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An Approach to Uncertainty
via Sets of Truth Values

GEORGE GARGOV

Abstract  An approach to the treatment of inference in the presence of un-
certain truth values is described, based on representing uncertainties by sets of
ordinary (certain) truth values. Both the algebraic and the logical aspects are
studied for a variety of lattices used as truth value spaces in the domain of many-
valued logic.

1 Introduction The paper is devoted to one facet of the problem of reasoning with
imperfect information, namely when some of the available knowledgedertain.
Uncertain truth values are modeled by sets of ordinary truth values. In order to ex-
plain the intuitions behind such an approach we need to recall some facts about clas-
sical logic.

1.1 Theclassical picture Let us begin with an outline of the classical logical doc-
trine concerning reasoning. According to it logic deals vathrect reasoning, this
notion being explicated as referring to transformations of statements which, if applied
to true ones, lead to true statements, hence the importartcatiof/alues. The ba-
sic thesis of classical formal logic concerning truth values seems to bntbagry
epistemic situation a well-formed statement A isalways assumed either true or false,
but not both, although sometimes the exact truth value is (temporarily!) unknown.
Moreover, the truth value of a compound statement is recoverable from its syntactic
structure and the truth values of the components (although this might lead to enquiries
about other epistemic situations).

Thus,

1. the problem of how the truth values are obtained is radically separated from the
ontological problem of their existence;

2. the definiteness (certainty) of truth values regardless of any difficulties in their
actual establishing is assumed; and
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3. in a sense perfect information about every conceivable (even remote) situation
is postulated, independent from the state ofdbserver.

For the formal implementation of the above doctrine one associates with an epistemic
situation atruth assignment (a semantical evaluation function)vhich assigns each
statementA a definite truth value from the sdtrue, false} (v : Fml — {truefalse}).

For typographical reasons we use below 1 insteddusf and 0 instead dfalse. As-
suming the usual interpretation of the classical connectives, i.e., assuming that all
connectives artr uth-functional, this set (the smallest possible logical matrix) is the
Boolean algebra:

2={{0,1}, A, Vv,—, 0, 1).

In this wayclassical semanticsis represented by some détof homomorphisms into

2. The definition of semantic consequence relatibri= A (whererl is a set of state-
ments andAis a statement), ¥v e H(VB e I'(v(B) = 1) — v(A) = 1), captures the

basic intuition about sound inference: that it should transmit the truth forward, i.e., if
all hypotheses of an inference are true (in a situation) then the conclusion should also
be true (in the same situation). However, for reasoning involving intensional con-
nectives (not truth-functional ig) like modalities];, tense operators, etc., a more
sophisticated version is needed.

Example1l.l Here we allow many epistemic situations, gmssible worlds, with
several accessibility relations between them (but keeping them all binary); thus we
can accommodate most of the unary intensional connectives (modal, temporal, deon-
tic, etc.) and some of the binary ones such as conditionals, data connectives, etc. In
this approach &rame 7 is a tuple(W, {Ri}ic|), of which,

1. Wis a nonempty set gfossible worlds;
2. R are binary relations iV, i.e., Rk C W x W.

A model M (on a framef) is apair ( F, ¢) wheregp is a truth assignmenvél uation
function), i.e.,

¢ W x Var(L) — 2.

In a modelM the functiony can be extended to a mappipg : W x L — 2 by the
well-known truth conditions for different connectives, for example (writiig w =
Ainstead ofpy (w, A) = 1):

M, wE=AAB iff M, wkE=AandM, w =B, or
M, wE=TDA iff Yo (wRw = M,w = A), etc.

Writing || Al| 4 for {w : M, w = A} we get a mapping af into the intensional alge-
braA () of the frame, i.e., the algebra of all subsetg(W), N, U, ..., {Ti}iel),
where the intensional (e.g., modal, temporal, etc.) operations are defined as, e.g.,
0iZ = {w: VW' (wRw = w' € 2)}. ||.||ar is @ homomorphism||A A B|| =
A N IBl], ..., [|TiAll = 0i||All. We denote||Al|q = W by M = A and the
fact that for all model$\f based onF, M = A, by ¥ = A.
The important point for our exposition is that a possible worlds frafris syn-
onymous with an intensional (modal) alge&f), whereas a modél corresponds
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to a homomorphism aof into A(¥), i.e., a member of Hoif, A( F)). In this way
all connectives become again truth-functional, though in respect to another (more
complex) logical matrix, in which the truth values are sets of possible worlds tradi-
tionally calledpropositions.

Given a class of such models there are several possibilities for defining the no-
tion of semantic consequence, e.g.,

1. T=o Aiff YMYw e WYBeT'(w = B) = w = A);
2. T =1 AIff YM(YBeT' (M = B) = M = A).

Expressed in algebraic terms these conditions become:

1. T = Aiff VFVh € H € Hom(£L, A(F))(h(A{B: BeT}) < h(A))
2'. T =1 Aiff VFYh e H € Hom(L, A(F))(VB € T(h(B) = 1) = h(A) = 1).

As is well known, the first of these consequence operations is suitable for reasoning
in relational models. In the present paper we concentrate on the second possibility,
which is familiar mainly from the so-calleahatrix approach in the study of many-
valued logics (cf. Brown and SuszKé]J[ Wojcicki [29].

1.2 Criticism The above notions of truth and semantic consequence can be ques-
tioned on several points.

The first goes back in time to the intuitionistic criticism of the classical approach
to mathematical truth. It questions the rationality of assuming that onal eags as-
sign a truth value to a particular statement (and hold this as a methodological principle
when dealing with still unsettled mathematical problems). Such a criticism leads to
admitting statements which anedefined. Analyzing the notion of algorithm, in par-
ticular the statements one can make concerning their behavior, Kleene came up with
the “strong Kleene truth tables” (cfL]) that includedundefined as a third possibil-
ity, but even earlier Lukasiewicz had introduced the third value when investigating
the status of statements about contingent future events (there is an obvious connection
between these two concerns). This opened the door to considering the truth values as
partial objects and to applications of fix point techniques. For example in the theory
of truth developed by Kripkdlg] and others (e.g., Vissef), the fixed points of
certain monotone operators on the family of all truth assignments were studied. The
importance of the relation of “being more defined” and its connection with the “being
more true” relation began gradually to emerge.

Another point on which the classical view has been questioned is the contention,
having its origin even before Aristotle, that no statement is both true and false (in
one and the same epistemic situation). Arguments put forward by the like of Hegel,
Wittgenstein, etc., seem to show that this is open to a discussion. Some recent pub-
lications give expositions of what can be done abandoning the view that “everything
is consistent” and have spoken of the “consistency of the world” problem, cf., e.g.,
Priest P1],[22), Rescher and Brando®4]. Nevertheless the assumption of such a
consistency, equivalent to the well-knowaw of noncontradiction, is considered by
the majority of logicians as the final and indisputable principle of logic beyond which
there is absolutely no ground for a rational epistemic activity, cf. Lei [

Philosophically speaking the consistency and completeness of knowledge are
determined by its “correspondence” to the “outside world.” Thus contradictions may
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be the result of;

e defects in the correspondence,
e defects in the knowledge,
e defects in the world.

Concentrating on the defects in knowledge, it is an interesting problem what reason-
ing procedures can be developed in order to accommodate the possibility of contra-
dictory statements. The simplest option is to permit statements to be both true and
false and keep this as thaly possibility beyond the classical assumptions. This leads

to a picture where for a statemeftind an epistemic situation we have just three ways
with the truth value:Aisonlytrue; Aisonlyfalse; A isbothtrueandfalse. Formally

this approach can be described by truth assignments into thig@setl}, {0, 1}}, as

done e.g., by Priest if?[l], [E2]. The consequence relation generated by the algebra

3 above tolerates inconsistencies in the sense that there is no general inference of an
arbitrary statement from a contradiction.

A further step is to combine the assumptions of partiality and contradictori-
ness. By this step we arrive at a class of assignments that have values in the set
{, {1}, {0}, {1, O}}. Inthis case the corresponding consequence relation is also con-
tradiction tolerant. The arising logic with twaesignated truth values{0, 1} = Both
and{1} = True, is also well known and has been extensively studied, e.g., by Bel-
nap ,[B] etc. Recently this logic has found applications in computer science as a
suitable basis for studying the semantics of the programming languages.

An obvious way to make Examplelinore “realistic” in the above respect is to
admit either partial or contradictory models, or both. This has been done by many, in
particular by Ginsberdl[g], who recently promoted a notion incorporating most of the
ideas discussed above. Hiisattices (algebras with two complete lattice orders) were
intended to combine model-theoretic and computational advantages in treating rea-
soning with imperfect information: they could be used either as conventional logical
matrices, or as in denotational semantics as a background for fixed point calculations
(in the latter case truth value assignments do not presuppose the truth functionality of
any logical connective—an important point for nonmonotonic inference). Belnap’s
algebrad is the simplest bilattice. For its four elements Belnap indicated the “sets
of ordinary truth values” interpretationt a € x for an x € 4, then a was a possible
ordinary truth value for the statement having value x. The rules Belnap gave for ma-
nipulating logical connectives, though, are different from the rules generated by our
interpretation below, mainly in the treatment of the vame = o.

1.3 Truth-valuespaces Along the pathindicated by the above criticism of the clas-
sical semantical schema we arrive at the notiotrath value space. The classical
spaces (spaces for classical logic) were in general Boolean algebras with additional
operators representing intensional connectives occurring in the language. Early ex-
amples of nonclassical spaces were the pseudo-Boolean algebras, Post algebras, the
unit interval [Q 1] in fuzzy logic, etc.

From the very beginning deviations from the classical scheme were justified by
appealing not only to thancertainty of information (on the basis of which the de-
cision to declare something true is taken) but to ithiiefiniteness of data,vague-
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ness (fuzziness) of notions, i.e., all kinds of imperfections in the available knowl-
edge or lack of suitable knowledge due to difficulties in understanding (subjective
nonsignificance), and even objective nonsignificance (as for example did Bochvar,
cf. Finn et al.[7], who studied propositions in the foundations of mathematics that
destroyed any theory they appeared in). The truth-value spaces reflected in their inter-
nal structure different views and assumptions (philosophical, mathematical, logical,
pragmatic, etc.) concerning truth and inference. But there seem to be some general
features common to all known examples of truth spaces: they represent methods of
evaluation of information, i.e., truth values of statements are determined on the basis
of the available information. We can even in general identify them witlatvhdable
relevant information (about the state of affairs described or referred to by the state-
ment).

This information can be characterized in two ways:

truth degree: reflecting the truth content of a statement. No doubt here we need
atheory of truth (e.g., correspondence theory, or any other coherent view on how in-
formation is to be considered true, on the necessity of an external world, etc.) but
clearly truth degrees generate a partial order among truth values.

degree of knowledge: reflecting the definiteness of information or the complete-
ness of the knowledge about the truth value (this could involve an estimation how
reliable the information is, indications whether we find it plausible, etc.).

1.4 Sets of truth values as generalized uncertain truth values (background) In

this framework a way to account for thacertainty of knowledge is to consider

sets of truth values, e.g., sets of propositions, as representatives of the “not perfectly
known” truth-value of a statement. We find analogous ideas in fields like fuzzy set
theory and logic (cf. Atanassov and Gardaj) [ probabilistic logic (cf. CalabresE],
Dempsterlf], Gardenfors[[{]), Al (cf. Sandewall[P5]), many-valued logic (cf. Gar-

gov [11],[17)), etc. Here we propose a codification of such uses in the notion of set
expansion of a given truth value space. Set expansions consist of sets representing
the possible truth values a statement can have according to the available informa-

tion; consequently degree of knowledge ordering is inverse set inclusion, while truth
degree ordering is somewhat more complicated and depends on the concrete problem.

Our idea stems from an early attempt of Vakarel@g [who explored cer-
tain schema for obtaining relative semantics, later developed and applied to var-
ious nonclassical systems in Garg@M][[[L7],[[L4], Gargov and RadeIf], and
Vakarelov[7].

Put very briefly, the schema consisted in the following: take a propositional lan-
guageL and let£; be any other language with counterparts to all the connectivés of
(and possibly some additional ones). Assume$eat is a semantics faL,, i.e., that
for s e Sem we may in principle decide whether a formualas true at s (denoted by
S = a) or not, transfeiSem to formulas of£ by means of (finite) sets of; formulas
usinginterpretation functionsi which assign to eacli-formula a set of;-formulas,
the following condition being satisfied:

for a connective(Aq, ..., Ay) of L,
i(0(Aq,...,An)={o(@,...,an) a €i(Ay),k=1,...,n}.
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Let Int denote the set of all interpretation functions anig the set of those in-
terpretation functions which do not contain the empty set in their ranges. Call a pair
(s, i) aninterpretation index. Formulas inL can be evaluated at an index according
to one of the following rules (but there certainly are other possibilities for evaluation,
some of which were considered [4], [IE among them thengjority strategy ac-
cording to whichA is accepted if the majority of membersigf) are true).

Aistrug at(s,i) iff Vaei(A)ska;
Aistrugyat(s,i) iff 3Jaeci(A)ska.

ForTI', aset of L-formulas, andA, an L-formula, say thaAis a Sem, Int),, con-
sequence of (n=0, 1), if for all indices(s, i), if all B € T" are trug at (s, i), then
Ais also trug at (s, i). There are several intuitions behind the schema. For example,
truth; can be associated with the notiondi$ambiguation (treated by Lewis[I9)):

a proposition is assumed true if all its possible disambiguations are true. In general
disambiguations are statements formulated in a language different from the original
one, but on the other hand they follow closely the structure of the proposition disam-
biguated. For truthone has the notion gfistification: astatement may be considered

true iff there is at least one true justification of this statement{dl] [[I5]). The jus-
tifications of a statement can be formulated in a completely different language, but the
conditions upon the interpretation functions presuppose a very strict correspondence
between the propositional structure of a statement and the structure of its justifica-
tions.

When applied to the classical propositional language (equipped with the or-
dinary 2-semantics) the schema gives consequence relations related to some three-
and four-valued logics (cf. GargoliLf]). For instancg2, Inty), is Kleene’s original
three-valued consequence relation (coinciding with tukasiewicz’ for the basic lan-
guage, cf.[26)), in [[LT] it was proved that2, Intg)o is the consequence operation of
the three-valued logic of Prie§]]. (2, Int); and(2, Int)g were studied i3] where
the corresponding logics were formalized in a natural deduction style.

15 What isto follow In the present paper we treat in the spirit of Rasiowa and
Sikorski the mathematics (part 1) and logic (part 2, which for simplicity of pre-
sentation we restrict to propositional languages) of the set expansions. The many-
valued logics determined by different subclasses of these depend on a number of pa-
rameters. One of the goals of the paper is to present a classification of the correspond-
ing logics.

2 Set expansionsof lattices of truth values: algebraic aspects LetL be a bounded
latticeL = (L, A, Vv, 0, 1). Elements ofL represent truth values, e.g., they can be
elements of an abstract logical matrix, or sets of possible worlds, etc. We assume also
any number of additiondlnitary operationso(xy, ..., X,). For example, we could
have unary operations like negation (in the case of de Morgan lattices and Boolean
algebras), modalities, or a binary operation of implication when we consider Heyting
algebras, etc.

The basic idea explored in this paper is to view subXet, Z, ... of L as new,
“expanded” truth values. A set could be said to embody the knowledge an observer
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has about the “real” truth value of a statemAnso|| A|| € X, where|| A|| is the “real”
truth value. Consequently, it can be viewed as an infinitary disjun§figihA|| = x:
x € X}. Inthis section we develop the algebraic aspects of such an approach.

2.1 Internal operations Set expansions of lattices will be introduced step by step.
As a first step we define a class of operations which are expanded counterparts of the
operations in the basic algebra.
Definition 2.1  The set expansion™ of L = (L, A, v, 0, 1, {0}ic|) is an algebra
based on the set of all subsetslof ¢(L) and having the followingnternal opera-
tions:

O(Xg, ..., X)) ={0(Xg, ..., Xn) : Xk € X, k=1,...,n},

whereo(Xy, ..., X,) is an operation ok, e.q.,

XAY = {xaAy:xe X yeY}
XVvY = {xvy:xe X yeY}
1 = {1}
0 = {0}.

And if, say, the latticd. has a negatior or a modality operatdr], then

=X ={=Xx:xe X}
UOX={gx:xe X}.

The set expansion contains another pair of remarkable elements:
T=g, 1l=L.

These are calleexternal constants of %t in contrast to the internal constantslO

Remark 2.2 The internal expansions of the lattice operations reflect a certain view
on the interaction of information about the truth values of components of compound
sentences, hamely on how the structure of the compound formula guides us as to the
set of possibilities for its “real” truth value. Put brieflyndividual possible truth val-

ues interact completely independently from each other.

Below we list several elementary properties of the introduced operations.
Proposition 2.3

L XAY=YAX, XVY=YVX;
2. XANYAZD) =(XAY)AZ,
XvIYVvZ)=(XvY)VvZ
3 XAl=X Xv0=X
In the case when L is a de Morgan lattice we would have al so:
4, ==X =X,
= (XAY)==XVvAY,
= (XVY)==XAAY,
etc.



242 GEORGE GARGOV

Proof: The proof is easy: investigate the form of a typical element of the left-hand
side and show that it can be transformed into an element of the right-hand side and
vice versa.

Unfortunately not all identities concerning internal operations and validdre pre-
served inL, most notably the lattice laws of idempotence, absorption, and (if
happens to be distributive) distributivity. Let us look into this problem more closely.
We start with a partial list of identities that are not in general preserved in the set ex-
pansion of a latticé.:

XA0=0, Xvili=1

do not hold in the set expansion &fwhereas identities like

XAX = X, Xv X=X,
XAXVY) = X, XV(XAY)=X,
XANYVZ) = (XAY)V(XAZD),
XVIYANZ) = (XVY)A(XV Z), etc,

can all be refuted in the set expansion of the four element Boolean algebra. Such
observations lead to a natural questiaich identities in the above operations are
preserved under set expansion?

2.2 Preservation of identities In order to formulate a partial answer we need some
definitions and basic facts. Considlaternal termss, t, .. ., i.e., terms built from vari-
ablesvy, vy, ..., and symbols of internal operations and constants. Such terms can
be evaluated both in the lattiteand the expansiobs®. If an evaluation functiorv
assigns ta; an elemeni; of o(L) we write the value of a ters(vy, vy, ..., vy) UN-
dervass(Xy, Xo, ..., Xn). An expression likes(ay, ..., an), whereay, ..., a, € L,
should be understood in the same way. Note that for the value of an internal term
S(Xq, ..., Xn),if X; = T,thens= T, and vice versa; if allX; £ T,thens= T. The
variables occurring in a tertrform a setvar (t). Call atermlinear, if all its variables
have single occurrences.

Let nowK be a class of lattices. An equatieg- t is aK-identity if it is valid in
allmembers oK. A characterization of ak *-identities in terms oK -identities can
be obtained for certain classes of lattices. Clea{?d-identity is also & -identity
since any valuatiom for a latticeL. can be transformed into a valuatiohfor L* by
putting v*(X) = {v(x)}, i.e., taking the corresponding singletons. This construction
has the following property:

vi(s) = {v(9)}.

Thus any refuted i equation is refuted also KS: v(s) # v(t) = v*(S) # v*(t).

Definition 2.4  An identity s =t is K-linear if there exist a substitution and an
equationu = v such thas = u°, t = v, u = v is aK-identity, and bothu andv are
linear. An identitys =t is balanced, if Var (s) = Var (t).

Definition 2.5  An inequalitys # t is satisfiable in a class K of lattices if there is
a latticeL € K and a valuation into L such thaw(s) # v(t). A family of inequali-
ties{s # ti}ic| is simultaneoudy satisfiable in K if there exist a latticd. € K and a
valuationv into L such thatv(s) # v(tj) foralli e I.
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Theorem 2.6 Let K beaclassof lattices such that any finite family of satisfiablein
K-inegualitiesis simultaneously satisfiable in K. Then the following two conditions
are equivalent:

1. s=tisa K identity;
2. s=tisbalanced and K -linear.

Proof: Lets=tbe abalanced ard-linear identity. Note that, due to the fact that
s=tis balanced, when evaluated in an expan&ighs andt get valuesT in exactly
the same instances. Thus in order to cheeskdft is an identity inL S, it is sufficient
to consider only valuations which do not haven their range.

With the above restriction we have the following representation of the values of
terms, whers; (vq, ..., vy) andty(vq, ..., vy) are linear:

Sl(xl,---»xn) = {S[]_(al,,an)a|€X|},
t1(Xq, ..., X)) = {t1(ag,...,an) : g € X}.

Let nows; = t; be thatK-identity of whichs = t is a substitutional instance.
Sinces; = t; is an identity inL, the above two sets are equal, scandt; get the
same values ih %, but then (as substitutional instancesjndt also get the same
values. Thus =t is indeed & *-identity.

In the opposite direction we reason by contrapositiors = t is either notK -
linear or not balanced, then it is noK&*-identity. It is immediately clear that a non-
balanced equation cannot be an identity.f. Thus we are left with the case of
s =t being noK-linear, which means that arsy = t1, which is linear and of which
s =t is a substitutional instance, is noKaidentity, i.e.,s; # t; is satisfiable irK.

In particular, if we consider the terst obtained froms(vy, .. ., vk) by assigning to
consecutive occurrences of a variablelifferent new variabless, vio, . . ., vim, we
get a family of satisfiable iK inequalities:

{S*(vll, ceey vkm() * " t* e (I}
Here 7 is the family of all linear termg* obtained fromt by the procedure of re-
placing different occurrences of a variableby different variables;; in all possible
combinations. Clearly is finite and the above family of inequalities has to be si-
multaneously satisfiable i§, so in some latticd. € K we have for some elements
ajj.

s'(aqg, .- -, am) Z (., &j, .. ).
Let X1 ={aq1, ..., a1my}y .- X = {@i1, ..., &m}, €tc. The claims(Xy, ..., X)) #
t(Xy, ..., Xy) follows from the observation that (ay, ..., axm) € S(Xq, ..., Xk),
butsx* (aiy, ..., akm) & t(Xg, ..., X0).

Remark 2.7 The property from Definitiol2.Slis possessed by a variety of classes

of lattices, e.g., any class of Boolean algebras containing arbitrary large finite Boolean
algebras or some infinite ones, any class of pseudo-Boolean algebras with the same
restrictions, etc.

Remark 2.8 A useful counterexample to a more liberal formulation of the above
theorem is the class of all linear ordérs, for which, e.g. X A X= XandXv X =
X areLin®-identities (since in a linear orderA b anda v b equal eithea or b).
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2.3 External operations Since the set expansion of a lattice is built up from sets
of elements, it is only natural to introduce also the set-theoretical operations:

XeY = XnY,
X®Y = XUY,

their infinitary versions) _ and] [, aswell as the relation
X < Yiff XDY.
In L% it is also possible to consider the complement of aXet
X®=L\X.

With such additional operations (callegternal to contrast them with the pre-
vious class of operations) set expansions turn into truth value spaces similar to the
algebra4 of Belnap and to bilattices (cfI]): <k represents ordering by degree of
knowledge (the smaller the set, the more we know about the “real” truth vatue),
and® give us different combinations of information about this possible truth value:
“accept anything” joining of the information i®, and “consensus” reduction to the
information common to both sets &. The analogy is not perfect though, as will be
seen below. Note that the constantepresents a kind of nonsignificance value ca-
pable of destroying any internal statement (thus the information leadifgismot
simply contradictory, but rathesensel ess).

Remark 2.9 Continuing this discussion of the intuitions behind sets of truth values
let us point out that the notion eftsof truth values as generalized truth values has its

origin in a simple observation:X is the generalized truth value 8f means nothing

more than “all we know at present|isA|| € X.” Maximal possible knowledge cor-
responds to singletons, defective (contradictory, nonsensical) knowledge leads to an
empty set of possible truth values. On this path we are immediately confronted with
the problem: how are the sets of possible valkg¥, Z given? For example they can

be thought as givenlirectly (enumerated, etc.) or they cantapresented by certain
conditions defining the sets (these conditions are usually restrictions on the possible
truth values). Now the question arises as to the language in which such conditions are
formulated, how are they verified, etc. Although quite important, especially in appli-
cations, we leave their detailed analysis aside due to lack of space. We can think of
the information concerning thés e o afamily of restrictions (primitive restrictions)

on the elements of the sets. Te¢mnsensus approach would combine two families of
restrictions in such a way that any restriction that does not appear in both families
would be dropped, so we would be left with only the restrictions commox amd

Y. Now this guarantees that we g&tU Y as a result. A similar argumentation for

the intersection though is not so conclusive; perhaps this is the cause of the problems
with @ in the algebraic treatment of set expansions.

2.4 External propertiesof set expansions Let us continue with further facts about
set expansions. The internal operationskaneonotone, e.g.:

X<k X, Y < Yimply XvY < X'vY, etc.
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Proposition 2.10  With respect to the introduced external operations L is a co-
atomic, complete, and completely distributive Boolean algebra (the algebra of all
subsets of L with inverse inclusion) with least element | and greatest element T.
In particular the following laws hold:

OiXielhey = Y (xeY:iel,
[Jx:iemey = Jixev:icl)ec

The relations between external and internal operations are quite complicated, e.g., the
following hold only as inequalities with respect to tk@rder:

XA X<k X, XV X =g X,
XAXVY) < X, XV (XAY) < X,
(XAY)V(XAZ) < XAV 2), (XVY)YA(XV 2D <k XV (YAZ),

etc.
Lemma?2.11 Inthe set expansion of any bounded lattice we have:

XANY®Z) = (XAY)® (XAZ),
XVY®Z) = (XVY)® (XV2Z),

and in general for any linear internal terms(..., X, ...):
s(...,Y®Z,..)=s(...,Y,..)®s(...,Z,...);
with an infinitary version:

sC...[[tXzien., . .o=[[{sC... %...0ziel}.
As for @ - we can claim only that

XvY)® (XvZ) =« XV (Y2,
XAY)B (XAZ) =k XA L),
s...,Y,..)®s(....2Z,...) <x sS(...,.Y®Z,...).

Forexample the triplX =1, Y = 0, Z = 1 shows the failure of an inequality opposite
tothefirstoneY® Z=T,soXVv (Y® Z) =T while (XVY)d (XVv Z)=1.

Example2.12 The simplest set expansiond¥!: it has four elements, all of them
signature constants:, @, 1 andT. With respect ta, ®, and the complementation
¢ 2% is a Boolean algebra, though with respectton it is not even a lattice since
T is anonsignificance value. 2%* can be considered with its internal negatien(in-
herited from the Boolean algeb23, it also has a sort afonflation operation (cf. Fit-
ting [B], [Bfor the definition and the properties of conflation in a bilattice setting)
related toc and the internal negation by —X = (=X)° (by the way, in this struc-
ture this equals~(X®)). Inthisway—1=1,-0=0,—L =T, -T = L (justasa
conflation should act), moreover we haXe<y Y implies—Y <, —X.



246 GEORGE GARGOV

2.5 Singletons and other curiositiesin LS*  In this subsection we present several
examples of interesting expressive possibilities #. Let us start with the obser-
vation that some relevant properties of subset afan be guaranteed by simple
equations irL*, e.g., X v L = X defines all subsets df that areupward closed;
X A L = X defines all subsets df that aredownward closed; X v X = X defines
all v-closed subsets df, i.e., subsets with the properggb e X = av b e X;
X A X = X defines alla-closed subsets, and in genetdl, ..., X) = X defines
the sets that are closed with respect to the operation

The meaning of the “bilattice projection operations” (cf. Ginsb@ pr Fit-
ting [@)) (x)o and(x); may also be of interest, so we mention thtg = X A L is
thedownward cone of X; (X); = X v L is theupward cone of X. The combinations

(X)o® (X)1 = {y:3xg, X1 € X(X <y=x9)}and
(X)o® (X)1 = {y:3xg, X1 € X(Y < Xpandx; <)}

give us the so-calledonvex hull andcylinder of X, respectively.
Using these observations one can give a definition of filteksas the solutions
of a simple system of equations:

Xvl = X(ie,(X)1=X)
XAX = X

For ideals there is a dual system:

XAL = X(.e,(X)o=X)
XVvX = X

We can define singletons In®* as atoms in the lattice of set-theoretic operations, or,
equivalently, as co-atoms in thg, order, where,

Xisaco-atomiffX 2 T andvV¥(X < Y= X=YorY=T).
Singletons have the following characteristic properties:

[T{Xiiel} < {x} = X <k {x};
X =TTHx : X <k {x}).

2.6 Homomorphisms of set expansions General algebraic considerations suggest
the importance of studying homomorphisms of set expansions and in particular ho-
momorphisms into the smallest such alge®¥. As turns out, if homomorphisms

f : L — M should respect the infinitalgoperations, i.e.f O {X :i € 1}) =
YH{fX)rielfand f(J[{X:iel}) =][{fCX) i€ |}, then the rigid structure

of the set expansions leaves no room for variety, as witnessed by the following facts.

1. Homomorphismsisolate T. For a homomorphisnf : L — M and a sin-
gleton {x} in L one has{x} v 1 =1, so f({x}) v 1= 1, which implies
that f({x}) # T. Now using the representatiod = [ [{{x} : x € X} we get
f(X) =T[{f({x}): xe X}. Thusif X T, then f(X) % T.



UNCERTAINTY 247

2. Source singletons are mapped into special partitions of the target singletons.
If Xy, theninL® {x}® {y} =T, sof({x}) ® f({y}) = T. Thus different
singletons are mapped into disjoint element&Sf. Moreover from[]{{x} :
xe L} =1,wegetthaf [{f({x}): xe L} = L, sothe restriction off over the
singletons generates a special partitionvoflet Px = f ({x}), then the family
{Py : x € L} is a partition ofM of a special kind, i.e., besides# y = Py N
Py =@ andU{Py: x e L} = M, we hawe dso Py vV Py = Pyy; PxA Py =
Pxay, and in generalPyy .. yy = 0(Px, ..., Py). Applied to homomorphisms
of 2% this has the following effectif L is different from 2, then there are no
homomorphisms f : 2% — %,

3. Epimorphisms are isomorphisms. Epimorphisms of set expansions map sin-
gletons onto singletons: iff (X) = {z} for az € M, then having, for anx € X,
X <k {x} and consequentlyz} <y f({x}), by the properties of co-atoms in
M (7} = f({x}), but that, in view of[P) above, impliesX = {x}. Therefore
there exist no epimorphisms of set-expansions except isomorphisms. Applied
to homomorphism int@*®, which are all epimorphisms (since all elements of
2% are signature constants), the latter fact yields the following corollay:
is different from 2, then there are no homomorphisms f : LS — 25,

2.7 The external modalities If it is assumed thak is complete, then one can in-
troduce inLS a pair of unary operationsl X = {inf X}; X = {supX}, with the
following elementary properties.

HEEX=¢EX=HX ¢6X=H¢X=¢X
Hl1=1 HO=0 ¢1l=1 +40=0
BET=1 HL=0 67=0 ¢L=1

These can be easily checked as well as the next proposition.

Proposition 2.13  In the set expansion of a completelattice L the following identi-
ties hold:
EXQY)=HEXAERY, ¢XQY)=46eXVeY,

and their infinitary versions
M[[(X:iel) = A@X:iel)
¢[[iX:iel} = viexX:iell)
For X,Y # T we have also:
VIXAY)=EXARY, ¢XVY)=46eXVE§Y,
and theinfinitary (for X # T)
BA{X:iel} = A(BX:iel}
¢VviX:iel} = vieX:iell
If L isin addition completely distributive, thenfor X, Y # T
BXVY)=EXVEY, $XAY)=4XAeY,
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and theinfinitary laws (for X; # T):
By {X:ielj=v{lX:iel)
¢A{Xi:iel}=A®X iel}
If there is a de Morgan negation — among the internal operations, then
—HlX=¢-Xand —¢X=H0-X

Having @ and 4 the notion “X is a singleton” can be expressed®X = X (which
is equivalent top X = X).
Proposition 2.14 The set Sof singletonsin L can be characterized as follows:
1. S={X:EX=X}={X:6X=X)}
2. Sistheset of co-atomsin L,

Corollary 2.15
1. By theabovewe havein L: BX = Xiff X # Tand VY(X <Y = X =Y
orY=T).
2. Withtheinternal operations A, Vv restricted to it Sbecomesallatticeisomorphic
toL.

3. If s=tisanL-identity, thens = t’isan L ®*-identity,where s iss’, t’' ist’ and
the subsitution ¢ assignsto a variable X theterm B X.

Remark 2.16 Unfortunately complementation argl behave erratically with re-
spect to the external modalities. This could be explained by the intuition behind ex-
ternal modalities: both operators reflect the implicit information contained in a gener-
alized truth valueX, ¢ X representing the greatest “possible” ordinary truth value con-
sistent with the infromation irX, whereadll X gives the “necessary” ordinary truth
value implicit in X. When we join the information itX andY according to the rule
“accept anything” (getting their intersection) we in fact may overgenerate restrictions
and thus overgenerate information, leading to a senseless truth value.

2.8 Info-algebras Here we try algebraically to define the “useful” part of the set
expansions of lattices of truth values. Perhaps itis already clear from the results cited
above that the operatian (together with the constarit) isthe cause of most of the
discrepancies between set algebras and bilattices. One way out of this is @ drop
andc from the signature (but keep as some interesting applications involve such
nonsensical values). A similar connsrtruction, in a restricted setting, was studied by
Vakarelov[R7].

Definition 2.17  Aninfo-algebraA of a given internal signaturen, v, ..., 0, 1) is
apartially ordered setA, <) which is acomplete lower semi-lattice. The least and
greatest elements éf are L andT respectively. The join operation is denoted[Hy
(its finitary version by®). The algebra has the following properties.

Al. Internal structure:

(a) internal operations are monotone with respeetitp
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(b) s(..., T,...)=T forinternal terms;
©) st....[I{X%:iel},..)=T[{s(..., X, ...) i € 1}, for linear terms.
A2. Singletons:

(a) the setofsingletorss b, c...of A: L 5 is adistributive lattice with respect
to the restrictions of andv (and it is bounded by 0 and 1);

) [[IXi:iel}<ka=3iX < q
(c) X=][{a: X < a}.

Lemma?2.18 For aninternal operation o(Xy, ..., Xn) and a singleton a:
0(Xg,..., Xp) <ka=3by,...,bhe La(X <xbi(i=1,...,n)
and
o(by,...,by) =a).

Proof: ByA2.co(X,..., Xy =o([{a: Xy <xa},...,[[{a: Xn <k a}). Apply-
ing Al.cwe geb(Xy, ..., Xp) = [[{o(bs, ..., bn) : Xg <k b1, ..., Xy <k bn}. Now
if o(Xq, ..., Xn) <k a then[[{o(by,...,bn) : X3 <k by, ..., Xy <k bn} <x &, and
using axiom A2.b we get the desired result.

It is not difficult to see that % is an info-algebra. Conversely, any info-algera
can be represented as a set expansion (with the restricted signature), nabily as
as the next lemma points out.

Lemma2.19 Let A beaninfo-algebra, then A = Lf\e‘ (asinfo-algebras).
Proof: The mapf : A— o(La) defined asf (X) = {a: X <y a} isanisomorphism
of A andL $:

f(O(Xg,..., Xn)) = {a:0(Xq,..., Xn) <k a}
= {a:3dby,...,bn(X <cbi(i=1,...,v)and
o(by,...,by) =a)}
= {a:3by,...,bu(bi € f(X)ando(by,...,by) =a)}
= o(f(Xp),..., F(Xn));

f(x:ie) = fa:[JiX:iel sxa=f(a:3iX <xa)
= [Ja: X =ca:ie=][{fX):iel)

The rest of conditions are checked as usual.

2.9 Homomorphisms of info-algebras  An interesting special case of the info-
algebra homomorphims are the homomorphisms of info-algebra2¥htehich exist
in abundant numbers in contrast with the full set expansions.

Lemma2.20 Let f:A — 2% pbe a homomorphism. The subset F of L, defined
by F={a: f(a) € D1}, where D1 = {T, 1} isa primefilter in L.

Proof: Checking that- possesses the properties of a prime filter:
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1. Ifae Fanda < b,thenb e F: ae F meansthaf (a) € Dy, a < bimplies that
avb="h. Consideravb=avb=b. Apply f and getf (a) v f(b) = f(b).
In 2% the equatiora v b = b together witha € D; guarantees thdt € Dy,
thereforef (b) € D;.

2. anbeFiffac Fandbe F:ifaanbe F,thenclearly bfll, b e F. Assume
now thata € F andb € F, which is equivalent tof (a) € D1 and f (b) € Dy,
that givesf (a) A f(b) € Dy (by the laws o2%*) and, sincef is a homomor-
phism,f(anb) e D1, soanbe F.

3.avbeFiffae Forbe F: clearly,ifae Forbe F,thenavbe F. In
the opposite direction: iV b € D1, then f(a) v f(a) € Dy, but in 2% this
guarantees that eithdra) € D, or f(b) € Dy,i.e.,ae Forbe F.

Lemma 2.2l Let A bean info-algebra of the minimal internal signature (A, Vv, 0,
1). Thenthe mapping f : A — 25 defined froma primefilter F in L by first stipu-
lating for the singletons:

fa) = 1 ifaeF
] 0, otherwise

and then for arbitrary elements of L f (X) = []{f(a) : X < a}, is a homomor-
phism.
Proof: Clearly the constants,Q, L, T are mapped correctly by: f(1) =1 and
f (0) = 0 by the fact that- is a proper filter,f (L) = 1,since I 0= 1L and f (T) =
T trivially. Let us also note that fas, b € L,

f(anb) = f(a) A f(b);

f(avb) = f(@ v f(b),

sinceF is prime. To check iff (X A Y) = f(X) A f(Y) reason as follows:

f(XAY) = l_[{f(C)ZX/\Yka}
= [Jtfdarbh: X<ka Y <b)
= [[if@A td): X <ca Y =cb)
= [[tf@: X<k [ ]tf ) : Y <cb)
f(X) A F(Y).

Similarly we can establish th&dt(X v Y) = f(X) v f(Y). Asfor the operatior®,
we proceed as follows:
f(XeY) = J]if(c): X®Y =c}

= [[if@: X<ca@[J{fb):Y <cb}
= f(X)® f(Y).

Now we can formulate an effect of the above construction important for the logical
developments below.
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Lemma222 |If X¢ Dy (={1,T}) inaminimal info-algebra A, then thereis a
homomorphism f : A — 2% such that f (X) ¢ Dy in 2%,

Proof: SinceX ¢ Dy, there is ara with X <y a and such tha& # 1, and ve can
find a filter F in L which omitsa. The homomorphisnf : A — 2% associated with
this filter mapsX either on 0 (iftXN F = @) or on L (whenX N F # &). Anyway,

f(X) ¢ Dy.

It would be a natural next step to formulate a representation theorem for info-algebras
as sub-algebras of the set expansions of frame lattices. Along the lines of the clas-
sical approach to the representation of lattices as sublattices of set based ones, one
needs to define first the notion 2® model on a frameF = (W, ...) as a mapping

f: W x Fm — 2% where for eactw € W, f(w, A) € Hom(£, 2%) for the mini-

mal signature| Aj; denotes the séiv : f(w, A) = 1}, |Alo, | AlL, | AlT have similar
meanings. A singletoa in the frame# is a partition ofW, i.e., |al; = W\|a|p, in

other words singletons are exact truth values. We wAitg,, B if Yw(p(w, A) <

¢(w, B)). Now let||A|| = {a: ais a singleton inf and A < ga}. The idea is to es-
tablish that|.|| is a member of HorZ, (A (F))S). Disappointingly enough this is

true only for the internal part of the language.

Lemma2.23 Themapping||.|| belongsto the family Hom( Lo, (A(F))%), where
Ly isthe language without ®.

Proof: To begin with, note thatA|+ # @ iff ||A|| = @. That takes care of the sit-
uation when there are occurrencesTiofn the valuations ofA or B. Observe also
that| AA Bly = [Al1 N |Bl1, [AA Blo = |Alo U [Blo, [AV Bly = |Al1 U |BJy, and
|AvV Blg = |Alg N |B|g. Using these we can prove, e..A A Bl = ||Al| A ||BJl:
IAAB|| ={c: AAB <, c}, but AA B <, c means thafc|; 2 |Al; N |B|; and
IClo 2 |Alp U |Blo. Let nowa, b be the singletons withaj; = cU |A|; and|b]; =
CU|B|y . Itis easy to see thaA <, aandB <, b, and thatanb = c. Thus
[|A[l A1IBII 2 [[AA BJ|. To justify the opposite inclusion note thatX <, a and
B <, b, thenAAB<,anh.
The case withv is left to the reader.

2.10 Link to supervaluations The above construction can be cast in a slightly dif-
ferent form in order to reveal its kinship to a very well-known idea in many-valued
logic: the notion ofsupervaluations. Call a mappingy : W x Fml — 2% a super-
valuation forg if:

1 o=,
2. Y isexact, i.e., for variables, ¥ (w, p) € {0, 1}.

Let ||Alls = {|A|f: Y is a supervaluation fop}. The claim that|A||s = || A|| for
A € Fmi (L) is easily justified by the fact thtAl?, |A|Y} is a singleton.
The difference from the tradition of van Fraasen lies in the way supervaluations
are used: whereas customarily the family of supervaluations for a gilsgonverted
into a valuationp, which in our case would look as followgi(w, A) = T if there are
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no supervaluations; and in the presence of supervaluations,

1 ifVy(y(w, A) = 1)
o(w, A) =1 0 ifVy(y(w, A) =0)
1 otherwise

Our usage avoids such a conversion and keeps the family of supervaluations as a new
generalized truth value.

2.11 External info-algebras An info-algebraA is calledexternal if two unary op-
erationdll and¢ can be defined i satisfying:

1. BI{X:iel}=A{RX iel}

2. ¢[[{Xi:iel}=Vv{eX:iel}

3. Ma = ¢a= a, for singletons.
All relevant properties of the external modalities in set expansions (as documented in
Propositiorlm can be derived from the above definition (which presupposes that
L A is a complete lattice).

It should have become clear by now that admitting arbitrary sets of lattice ele-
ments as generalized truth values, insisting at the same time that this move is caused
by incompleteness of information, uncertainty of data, or vagueness of predicates,
etc., is somewhat inconsistent: to defineaabitrary setX requires very detailed in-
formation about the individual members ¥f which seems implausible in circum-
stances when orlacks the relevant knowledge. Thus restricted classes of such gen-
eralized truth values seem to be a more realistic way of modeling imperfect epistemic
situations.

As an example of restrictions that arise from specific imperfections of data let us
consider a frameF = (W, ...) where the available knowledge permits us to discern
different possible worlds only up to certain equivalence relatipso the only subsets
of W one “can be aware of” are unions of equivalence classgs{{w’ : w ~ w’}
with respect to théndiscernibility relation~ (calledrough sets, cf. Pawlak’s intro-
ductory paperfZ0]). For a setvV € W denote byV; the set{w : [w] € V} and let
Vo = {w: [w] NV # @}; these are respectively the biggest rough set ingidad the
biggest rough set including. An observer having the above limitations can know
the “real” truth valud| A|| only to contain|A||1 and to be contained ihA||g, Soany
set between these two bounds would be a possible “real” truth value for him, i.e.,
the generalized interpretation éf would be{U : ||Al|]1 € U C ||Allo}. Note that
in such a setting the existence of the operatilinand ¢ is a natural consequence:
B{U : [|[All1 S U C [|Allo} = [|Alls and#{U : [|Al[1 € U < [|Allo} = [|Allo

3 Logical aspects of set expansions and info-algebras In this section we explore

the possibility of treating some of the algebras introduced above in the traditional
fashion of algebraic logic: as logical matrices semantically defining logical systems,
i.e., as a generalization of the truth-table method used in classical logic.

3.1 Generalizedmatrices Let us recall some definitions and some basic facts from
the theory of propositional logics (c], [29)), restricted to our current needs, e.g.,
we presuppose only a finite number of finitary logical connectives.
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A propositional languagé over an infinite (countable in our case) set of vari-
ablesvar (£) is an absolutely free algebra of some signature (with the above restric-
tions), freely generated byar (£). We assume that the operations include conjunc-
tion and disjunction, the two constantslQ and eventually other constants and oper-
ationso;. The elements of this algebra are calfednulas and form a seEml (L), so
L= (Fml(L), A, V,...,0,1). Reference taL will be dropped from now on when-
ever possible.

A mappingC: o(Fml) — o(Fml) is a conseguence operation, if the following
conditions are satisfied for all subsétsA of Fmi:

1. T cca);
2. C(I) =C(Cc));
3. ' C AimpliesC(I") C C(A).

A consequence operati@his compact if for everyT:
C(T) =U{C(A) : A C T andA is finite}.

A generalized matrix M = (A, D, H) for £ is a triple where:

1. Ais an algebra similar to the language the truth-value space;

2. Dis subset of the truth-value space: the elements of D ardetignated truth
values;

3. H € Hom(L, A): its elements are callemtimissible valuations.

A matrix M is called standard wheH = Hom(L, A). Every class of matricek
determines a consequence operapn

Ae Cc () iff YM = (A, D, H) € K Vh e H (if h[['] € D, thenh(A) € D).

For singleton classeiSM } we write simplyC,,. As arule instead ofA € Cx (') we
write I' = A, or justT" = A when there is no danger of confusion.

A propositional logic Sis a pair(L, C) whereC is a consequence operation in
the languageL of S. A classK is called a semantics for the logi€, C), if C =
Ck. Finitely-approximable logics S are characterized by a class of finite matrices,
i.e., there is a clads of finite matrices which is a semantics f8r Finite logics (or
finite-valued logics) are determined by a finite class of finite matrices.

Below we present a variety of logical systems arising from the truth spaces con-
sidered in the previous section in a unified framework by proving theorems of the
following kind: the system Sis characterized by a class of algebras (set expansions,
info-algebras), viewed as generalized logical matrices.

Within this framework one is confronted with sevechbices which determine
the logical system:

¢ the choice of languagg, i.e., what operations should be considdiagical, as
opposed to others that are computational in character;

e the choice oD, the distinguished truth values;

¢ the choice of the clasd, the admissible valuations, i.e., what types of homo-
morphisms are considered relevant.
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With respect to the first mentioned choice there are several approaches. The
liberal approach is to considall operations available in the investigated class as
equally logical, so the propositional language is to have the same signature as the
class itself, i.e., all operations have corresponding logical connectives. We are go-
ing to give several examples of this approach, e.g., the logic of info-algebras, etc.

A second, moreestrictive, approach is to put down criteria by which an opera-
tion can be judged to be logical or not. Let us formulate a few criteria as an example.

1. Alogical operation should preserve acquired information about truth values.
Assuming this, we arrive at the requirementkefnonotonicity. Such a crite-
rion excludes for example the external modalities as candidates for logical op-
erations.

2. One may insist ononservativity of a logical operation in the sense that when
applied to exact truth values (i.e., singletons) it should yield exact values. This
criterion excludes thk-operationsp and® but admits the external modalities.

3. An even less restrictive requirement is to demand the operatiqureserve
consistency, i.e., when applied to consistent truth values the operation should
give consistent truth values; the operat@®rns excluded in this case.

The problem with the set of distinguished truth values is in fact a version of the
more general question of what conditions should be metin order to recognize a state-
ment as “true.” A first thing that comes to mind is that the intended meaning of the
elements of set expansions implies that D, s0 the simplest decision iD = {1},

i.e., to recognize as valid only such inferences that preserve the property of “being
only true.” But, besides being a not very happy choice technically, the restriction of
D to {1} is not easily justifiable.

Now one might wish to be positive, i.e., to accept a statement as true if having
all the reasons to do so (in this case let the set of distinguished truth valizg,be
or he might assume a negative attitude and favor statements thaataesutable,

i.e., if there are no reasons to reject a statement one accepts it (let the corresponding
set beDg). In set expansion®; and Dy can be viewed as the sets of elemeXts
satisfying respectivelyx € X(x = 1) and3x € X(x = 1). Unfortunately the former
definition leads to some technical complications and destroys the duality between the
two choices. A better option iBg = { X : supX = 1}, dual to{ X : inf X = 1}(= D).

Restrictions concerning the set of admitted homomorphisms can include such
requirements as the following.

e H is the set of all consistent valuations, i.e., functions whose range contains
only consistent elements, or

e H is the set of valuations into info-algebras that contain only finite sets in their
ranges, etc.

Let us fix some terminology: if alogic is defined by a class of generalized logical
matrices with no restrictions on the admissible homomorphisms we speadtanf a
dard system, ifH is restricted to the homomorphisms with consistent values, then we
use the terntonsistent logics; if it contains only finite sets as values (this in the case
of set expansions), then the logidigitary. If the set of distinguished truth values is
D1, wespeak opositivelogics; if itis Dy, we say that the logic isegative. If the sig-
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nature of the language and the algebras of the class coincide, we spdak aigic,
otherwise we use different adjectives showing which operations in the algebras have
language connectives as counterparts.

For the presentation of this and subsequent logical systems we deqoestial
style calculi. For our purposes it is sufficient to adopt the view that sequents are of the
formI" = A, wherel is a finite set of formulas and is a formula. Thus our systems
are inherently intuitionistic (having the restriction of single formula in the right-hand
side).

3.2 The standard positivelogic of all info-algebras  Our basic system will be for-
mulated in a language which includes the operations, ®, and haso proposi-
tional constants. Werrestrict the language in this way with simplicity of presentation
in mind (the addition of the constants does not change the results but complicates the
system of rules and the proofs). We consider the info-algebras as standard matrices
with the setD; = {T, 1} as the set of distinguished truth values. Let us point out that
this semantics has the following property: there are no tautologies in the language,
i.e., for no formulaA, o = A (e.qg., for anyA one can always find a valuatidrwith
h(A) = 1).

Call a formulainternal if ® does not occur in it. A sef is internal if all its
members are internal formulas. The systems will have as basic sequents expressions
of the formI' - A, whereA e T.

3.2.1 Rules With each connective of two types of rules are associated, governing
association of formulas in the left-hand and the right hand side respectively:

(AR r,A-C r,B-C
I',AAB-C I',AAB-C

ro TEATED

(v H) r, ?,l_AC\j Ig,l_BCI— C

ror TEATLS

Note that conjunction poses a problem: although\] isacceptable, the rules.(+)

are not correct without any restriction when interpreted in info-algebras (because of
the possibility to assigis A B avalue inD; keeping the value oA outsideD1, as

for example is the case with the valuation h definedgandq ash(p) = T and

h(g) =0, soh(p A g) € D; buth(q) ¢ D;). Therefore we have to put up with weaker
rules(A F)T, where the plus sign marks the restriction on the type and variables of the
formulas which appear in the bottom sequemtssinternal and Var (A) 2 Var(B),

for the left rule andB isinternal and Var(B) 2 Var(A), for the right one. Such a
weakening calls for additional compensatory rules. In the first place we needtthe
rule:
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'-A I',A-B

(Cuy I B

but also the followinglistributivity rules:
I ( AAC)v(BAC)FD

(AVE) I.(AVB)ACF D
o TohaO 10
von BAOSE0 D
o TROSE
o LvDiCED
any TF(AAC)IA(BAC)

T (AAB)AC
A sequent is provable if it can be derived from basic sequents by means of the rules.
Lemma3.1l Theresulting systemiscorrect: if I' = Alisprovable, thenT" = A.

Proof: The proof is by straightforward checking. The only more exciting rules to
treat are the additional distributivity rules, since most of them do not correspond to
identities in the info-algebras. Let us do as an examplé& the)-rules. For(Av )

itis sufficient to establish th&atAv By AC = (AAC) v (B A C). Take a valuatiofn

such thah((Av B) A C)) € Ds. If the value isT, then at least one df(A), h(B) or
h(C)is T, butthenh((AAC) Vv (BAC)) =T, too. For the other possibility, let the
value be 1. This means thé v b) A ¢ =1 foranya e h(A), b € h(B), c € h(C),

and impliesc = 1 anda v b = 1. But then for a typical member df((A A C) v
(BAC))—(ancy) v (bAacy)—we have(ancy) v(bAac) =avb=1. For(~

AV) we have to check whethé¢ AA C) v (BAC) = (AvV B) AC, but this is easy:
skipping the case of occurrence df we consider a typical member of the left-hand
side(ancy) v (bAcy) =1, and moreovefan c) v (b A c) = 1foranya, b, cfrom

the appropriate sets. Applying the distributive law in the underlying lattice we obtain
(av b) A c=1for atypical member of the right-hand side.

LetI" now be an arbitrary set of formulas. We defiig &s{B: for some finite subset
[ of I' the sequenfy - B is provablé. Call A atheory if [A] = A. The set of all
formulasFml is an example of a theory: the trivial theory. A nontrivial theayys
primeif A vBe A= Ae AorBe A.

Remark 3.2 A slightly more sophisticated counterexample involviig= p® q
andB = p for which A A B & A (as witnessed by the assignméip) = T, h(q) =
0) shows that the restriction to internal formulagimt)* is indeed necessary.

The next technical lemmais left entirely to the diligent reader (its proof relies on such
provable sequents a&8® B A; AQ B-B; AAB-F A® B, AA(BRQC)F (AA
B)® (AAC); (AAB)® (AAC)F AA(B®C), etc.).

Lemma3.3 For any T thereexistsaninternal I such that [I'] = [I'].



UNCERTAINTY 257

The lemma shows that questions of the typel™Is A provable?” can be reduced to
the same questions about internal formulas and sets of internal formulas.
Here is another list of provable sequents to be used in the lemma that follows:

AAB AV B,
AAB BA A,
AA(BAC) (AAB)AC,
(AAB)AC AA(BAC),

((AANC)A(BACHAD
((AAB)YAC)AD
((AAC)V(BAC)HAD
((AvB)YAC)AD

((AAB)AC)A D),
((AANC)AB)AD,
((AvB)YAC)AD,
((AAC)V (BAC))AD.

T T T T T T T T

The space permits one proof as an example.

AABEFAAB
AABEF(AAB)V (BAB)
AABEF(AVvB)AB

(FVv)
(FAV)

AABF AV B

AvVvBF AVB
(AvB)ABFAVB

(AE)*
(Cut)

Unfortunately the derivations known to the author depend crucially on applications of
the cut rule, so the cut elimination property of the above system is an open problem.

Lemma3.4 For internal formulas By, ..., By, A, if By, ..., By - Alisprovable,
then By AC,..., By ACH AA Cisalso provablefor any C.

Proof: By induction on the height of the derivation tree. The case of axioms is clear,
so we need to check the induction step, proving that if the top sequent in an applica-
tion of a rule satisfies the above property, then the bottom sequent also satisfies this
property. The notorious fate of such proofs notwithstanding, we present just a sample
of the simplest cases. In general the derivations use (Cut) and depend on the provable
sequents shown above.

Let By, ..., By~ Abe obtained by an application 6 -)*,i.e.,B,= BA D,

Var (B) 2 Var(D) and
Bi,...,BFA

ety = +
Bl ... B,-A NPT

By the induction hypothesisB; AC, ..., BACHF AA Cis provable. But then the
following is a proof of what is needed.

BiAC.....BACHAAC .
&ACV“JBACL\DFAACEQAQ
B1AC,...,(BAD)ACH AAC .

Let us also consider the case when the last applied rile is). Now A= A; A Ay,
and the application is:

Bl,...,Bn}_A]_; Bl,...,Bnl—Az
Bl,...,Bnl—Al/\Az
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By the induction hypothesisB; AC,...,B,ACF A ACandB; AC, ..., By A
CH+ Ay A C are provable. But then

Bl/\C,...,Bn/\CI—Al/\C; Bl/\C,...,Bn/\Cl— A2/\C
BiAC,...,BhACF(ALAC)A (ApAC)
BiAC,...,BhACFHF (AL AA)AC

(F AN),

(EA)

and we are done.

One more rule as the last applied oiieA ). Inthis caseB, = (By A By) A Bs
and by the induction hypothes, AC,...,((BLAB3) AB2) ACF ALACIis
provable. The following derivation gets the desired result:

BiAC,...,((BiAB3) AB)ACE A; AC;
(BiAB) AB3)) ACE (ByAB3)ABy) AC  (see above) c
BiAC,...,((BiAB)AB)ACEHA;AC (Cuy

The rest of the cases are left to the reader.

Theorem 35 If T' = A, then Ae[I7.

Proof: We follow an already familiar path with some minor deviations: assuming
without loss of generality thah andI™ are internal and\ ¢ T", we find a maximal the-

ory A among the theories that exteRidnd omitA. Such a theory need not be prime,
but it still does the job because it turns out torBlatively prime, namely with respect

to the class of internal formulas built up from the propositional variables occurring in
A

Call the variables ofA significant. A significant formula B is such thatvar(B) €
Var (A).

Lemma3.6 For significant internal formulas B and C:
1. BACeAiffBe AandC e A.
For any formulas B and C:

2. BvCeAiffBeAorCe A
3. BRCeAiff Be AandC € A.

Proof: The establishing of (2) and (3) is routine. Let us check (1), which differs
from the standard case.Bfe A andC € A, thenby(- A) BAC € A. Inthe opposite
direction: if BA C € A, then by one of the listed provable sequeBts C € A and

so eitherB or C belong toA. Let B € A. Now, C ¢ A means tha# € [A, C], so for
some internal formula®, ..., Dm € A,

D4,..., Dm, CH Ais provable

Applying Lemmd3.4we get thatD; A B, ..., DnA B, CA BF AA Bis also prov-
able. All formulas of the left-hand side are fromm Thus A A B € A. Since B is
significant,AA B Ais provable, scA € A—a contradiction with the assumptions
on A. ThereforeC € A, too.
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Having a theoryA with the above properties, we can define a functiovar — 2%:

1, if pis significantandp € A
h(p) =1 0, if pis significantand ¢ A
T, if pis not significant

Note first that the extension dfto a homomorphisn — 2% maps all internal in-
significant formulas tar. For significant ones it can be established by induction that

h(B) = 1iff B € A.

To conclude the proof of the completeness theorem we noteitigsignificant and
soh(A) ¢ D1, whereas all members &fare mapped onto an elementidf.

Remark 3.7 Wehave found a simple algebra adequate for the system: the logic of
all info-algebras coincides with the logic 2%. In this way it turns out to be in fact
afinite logic, consequently decidable.

Remark 3.8 The admission of the constantsl) T, L to the language though not
changing the rules will necessitate changes in the notion of a basic sequent. Axioms
will have to include alsa” - A where one of the following holds:

1. Ais aninternal formula with an occurrence of;

2. A=1;

3.0 LeT;

4. A=BACand{OAB,0AC, LAB, LACINT # 2.

3.3 The general negative case  The full standardhegative logic of info-algebras,
defined by choosing as distinguished truth valllgs= {X : 1 € X} poses the first
major setback to our program: this logiaist anything like a dual to the above sys-
tem. Let us start with the observation that the info-algé&Btas not adequate for this
particular consequence relation any more: for exampleA = Ais in 2% but not in

the set expansion of the four element Boolean algebra (with eleragnts 0, 1), as
shown by the valuatioh for whichh(A) = {a, b} ¢ Dowhenh(Av A) ={a, b, 1}

Dg. This and similar counterexamples demonstrate the incorrectness of several rules,
e.g., (F v) or the distributivity rules. Although the logic can be axiomatized and
shown to be finitely approximable (but not finite) we leave that matter to another pa-
per. The problem lies in the origin of the “nice” properties of the elemeni;aind

Do: inthe former case ink = 1 isequivalenttaX € D4, while in the latter suX = 1

(the “real” dual) is weaker tha € Dy. Below we consider several systems with the
weaker condition orDg.

3.4 The positive logic of info-algebras with negation  Consider now the class of
info-algebras with underlying de Morgan lattices. Its full positive standard logic is
an extension of the system in the previous subsection.

¢ the language has an additional connectivge,

¢ the notion of basic sequent is augmented to incorporate a restricted version of
the Duns Scot law: "' = Ais an axiom ifAis internal and als® A =B € T,
for some formulaB with Var (B) C Var (A);
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e new rules concerning are added:
IL-A-C; I',-BEC

(=AF)

I, ~(AAB)FC
CoN S lARE TR
=vH) 1E :(AAAvﬁBB)) '; g
=
&) F,EE;‘QE)CFC T, f{Zg E)CI—C
(-~®) Frl_;f(;: g I;)B
=P 2iare
=

Lemma3.9 Theresulting systemis correct.

Proof: The correctness of the new rules is obvious. As for the new axiohiBiA
—B) € Dy, thenh(B) = T and therefore for some variabe h(p) = T, because, if
h(B) is nonempty, then it has membexrs —a which cannot be 1. Sincdar(B) C
Var (A) andAis internal,h(A) = T, also.

Lemma3.10 For any I" there existsan internal I'” such that [T'] = [T].

Lemma3.1l If By,..., By Aisprovable then B; AC,...,ByACH AACIs
also provable (under the same conditions as above).

Proof: The induction step now requires checking of the added rules. Let us do an
example in which the last applied rule(sV F). Inthis caseB, = —(B v D) and
by the induction hypothesiB; AC, ..., (=BA —=D) ACF AAC. The following
sequentis provablex(Bv D) ACHF (=BA —=D) A C. Applying (Cut) we geB; A
C,...,—~(Bv D)ACF AAC,the desired result.

All other details are left to the reader.

Theorem 3.12 If ' A, then A e [T].

Proof: Once again we can assume without loss of generality that we deal exclu-
sively with internal formulas. Lef in particular be an internal formula such that

A ¢ [T']. Just as in the proof of Theordinslve can extend to a maximal theorA,
forwhichI" € A andA ¢ A. This theory turns out to be relatively prime with respect
to internal significant formulas, i.e., to formul&swith Var (B) C Var(A).

Note now that in this casep is a significant variable impliep A —p ¢ A, because

p A —p e A would mean that is also fromA (recall thatp € Var(A) andAis in-
ternal). Otherwise we have to add to the properties of relatively prime theories (from
Lemma3.6) some clauses concerning the negatiBnG significant):
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4. -(BAC) e Aiff =B e A or—=C € A (B, Cinternal);

5. =(BvC) e Aiff =Be Aand—C € A;

6. " (B®C) e Aiff =B e A and—C € A (in fact not needed in the proof);
7. -—Be Aiff Be A.

From A we can define a mappirtgby settingh(p) = T for insignificant variables
and for significant ones:

1L, ifpeA, -p¢A
h(p) = 0,if pg A, -pe A
1L, ifp¢ A, =p¢A.

Clearly the extension dfto a homomorphism assigiisto insignificant internal for-
mulasB, whereas for the significant ones by induction on their complexity one can
prove:

h(B) € D, iff B e A.

3.5 Thepositivelogic of intuitionisticinfo-algebras  Our next example will be the
logic determined by the class of all info-algebta whereL is a pseudo-Boolean
algebra. In this case the language has an internal operation of implicatom an
internal pseudo-negation(—A = A D 0). The system extends the basic info-algebra
logic with rules for the implication and an additional class of basic sequents similar
to the case of info-algebras with negatidht- Ais an axiom, ifAis internal and also
B,—B ¢ T', for some formulaB with Var (B) € Var(A). The rules foro include:
A I'BEC

I'ADBEC

with the restrictions:C is internal,Var (A) C Var(C) and a series of distributivity
rules which compensate the absence of a suitéhbte)-type rule:

LICOAACDODBHFED

(OH)*

GAF) F.Co>(AAB)FD
I'(CS A)A(CS B)
2 A) F-Co(AAB)
ILM(ADC)A(BDC)FD
GVvH) [,(AVB)DCFD
'E(ADC)A(BDC)
F>v) I'E(AvB)SC
Ger) (CoA®ECO>BHED (ADC)®(B>C)FD
F.CS(A®B)F D I (A®B)>CF D
> ®) r(CoA®(C>B) r-(A>C)®(B>C)
TFCo (A®B) TF(A®B)>C
I (AAB)DCFD
O T (A5BoSCFD
(oo LF(AAB)SC

r-(A>B)>cC
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A list of useful provable sequents would contain, eB).B > C+ BAC, =(BD>
CO)F—-—-BA-C,-—-BA-CF-=(BD>C),-(BVC)F—-BA—-C,-BA-CHk

—(Bv C),-Bv-CF = (BAC), etc., besides sequents likeD (A® B) - (C D
ARKCO>B),COAX®CO>BFCO>(A®B),(A®RB)DCHF(ADO)®
(BDC),(ADC)®(BD>C)F (A® B) D C, etc., needed to show that just as in

the previous cases one can concentrate exclusively on internal formulas when dealing
with problems of derivability and semantic consequence: an analog of LeRglas
and3.10lholds here, too. A counterpart of LemnfaglandB.11also holds for the
present case. Thus in the proof of the completeness theorem we tread a familiar path.

Theorem 3.13 The positive logic of intuitionistic info-algebras is complete with
respect to the semantic consegquence relation.

Proof: We need the construction of relatively prime theories used in the previous
two proofs. Starting from an unprovablgernal sequent” = A one can find a theory

A maximal among theories containifigand omittingA. Ag has three nice proper-
ties with respect to significant formuldss C:

1. BACe Aiff Be AandC € A;
2. BvCeAiff BeAorCe A;
3. ifBe AandB> C e A, thenC € A.

For (3] recall thatB, B> C+ B A Cis provable, soiB € A andB > C € A, then
B A C € A. For significantB andC this impliesC € A.

Now we define a frame (in fact a generated subframe of the canonical frame)
(W, C), whereW = {A: Ap C A andA is relatively prime with respect to the sig-
nificant formulag. Thus the elements AV satisfy [ - B) above. The pseudo-
Boolean algebrd (F) of all cones inW (with operationaUb, anb,a— band
—a=a— @) will be used in the spirit of Lemma 2.22, setting:

T,ifpeA, =-peA

_ 1, ifpeA, —p¢A
o(A,P) = 0,if pg A, -pe A
1,ifpg A, =p¢A,

we extendp(D, p) to a member of Hory, 2%%); having thisp we are able to define
amapping||.|| by
[IB]| ={a:|BJ1 € a,|Blo S —a},

where|Bl; = {A € W: ¢(A,B) =1}, |Blg = {A € W: ¢(A, B) = 0}, and then

to prove that when restricted to significant formulag is a homomorphism into
A(F)*®, establishing thereby the fact thAtp= A sincel’ € A for all members of
W (thus forB € I" one hag|B|| = {W} = 1in A(F)* or ||B|| = T) but obviously

[|A]] # {W}, sinceA ¢ Ag. We reed to check whether:

1. IBAC] = IBIINIC]];
2. [|IBVvCl|=IBl|UIICI;
3. [IBS Cll = IBIl = [IC]I.
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Leaving [land ) to the reader, we treat the third equality: let us for example prove
that||B|| — ||C|| € ||BD C||,i.e., thatb € ||B|| andc € ||C|| = b — c € ||[BD C]|.
To this end we first demonstrate thH& > C|; € b — c, in other words that

9(A,BDC)=1=AkEb—c.

We reason from the contrary: lgt(A, B > C) = 1 but A |~ b — ¢, thus3A’ D
A(A"FbandA’ i~ c). Now A’ - bimplies—B ¢ A’, whereasA’ (= cimpliesC ¢
A'. Therefore we can extend\[, B, —=C] to an element ofW — A”. SinceA C A”
we haveB > C € A’; together withB € A” this yields{C, —-C} € A". Thisis a
contradiction sinc€ is significant.

Our second problem i88 O C|p € —(b — ¢), i.e., whether

o(A,BDC)=0=>AF—=(b— 0©).

Reason as follows: assuming the contrary, i.e., @, B > C) = 1 but A }
—(b — c). Now we have aA’ O A such thatA’ = b — ¢. Recalling that—=(B >

C) F =——B A =C is provable and thap(A, B > C) = 0 forces—(B > C) € D, it

is clear that one can produced © A’ such thatB € A”, =C € A” which would
obviously contradict the fact that” - b — c¢. The opposite inclusion is established
by similar reasoning.

3.6 Finitarylogicsof info-algebras Wedevote this subsection to the study of log-

ics which arise when in the general algebraic scheme for the consequence operation
the set of admissible valuations Homy A) is replaced by smaller familigd of ho-
momorphisms. As a first example we treat classes of generalized logical matrices
based on info-algebras witH = {h : h(A) is a finite set for allA}. Clearly any fini-

tary maph : Var — A can be extended to a unique homomorphismH.

The positive finitary logic of all info-algebras coincides with the logic of all info-
algebras (presented above). The interesting news here is the possibility of treating
without complications a negative version of the logic, which is defined by the set of
distinguished truth valueB~ = {X : supX = 1}, i.e., D~ consists of the elements
{X1, ..., Xm} Of A forwhichx; v ...V Xm=1.

For the axiomatization of the logic we need the following:

the notion of an axiom taken unchanged from the positive case;

we keep the rule (Cut);

the rules for conjunction are taken without any restriction;

(v F) isthe same, but examples likg= p v q(consideth(p) =1,h(q) =T)
show that( V) is not correct and has to be altered to a weaker rule:

. TEA r'-B
EV7 FEave - AvB

where we have familiar requirementdar (B) C Var(A) and Aisinternal, for
the left rule, and/ar (A) C Var(B) and B isinternal for the right;

e as should be expected the new rulesgoare dual to the previous ones:
ARG, I',BEC
'_ 9 9 9
@5~ AsBrC
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reA rB
F® rrasBs I'- A B:

o the added distributivity rules concexnas a main connective:
IL(AVC)A(BVC)FD

(vAF) F.(AAB)VCF D
o TEAVOLE
o BSOSO
o TEDEE
(VP AVOVERD

(- V) '-(AvC)v(BvO)

'-(AvB)vC

One can easily check now that for each formiahere is a finite set of internal
formulas{D4, ..., Dn} for which A D;® ... @ DnandD; ® ... ® Dnh - A

This fact together with the corresponding semantic ohér D; ® ... ® D, and

D1 ®...® Dm = A, reduces problems of provability of sequents and consequence
relations to such problems in the domain of internal formulas: A iff for somei,

I' - D, I' - Aiff for somei, I' - D;.

Lemma3.14 Theresulting systemiscorrect: if ' = Aisprovable, thenT" = A.

Proof: Standard. When checking for example the correctneés 6f) we need the
proposition about homomorphisms ir®& defined by prime filters in the lattice
underlying a given info-algebra and the fact that such homomorphisms map any set
X with supX € F into D~ (because of the finiteness X).

The proof of the completeness theorem mimics the proofs offered abolie: iA

is not provable (assume without loss of generality that they are both internal) extend
" to a maximal theoryA omitting A. Call a variablep significant, if it occurs in an
internal formulaB € A. For A we have:

1. BACe Aiff Be A andC € A (for any formulasB andC);
2. BvCe Aiff Be A or C € A (for significant internaB andC);
3. BRCe Aiff Be A orC e A (for any formulasB andC).

Although [Ty and(Z3] are routine [7) needs some attention. The implication from
left to right depends on the unrestricted rglet) and is standard; the converse im-
plication is checked as follows: assurBez A, then ifC € A, we haveBA C € A
and in view of the provability oB A C+ B Vv C, so we are done. IfC ¢ A, then
sinceC is significant, there is an internal formulawith Var (C) C Var(D) such that
D € A and consequentlB A D € A. Onone hand:

BADFBAD - v)-
BADF (BAD)VC; (BAD)VCE (BVC)A(DVC) (provable sequentﬁc ¢
BADF (BVC)A(DVC) ut)
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On the other hand
BvC+HBvVC

(BvCOOA(DVC)EBvVC

(AF)

and applying (Cut) again, we obtaBA D B v C, which is what we need.
Defining for variablesp:

1, if pis significantandp € A
h(p) =1 0, if pis significantand ¢ A
T, otherwise

and extending it to a homomorphism from Ham 2%%), we can see that for signifi-
cant internal formula$:

Be Diff h(B) e D™.

To nonsignificant formula$ assignsT. All members ofl" get values which are
“true.” Consider our formulaA: either it is significant, and then its value is O; or
it is nonsignificant, and then its valueTs Anyway A is not “true” according td.
Thus we have established the following.

Theorem 3.15 Thelogiciscomplete: if I' = A, then A e [I].

The finitary logics of the class @kternal info-algebras coincide in fact with the fini-
tary logics ofall info-algebras (in a language extended vilkland4) since finite sets

X have always sull and infX. Now we can identifyD; with {X : BX =1} andDg

with { X : ¢ X = 1}. Thus the positive finitary logic extends the basic info-algebra sys-
tems with all the rules concernifland$. Since the set of distinguished truth values
is D; we havellA = Aand A = BA , so the corresponding rules should be:

r,A-C
mH AT
®5 Fmarc
r-A
® rraa

For ¢ we have a series of rules (parallel to the rules concerning negation):

. ¢A-C . ¢BFC
@A) e (AAB FC T . ¢AAB)FC
I @A T'-¢B
U A Y YV VN )
[, 8AFC: I, 4BFC
(V) . ¢(AVB)FC
I ¢A I+ ¢B
) eV I~ &(Av B)
I, 8AFC: T, 4BFC
@) I ¢AQB)FC
- 6¢A - 4B
40 s AeB)
(dor) AEC

I, 4¢AEC
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I'BAFC
(¢RH) I', ¢4BA-C

I'-4A
T4 rreea

I'-mA
(- om) ' 6mA.

The correctness of the additions follows easily from the fact that modalized formulas

cannot haverl as a value. For the proof of completeness we need the machinery of

relatively prime theories developed above, but fortunately there are no unexpected
complications. The negative logic extends the basic finitary negative system with the
k-dualized versions of the just cited rules and can be proven complete with respect to
the finitary info-algebra matrices withg.

3.7 Consistent logics  Under the terntonsistent we understand here logical sys-
tems that are defined semantically by classes of matrices with the following require-
ment onH € Hom(L, A): thevaluesin therange of any h € H are consistent., i.e,,
different from T. The restriction causes changes in the language of the logics:
dropped for obvious reasons.

In the info-algebra situation the consistent valuations validate such rules as
(A ), as well aslt v) inthe negative case, without any restrictions (so in the cor-
responding consistent logics the distributivity rules are redundant). In view of the
above remark we have the following.

Proposition 3.16  The positive and negative consistent logic of all info-algebras
coincide with the logic of 3. The sameistruefor the case of algebras with negation.

4 Conclusion Let us first briefly recapitulate our findings, namely the logics we
have axiomatized:

¢ the standard positive full logics of all info-algebras, all info-algebras with nega-
tion, all set expansions of pseudo-Boolean algebras;

o the finitary logics (positive and negative) of all info-algebras, all info-algebras
with negation, etc.

e the consistent versions of all the systems mentioned above.

All these logics are new, a fact due mainly to the presence of new connecgiyes:
constants, etc., buteven in the case of a language containing only traditional operators
some systems appear in print for the first time, in particular the systems related to
intuitionistic semantics.

Our aim here was to investigate in some detail the construction of set expansions
as a way of treating uncertainty in logic, so let us mention some other approaches and
compare very briefly the basic ideas behind them.

4.1 Probability approaches Under this title we classify attempts to represent the
uncertainty/plausibility of knowledge and inference by assigning a probabilistic mea-
sure to statements, the so-calfgdbability distributions, with the idea that the more
plausible a propositior, the greater its probabilityp(A), etc. Many thought that a
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unigue value is not realistic and turned to probabilitiervals, discussed by Demp-
ster [g] among others.

Interval values take care of uncertainty pretty much in the same way as our sets,
intervals being special cases of sets of real numbers. For exampiedeBors[L0]
we find the note that the two limiting probabilities—Ileft and right ends of the cor-
responding interval—-p, (A) and p*(A) must be interconnected with the following
relation:

P (A) =1- p*(=A),

which strenghtens the similarity with external modalities in set expansions. Still
within the probabilistic approach not much attention is paid to the degree of knowl-
edge ordering.

4.2 Fuzzylogic Earlier, some people working in fuzzy set theory felt uneasy with
the possibility of knowing the exact numerical value which a fuzzy predicate assigns
to a particular object, so among the proposals for a more quantitatively realistic pic-
ture was the idea ohterval valued fuzzy sets. functions assigning to elements of a do-
main E not numbers but open intervala, b) of the unit interval [01] (cf. e.qg., [).

In the same vein, but in another fieldArtificial Intelligence—Sandewall[25]
proposed to consider intervals of real numbexdy] as representatives afhat we
know about the truth value of a proposition evaluated by “fuzzy” methods. He also
explicitly defined the knowledge order as inverse set inclusion.
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