorem (K BT-theorem, K B4-theorem).

Proof: ForKB (KBT, KB4), we use the same proof used Ko(K T, K4) with suit-

able modifications to consider the new rule. We recall that'thnslation of a strict
negation is not a strict negation: in facty A)” = (0—A)” = ——A” =5 -A" =
O(—=—A" - =A") £0-A" = ~ A" but anyway( ~ A)” < ~ A", sothat we

can pass from such a formula to the other by using the “substitution of equivalents,”
Eq, that is a Hilbert style sound rule in akysystem (actually also i81). We add a
subcase for strict subproofs (now we allow into quasi-proofs the us8eheorems,
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K BT-theoremsK B4-theorems, respectively):

if C was obtained by applying the rule B-contrap &= =—— Ay = —Ag and A, =
——A = —A, for some previou\ in the parent proof)

then we have already (1)A
we have justadded (2)0(Ag— (——A=—-A)) (=0(Ay— An))

Q) O(Ac—> ~A) ~def, EQ, 2
so we add now (4) A— OocA Axiom B

(5) OOAZ ~ ~A —E, 1,4

(6) O(Ao—> ~A)—

(~~A—=> ~ Ay Lemma 3.1j, ~gef

7 ~~A-> ~A —E, 3,6

8) ~ Ay —E, 5,7
justifying 9) ——A=—-Ay ~def, =def, 8.

For systems containing the axiom schema T we should consider the case in which B-
contrap is applied to categorical strict subproofs. Such an extension is unessential,
since systems of Natural Deduction with rule B-contrap working only on hypothet-
ical strict subproofs are just proved complete. For categorical strict subproofs, any
generic formulaX can be a consequence of that rule:

B contraposition (B-contrap):

X B-contrap

in fact, when proving Soundness, we must add only a new subcase for innermost
quasi-proofs with empty strict hypothesis, that is:

if X was obtained by applying the rule B-contrap to a categorical strict subproof (and
S0 A, = =-—A = —A for some previoud in the parent proof)

then we have already (1)A

we have justadded (2)——A= —-A (= Ay
3) o-A ~def, 2

so we add now (4) o-A— —A Axiom T
6 —-A —E, 3,4
(6) A— (—=A— X) tautology
(7) -A—> X —E, 1,6

justifying 8 X —E,5,7.

This finishes the proof of Theorem 7.1.

Theorem 7.2 (Completeness) The = -trandation of the axiom schema B is prov-
ablefromtherule B-contrap (in a systemof Natural Deduction containing the K one).
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Proof:
(1) A hyp
(2) —~ A shyp
3) ~A rep, 2
4) ~ ~ A de O A B-contrap
(5) A — OCA —1,1,4.

8 The axiom schema D  Finally, we complete our work considering the Natural
Deduction counterpart of the axiom schema

D:0A— CA.

This axiom schema is introduced when considering necessity and possibility as obli-
gation and permission, respectively. So, we add a rule that corresponds to the axiom
schema D, but that is really more directly linked to strict negation rather than to Strict
Implication. Formally, we introduce another variant of contraposition for strict sub-
proofs:

D contraposition (D-contrap):

A
-~B D-contrap

The rule D-contrap corresponds to the usual axiom schema4) sed the
Ax.D.: ~ ~ T). Adding the axiom schema D to the systekhsK 4, K5, K45 and
KB weobtain the systemsD, KD4,KD5,KD45 andK BD, respectively; adding the
rule D-contrap to the rules faf (K4, K5, K45, KB) we obtain a system of Natural
Deduction folK D (KD4,KD5,KD45,KBD), as we prove in the following theorems.

Theorem 8.1 (Soundness) If a L_.-formula A is KD-provable (K D4-provable,
K D5-provable, KD45-provable, KBD-provable) then its “-trandation is a KD-
theorem (K D4-theorem, K D5-theorem, K D45-theorem, K BD-theorem).

Proof: ForKD (KD4,KD5,KD45,KBD), we use the same proof used #1(K 4,

K5, K45,KB) with suitable modifications to consider the new rule. Namely, we add a
subcase for strict subproofs (now we allow into quasi-proofs the us®etheorems,

K D4-theoremsK D5-theoremsK D45-theorems anld BD-theorems, respectively):

if C was obtained by applying the rule D-contrap Ge= —(—Ag = Ag))(—with
Ap = -B—)(and A, = Afor some previous-— A = — Ainthe parent proof)

then we have already (1) — A= —A

(2) O-A =def, 1
we have justadded (3) O(Ay— A) =0(Ag— Ap)
so we add now (4) O-A—> O-A Axiom D

(5) ©—=A =-0--A —E, 2,4

(6) —OA 5, tautology, Eq
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(7) OAy— A) —» (mOA— —OAg) Lemma 3.1k

(8) —-OA— —-0OA —E, 3,7
9 -0A —E, 6,8
justifying (10) —(—Ay= Ap) =gef, EQ, 9.

This finishes the proof.

We remark that the axiom schema D can be easily derived from the axiom
schema T (se€]). So we do not need to consider the rule D-contrap in systems of
Natural Deduction for logics that contain the axiom schema T. The version of rule D-
contrap for categorical strict subproofs is unessential, as argued in the previous sec-
tion for the corresponding version of the rule B-contrap.

Theorem 8.2 (Completeness) The = -trandation of the axiom schema D is prov-
ablefromtherule D-contrap (in a systemof Natural Deduction containing the K one).

Proof;
D oA hyp
(2) O—-—A = ~-=A 1, K-theorem
(3) —A shyp
(4) —-A rep, 3
(5) —0-A =-~A=0A D-contrap, 2, 3, 4
(6) TDA—OA —1,1,5

where step 2 condenses theproof of 0—— A from O A (see Lemmas 3.3-3.6).
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