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An Approach to Uncertainty
via Sets of Truth Values

GEORGE GARGOV

Abstract An approach to the treatment of inference in the presence of un-
certain truth values is described, based on representing uncertainties by sets of
ordinary (certain) truth values. Both the algebraic and the logical aspects are
studied for a variety of lattices used as truth value spaces in the domain of many-
valued logic.

1 Introduction The paper is devoted to one facet of the problem of reasoning with
imperfect information, namely when some of the available knowledge isuncertain.
Uncertain truth values are modeled by sets of ordinary truth values. In order to ex-
plain the intuitions behind such an approach we need to recall some facts about clas-
sical logic.

1.1 The classical picture Let us begin with an outline of the classical logical doc-
trine concerning reasoning. According to it logic deals withcorrect reasoning, this
notion being explicated as referring to transformations of statements which, if applied
to true ones, lead to true statements, hence the importance oftruth values. The ba-
sic thesis of classical formal logic concerning truth values seems to be thatin every
epistemic situation a well-formed statement A is always assumed either true or false,
but not both, although sometimes the exact truth value is (temporarily!) unknown.
Moreover, the truth value of a compound statement is recoverable from its syntactic
structure and the truth values of the components (although this might lead to enquiries
about other epistemic situations).

Thus,

1. the problem of how the truth values are obtained is radically separated from the
ontological problem of their existence;

2. the definiteness (certainty) of truth values regardless of any difficulties in their
actual establishing is assumed; and
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3. in a sense perfect information about every conceivable (even remote) situation
is postulated, independent from the state of theobserver.

For the formal implementation of the above doctrine one associates with an epistemic
situation atruth assignment (a semantical evaluation function)ν which assigns each
statementA adefinite truth value from the set{true, false} (ν : Fml → {true,false}).
For typographical reasons we use below 1 instead oftrue and 0 instead offalse. As-
suming the usual interpretation of the classical connectives, i.e., assuming that all
connectives aretruth-functional, this set (the smallest possible logical matrix) is the
Boolean algebra:

2 = 〈{0,1},∧,∨,¬, 0,1〉.
In this wayclassical semantics is represented by some setH of homomorphisms into
2. The definition of semantic consequence relation:� |= A (where� is a set of state-
ments andA is a statement), if∀ν ∈ H(∀B ∈ �(ν(B) = 1) → ν(A) = 1), captures the
basic intuition about sound inference: that it should transmit the truth forward, i.e., if
all hypotheses of an inference are true (in a situation) then the conclusion should also
be true (in the same situation). However, for reasoning involving intensional con-
nectives (not truth-functional in2) like modalities�i, tense operators, etc., a more
sophisticated version is needed.

Example 1.1 Here we allow many epistemic situations, orpossible worlds, with
several accessibility relations between them (but keeping them all binary); thus we
can accommodate most of the unary intensional connectives (modal, temporal, deon-
tic, etc.) and some of the binary ones such as conditionals, data connectives, etc. In
this approach aframe F is a tuple〈W, {Ri}i∈I〉, of which,

1. W is a nonempty set ofpossible worlds;
2. Ri are binary relations inW, i.e., Ri ⊆ W × W.

A model M (on a frameF ) is apair 〈F , ϕ〉 whereϕ is a truth assignment (valuation
function), i.e.,

ϕ : W × Var(L ) → 2.

In a modelM the functionϕ can be extended to a mappingϕM : W × L → 2 by the
well-known truth conditions for different connectives, for example (writingM , w |=
A instead ofϕM(w, A) = 1):

M ,w |= A ∧ B iff M , w |= A andM , w |= B, or

M ,w |= �i A iff ∀w′(wRiw
′ ⇒ M ,w′ |= A), etc.

Writing ||A||M for {w : M ,w |= A} we get a mapping ofL into the intensional alge-
braA(F ) of the frameF , i.e., the algebra of all subsets〈�(W ),∩,∪, . . . , {�i}i∈I〉,
where the intensional (e.g., modal, temporal, etc.) operations are defined as, e.g.,
�i Z = {w : ∀w′(wRiw

′ ⇒ w′ ∈ Z)}. ||.||M is a homomorphism:||A ∧ B|| =
||A|| ∩ ||B||, . . . , ||�i A|| = �i||A||. We denote||A||M = W by M |= A and the
fact that for all modelsM based onF , M |= A, by F |= A.

The important point for our exposition is that a possible worlds frameF is syn-
onymous with an intensional (modal) algebraA(F ), whereas a modelM corresponds
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to a homomorphism ofL into A(F ), i.e., a member of Hom(L, A(F )). In this way
all connectives become again truth-functional, though in respect to another (more
complex) logical matrix, in which the truth values are sets of possible worlds tradi-
tionally calledpropositions.

Given a class of such models there are several possibilities for defining the no-
tion of semantic consequence, e.g.,

1. � |=0 A iff ∀M ∀w ∈ W(∀B ∈ �(w |= B) ⇒ w |= A);
2. � |=1 A iff ∀M (∀B ∈ �(M |= B) ⇒ M |= A).

Expressed in algebraic terms these conditions become:

1′. � |=0 A iff ∀F ∀h ∈ H ⊆ Hom(L, A(F ))(h(∧{B : B ∈ �}) ≤ h(A))

2′. � |=1 A iff ∀F ∀h ∈ H ⊆ Hom(L, A(F ))(∀B ∈ �(h(B) = 1) ⇒ h(A) = 1).

As is well known, the first of these consequence operations is suitable for reasoning
in relational models. In the present paper we concentrate on the second possibility,
which is familiar mainly from the so-calledmatrix approach in the study of many-
valued logics (cf. Brown and Suszko [4], Wojcicki [29].

1.2 Criticism The above notions of truth and semantic consequence can be ques-
tioned on several points.

The first goes back in time to the intuitionistic criticism of the classical approach
to mathematical truth. It questions the rationality of assuming that one canalways as-
sign a truth value to a particular statement (and hold this as a methodological principle
when dealing with still unsettled mathematical problems). Such a criticism leads to
admitting statements which areundefined. Analyzing the notion of algorithm, in par-
ticular the statements one can make concerning their behavior, Kleene came up with
the “strong Kleene truth tables” (cf. [17]) that includedundefined as a third possibil-
ity, but even earlier Łukasiewicz had introduced the third value when investigating
the status of statements about contingent future events (there is an obvious connection
between these two concerns). This opened the door to considering the truth values as
partial objects and to applications of fix point techniques. For example in the theory
of truth developed by Kripke [18] and others (e.g., Visser [28]), the fixed points of
certain monotone operators on the family of all truth assignments were studied. The
importance of the relation of “being more defined” and its connection with the “being
more true” relation began gradually to emerge.

Another point on which the classical view has been questioned is the contention,
having its origin even before Aristotle, that no statement is both true and false (in
one and the same epistemic situation). Arguments put forward by the like of Hegel,
Wittgenstein, etc., seem to show that this is open to a discussion. Some recent pub-
lications give expositions of what can be done abandoning the view that “everything
is consistent” and have spoken of the “consistency of the world” problem, cf., e.g.,
Priest [21],[22], Rescher and Brandon [24]. Nevertheless the assumption of such a
consistency, equivalent to the well-knownlaw of noncontradiction, is considered by
the majority of logicians as the final and indisputable principle of logic beyond which
there is absolutely no ground for a rational epistemic activity, cf. Lewis [19].

Philosophically speaking the consistency and completeness of knowledge are
determined by its “correspondence” to the “outside world.” Thus contradictions may
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be the result of:

• defects in the correspondence,

• defects in the knowledge,

• defects in the world.

Concentrating on the defects in knowledge, it is an interesting problem what reason-
ing procedures can be developed in order to accommodate the possibility of contra-
dictory statements. The simplest option is to permit statements to be both true and
false and keep this as theonly possibility beyond the classical assumptions. This leads
to a picture where for a statementA and an epistemic situation we have just three ways
with the truth value:A is only true; A is only false; A is both true and false. Formally
this approach can be described by truth assignments into the set{{0}, {1}, {0,1}}, as
done e.g., by Priest in [21], [22]. The consequence relation generated by the algebra
3 above tolerates inconsistencies in the sense that there is no general inference of an
arbitrary statement from a contradiction.

A further step is to combine the assumptions of partiality and contradictori-
ness. By this step we arrive at a class of assignments that have values in the set
{∅, {1}, {0}, {1,0}}. In this case the corresponding consequence relation is also con-
tradiction tolerant. The arising logic with twodesignated truth values,{0,1} = Both
and{1} = True, is also well known and has been extensively studied, e.g., by Bel-
nap [2],[3], etc. Recently this logic has found applications in computer science as a
suitable basis for studying the semantics of the programming languages.

An obvious way to make Example1.1more “realistic” in the above respect is to
admit either partial or contradictory models, or both. This has been done by many, in
particular by Ginsberg [16], who recently promoted a notion incorporating most of the
ideas discussed above. Hisbilattices (algebras with two complete lattice orders) were
intended to combine model-theoretic and computational advantages in treating rea-
soning with imperfect information: they could be used either as conventional logical
matrices, or as in denotational semantics as a background for fixed point calculations
(in the latter case truth value assignments do not presuppose the truth functionality of
any logical connective—an important point for nonmonotonic inference). Belnap’s
algebra4 is the simplest bilattice. For its four elements Belnap indicated the “sets
of ordinary truth values” interpretation:if a ∈ x for an x ∈ 4, then a was a possible
ordinary truth value for the statement having value x. The rules Belnap gave for ma-
nipulating logical connectives, though, are different from the rules generated by our
interpretation below, mainly in the treatment of the valueNone = ∅.

1.3 Truth-value spaces Along the path indicated by the above criticism of the clas-
sical semantical schema we arrive at the notion oftruth value space. The classical
spaces (spaces for classical logic) were in general Boolean algebras with additional
operators representing intensional connectives occurring in the language. Early ex-
amples of nonclassical spaces were the pseudo-Boolean algebras, Post algebras, the
unit interval [0,1] in fuzzy logic, etc.

From the very beginning deviations from the classical scheme were justified by
appealing not only to theuncertainty of information (on the basis of which the de-
cision to declare something true is taken) but to theindefiniteness of data,vague-
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ness (fuzziness) of notions, i.e., all kinds of imperfections in the available knowl-
edge or lack of suitable knowledge due to difficulties in understanding (subjective
nonsignificance), and even objective nonsignificance (as for example did Bochvar,
cf. Finn et al. [7], who studied propositions in the foundations of mathematics that
destroyed any theory they appeared in). The truth-value spaces reflected in their inter-
nal structure different views and assumptions (philosophical, mathematical, logical,
pragmatic, etc.) concerning truth and inference. But there seem to be some general
features common to all known examples of truth spaces: they represent methods of
evaluation of information, i.e., truth values of statements are determined on the basis
of the available information. We can even in general identify them with theavailable
relevant information (about the state of affairs described or referred to by the state-
ment).

This information can be characterized in two ways:
truth degree: reflecting the truth content of a statement. No doubt here we need

atheory of truth (e.g., correspondence theory, or any other coherent view on how in-
formation is to be considered true, on the necessity of an external world, etc.) but
clearly truth degrees generate a partial order among truth values.

degree of knowledge: reflecting the definiteness of information or the complete-
ness of the knowledge about the truth value (this could involve an estimation how
reliable the information is, indications whether we find it plausible, etc.).

1.4 Sets of truth values as generalized uncertain truth values (background) In
this framework a way to account for theuncertainty of knowledge is to consider
sets of truth values, e.g., sets of propositions, as representatives of the “not perfectly
known” truth-value of a statement. We find analogous ideas in fields like fuzzy set
theory and logic (cf. Atanassov and Gargov [1]), probabilistic logic (cf. Calabrese [5],
Dempster [6], Gärdenfors [10]), AI (cf. Sandewall [25]), many-valued logic (cf. Gar-
gov [11],[12]), etc. Here we propose a codification of such uses in the notion of set
expansion of a given truth value space. Set expansions consist of sets representing
the possible truth values a statement can have according to the available informa-
tion; consequently degree of knowledge ordering is inverse set inclusion, while truth
degree ordering is somewhat more complicated and depends on the concrete problem.

Our idea stems from an early attempt of Vakarelov [26] who explored cer-
tain schema for obtaining relative semantics, later developed and applied to var-
ious nonclassical systems in Gargov [11],[12],[14], Gargov and Radev [15], and
Vakarelov [27].

Put very briefly, the schema consisted in the following: take a propositional lan-
guageL and letL1 be any other language with counterparts to all the connectives ofL
(and possibly some additional ones). Assume thatSem is a semantics forL1, i.e., that
for s ∈ Sem we may in principle decide whether a formulaa is true at s (denoted by
s |= a) or not, transferSem to formulas ofL by means of (finite) sets ofL1 formulas
usinginterpretation functions i which assign to eachL-formula a set ofL1-formulas,
the following condition being satisfied:

for a connectiveo(A1, . . . , An) of L,

i(o(A1, . . . , An) = {o(a1, . . . , an) : ak ∈ i(Ak), k = 1, . . . , n}.
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Let Int denote the set of all interpretation functions andInt0 the set of those in-
terpretation functions which do not contain the empty set in their ranges. Call a pair
(s, i) an interpretation index. Formulas inL can be evaluated at an index according
to one of the following rules (but there certainly are other possibilities for evaluation,
some of which were considered in [14], [15], among them themajority strategy ac-
cording to whichA is accepted if the majority of members ofi(A) are true).

A is true1 at (s, i) iff ∀α ∈ i(A) s |= α;
A is true0 at (s, i) iff ∃α ∈ i(A) s |= α.

For�, aset ofL-formulas, andA, anL-formula, say thatA is a (Sem, Int)n con-
sequence of� (n = 0,1), if for all indices(s, i), if all B ∈ � are truen at (s, i), then
A is also truen at (s, i). There are several intuitions behind the schema. For example,
truth1 can be associated with the notion ofdisambiguation (treated by Lewis [19]):
a proposition is assumed true if all its possible disambiguations are true. In general
disambiguations are statements formulated in a language different from the original
one, but on the other hand they follow closely the structure of the proposition disam-
biguated. For truth0 one has the notion ofjustification: astatement may be considered
true iff there is at least one true justification of this statement (cf. [14], [15]). The jus-
tifications of a statement can be formulated in a completely different language, but the
conditions upon the interpretation functions presuppose a very strict correspondence
between the propositional structure of a statement and the structure of its justifica-
tions.

When applied to the classical propositional language (equipped with the or-
dinary 2-semantics) the schema gives consequence relations related to some three-
and four-valued logics (cf. Gargov [13]). For instance(2, Int0)1 is Kleene’s original
three-valued consequence relation (coinciding with Łukasiewicz’ for the basic lan-
guage, cf. [26]), in [11] i t was proved that(2, Int0)0 is the consequence operation of
the three-valued logic of Priest [21]. (2, Int)1 and(2, Int)0 were studied in [13] where
the corresponding logics were formalized in a natural deduction style.

1.5 What is to follow In the present paper we treat in the spirit of Rasiowa and
Sikorski [23] the mathematics (part 1) and logic (part 2, which for simplicity of pre-
sentation we restrict to propositional languages) of the set expansions. The many-
valued logics determined by different subclasses of these depend on a number of pa-
rameters. One of the goals of the paper is to present a classification of the correspond-
ing logics.

2 Set expansions of lattices of truth values: algebraic aspects Let L be a bounded
lattice L = 〈L,∧,∨,0,1〉. Elements ofL represent truth values, e.g., they can be
elements of an abstract logical matrix, or sets of possible worlds, etc. We assume also
any number of additionalfinitary operationso(x1, . . . , xn). For example, we could
have unary operations like negation (in the case of de Morgan lattices and Boolean
algebras), modalities, or a binary operation of implication when we consider Heyting
algebras, etc.

The basic idea explored in this paper is to view subsetsX, Y , Z, . . . of L as new,
“expanded” truth values. A setX could be said to embody the knowledge an observer
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has about the “real” truth value of a statementA, so||A|| ∈ X, where||A|| is the “real”
truth value. Consequently, it can be viewed as an infinitary disjunction

∨{||A|| = x :
x ∈ X}. In this section we develop the algebraic aspects of such an approach.

2.1 Internal operations Set expansions of lattices will be introduced step by step.
As a first step we define a class of operations which are expanded counterparts of the
operations in the basic algebra.

Definition 2.1 The set expansionLset of L = 〈L,∧,∨,0,1, {oi}i∈I〉 is an algebra
based on the set of all subsets ofL − �(L) and having the followinginternal opera-
tions:

o(X1, . . . , Xn) = {o(x1, . . . , xn) : xk ∈ Xk, k = 1, . . . , n},
whereo(x1, . . . , xn) is an operation ofL, e.g.,

X ∧ Y = {x ∧ y : x ∈ X, y ∈ Y}
X ∨ Y = {x ∨ y : x ∈ X, y ∈ Y}

1 = {1}
0 = {0}.

And if, say, the latticeL has a negation¬ or a modality operator�, then

¬X = {¬x : x ∈ X}
�X = {qx : x ∈ X}.

The set expansion contains another pair of remarkable elements:

� = ∅, ⊥= L.

These are calledexternal constants ofLset in contrast to the internal constants 0,1.

Remark 2.2 The internal expansions of the lattice operations reflect a certain view
on the interaction of information about the truth values of components of compound
sentences, namely on how the structure of the compound formula guides us as to the
set of possibilities for its “real” truth value. Put briefly:individual possible truth val-
ues interact completely independently from each other.

Below we list several elementary properties of the introduced operations.

Proposition 2.3

1. X ∧ Y = Y ∧ X, X ∨ Y = Y ∨ X;
2. X ∧ (Y ∧ Z) = (X ∧ Y ) ∧ Z,

X ∨ (Y ∨ Z) = (X ∨ Y ) ∨ Z;
3. X ∧ 1 = X, X ∨ 0 = X.

In the case when L is a de Morgan lattice we would have also:
4. ¬¬X = X,

¬ (X ∧ Y ) = ¬X ∨ ¬Y,

¬ (X ∨ Y ) = ¬X ∧ ¬Y,

etc.
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Proof: The proof is easy: investigate the form of a typical element of the left-hand
side and show that it can be transformed into an element of the right-hand side and
vice versa.

Unfortunately not all identities concerning internal operations and valid inL are pre-
served inLset, most notably the lattice laws of idempotence, absorption, and (ifL
happens to be distributive) distributivity. Let us look into this problem more closely.
Westart with a partial list of identities that are not in general preserved in the set ex-
pansion of a latticeL:

X ∧ 0 = 0, X ∨ 1 = 1

do not hold in the set expansion of2, whereas identities like

X ∧ X = X, X ∨ X = X,

X ∧ (X ∨ Y ) = X, X ∨ (X ∧ Y ) = X,

X ∧ (Y ∨ Z) = (X ∧ Y ) ∨ (X ∧ Z),

X ∨ (Y ∧ Z) = (X ∨ Y ) ∧ (X ∨ Z), etc.,

can all be refuted in the set expansion of the four element Boolean algebra. Such
observations lead to a natural question:which identities in the above operations are
preserved under set expansion?

2.2 Preservation of identities In order to formulate a partial answer we need some
definitions and basic facts. Considerinternal termss, t, . . ., i.e., terms built from vari-
ablesv1, v2, . . ., and symbols of internal operations and constants. Such terms can
be evaluated both in the latticeL and the expansionLset. If an evaluation functionν
assigns tovi an elementXi of �(L) we write the value of a terms(v1, v2, . . . , vn) un-
derν ass(X1, X2, . . . , Xn). An expression likes(a1, . . . , an), wherea1, . . . , an ∈ L,
should be understood in the same way. Note that for the value of an internal term
s(X1, . . . , Xn), if Xi = �, thens = �, and vice versa; if allXi �= �, thens �= �. The
variables occurring in a termt form a setVar(t). Call a termlinear, if all its variables
have single occurrences.

Let nowK be a class of lattices. An equations = t is aK-identity if it is valid in
all members ofK. A characterization of allKset-identities in terms ofK-identities can
be obtained for certain classes of lattices. Clearly aKset-identity is also aK-identity
since any valuationν for a latticeL can be transformed into a valuationν∗ for Lset by
puttingν∗(X) = {ν(x)}, i.e., taking the corresponding singletons. This construction
has the following property:

ν∗(s) = {ν(s)}.
Thus any refuted inK equation is refuted also inKset: ν(s) �= ν(t) ⇒ ν∗(s) �= ν∗(t).

Definition 2.4 An identity s = t is K-linear if there exist a substitutionσ and an
equationu = v such thats = uσ, t = vσ, u = v is aK-identity, and bothu andv are
linear. An identitys = t is balanced, if Var(s) = Var(t).

Definition 2.5 An inequalitys �= t is satisfiable in a class K of lattices if there is
a latticeL ∈ K and a valuationν into L such thatν(s) �= ν(t). A family of inequali-
ties{si �= ti}i∈I is simultaneously satisfiable in K if there exist a latticeL ∈ K and a
valuationν into L such thatν(si) �= ν(ti) for all i ∈ I.
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Theorem 2.6 Let K be a class of lattices such that any finite family of satisfiable in
K-inequalities is simultaneously satisfiable in K. Then the following two conditions
are equivalent:

1. s = t is a Kset identity;
2. s = t is balanced and K-linear.

Proof: Let s = t be a balanced andK-linear identity. Note that, due to the fact that
s = t is balanced, when evaluated in an expansionLset s andt get values� in exactly
the same instances. Thus in order to check ifs = t is an identity inLset, it issufficient
to consider only valuations which do not have� in their range.

With the above restriction we have the following representation of the values of
terms, whens1(v1, . . . , vn) andt1(v1, . . . , vn) are linear:

s1(X1, . . . , Xn) = {s1(a1, . . . , an) : ai ∈ Xi},
t1(X1, . . . , Xn) = {t1(a1, . . . , an) : ai ∈ Xi}.

Let now s1 = t1 be thatK-identity of whichs = t is a substitutional instance.
Sinces1 = t1 is an identity inL, the above two sets are equal, sos1 and t1 get the
same values inLset, but then (as substitutional instances)s and t also get the same
values. Thuss = t is indeed aKset-identity.

In the opposite direction we reason by contraposition: ifs = t is either notK-
linear or not balanced, then it is not aKset-identity. It is immediately clear that a non-
balanced equation cannot be an identity inLset. Thus we are left with the case of
s = t being notK-linear, which means that anys1 = t1, which is linear and of which
s = t is a substitutional instance, is not aK-identity, i.e.,s1 �= t1 is satisfiable inK.
In particular, if we consider the terms∗ obtained froms(v1, . . . , vk) by assigning to
consecutive occurrences of a variablevi different new variablesvi1, vi2, . . . , vimi , we
get a family of satisfiable inK inequalities:

{s∗(v11, . . . , vkmk
) �= t∗ : t∗ ∈ T }.

HereT is the family of all linear termst∗ obtained fromt by the procedure of re-
placing different occurrences of a variablevi by different variablesvi j in all possible
combinations. ClearlyT is finite and the above family of inequalities has to be si-
multaneously satisfiable inK, so in some latticeL ∈ K we have for some elements
aij:

s∗(a11, . . . , akm) �= t∗(.., aij, . . .).

Let X1 = {a11, . . . , a1m1}, . . ., Xi = {ai1, . . . , aimi}, etc. The claims(X1, . . . , Xk) �=
t(X1, . . . , Xk) follows from the observation thats∗(a11, . . . , akm) ∈ s(X1, . . . , Xk),
but s ∗ (a11, . . . , akmk

) /∈ t(X1, . . . , Xk).

Remark 2.7 The property from Definition2.5 is possessed by a variety of classes
of lattices, e.g., any class of Boolean algebras containing arbitrary large finite Boolean
algebras or some infinite ones, any class of pseudo-Boolean algebras with the same
restrictions, etc.

Remark 2.8 A useful counterexample to a more liberal formulation of the above
theorem is the class of all linear ordersLin, for which, e.g.,X ∧ X = X andX ∨ X =
X areLinset-identities (since in a linear ordera ∧ b anda ∨ b equal eithera or b).



244 GEORGE GARGOV

2.3 External operations Since the set expansion of a lattice is built up from sets
of elements, it is only natural to introduce also the set-theoretical operations:

X ⊕ Y = X ∩ Y,

X ⊗ Y = X ∪ Y,

their infinitary versions
∑

and
∏

, aswell as the relation

X ≤k Y iff X ⊇ Y.

In Lset it is also possible to consider the complement of a setX:

Xc = L\X.

With such additional operations (calledexternal to contrast them with the pre-
vious class of operations) set expansions turn into truth value spaces similar to the
algebra4 of Belnap and to bilattices (cf. [16]): ≤k represents ordering by degree of
knowledge (the smaller the set, the more we know about the “real” truth value),⊕
and⊗ give us different combinations of information about this possible truth value:
“accept anything” joining of the information in⊕, and “consensus” reduction to the
information common to both sets in⊗. The analogy is not perfect though, as will be
seen below. Note that the constant� represents a kind of nonsignificance value ca-
pable of destroying any internal statement (thus the information leading to� is not
simply contradictory, but rathersenseless).

Remark 2.9 Continuing this discussion of the intuitions behind sets of truth values
let us point out that the notion ofsets of truth values as generalized truth values has its
origin in a simple observation: “X is the generalized truth value ofA” means nothing
more than “all we know at present is||A|| ∈ X.” Maximal possible knowledge cor-
responds to singletons, defective (contradictory, nonsensical) knowledge leads to an
empty set of possible truth values. On this path we are immediately confronted with
the problem: how are the sets of possible valuesX, Y , Z given? For example they can
be thought as givendirectly (enumerated, etc.) or they can berepresented by certain
conditions defining the sets (these conditions are usually restrictions on the possible
truth values). Now the question arises as to the language in which such conditions are
formulated, how are they verified, etc. Although quite important, especially in appli-
cations, we leave their detailed analysis aside due to lack of space. We can think of
the information concerning theXs as of a family of restrictions (primitive restrictions)
on the elements of the sets. Theconsensus approach would combine two families of
restrictions in such a way that any restriction that does not appear in both families
would be dropped, so we would be left with only the restrictions common toX and
Y . Now this guarantees that we getX ∪ Y as a result. A similar argumentation for
the intersection though is not so conclusive; perhaps this is the cause of the problems
with ⊕ in the algebraic treatment of set expansions.

2.4 External properties of set expansions Let us continue with further facts about
set expansions. The internal operations arek-monotone, e.g.:

X ≤k X ′, Y ≤k Y ′ imply X ∨ Y ≤k X ′ ∨ Y ′, etc.
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Proposition 2.10 With respect to the introduced external operations Lset is a co-
atomic, complete, and completely distributive Boolean algebra (the algebra of all
subsets of L with inverse inclusion) with least element ⊥ and greatest element �.
In particular the following laws hold:

(
∑

{Xi : i ∈ I}) ⊗ Y =
∑

{Xi ⊗ Y : i ∈ I},
(
∏

{Xi : i ∈ I}) ⊕ Y =
∏

{Xi ⊕ Y : i ∈ I}, etc.

The relations between external and internal operations are quite complicated, e.g., the
following hold only as inequalities with respect to thek-order:

X ∧ X ≤k X, X ∨ X ≤k X,

X ∧ (X ∨ Y ) ≤k X, X ∨ (X ∧ Y ) ≤k X,

(X ∧ Y ) ∨ (X ∧ Z) ≤k X ∧ (Y ∨ Z), (X ∨ Y ) ∧ (X ∨ Z) ≤k X ∨ (Y ∧ Z),

etc.

Lemma 2.11 In the set expansion of any bounded lattice we have:

X ∧ (Y ⊗ Z) = (X ∧ Y ) ⊗ (X ∧ Z),

X ∨ (Y ⊗ Z) = (X ∨ Y ) ⊗ (X ∨ Z),

and in general for any linear internal term s(. . . , X, . . .):

s(. . . , Y ⊗ Z, . . .) = s(. . . , Y, . . .) ⊗ s(. . . , Z, . . .);

with an infinitary version:

s(. . . ,
∏

{Xi : i ∈ I}, . . .) =
∏

{s(. . . , Xi, . . .) : i ∈ I}.

As for ⊕ - wecan claim only that

(X ∨ Y ) ⊕ (X ∨ Z) ≤k X ∨ (Y ⊕ Z),

(X ∧ Y ) ⊕ (X ∧ Z) ≤k X ∧ (Y ⊕ Z),

s(. . . , Y, . . .) ⊗ s(. . . , Z, . . .) ≤k s(. . . , Y ⊗ Z, . . .).

For example the tripleX = 1, Y = 0, Z = 1shows the failure of an inequality opposite
to the first one:Y ⊕ Z = �, so X ∨ (Y ⊕ Z) = � while (X ∨ Y ) ⊕ (X ∨ Z) = 1.

Example 2.12 The simplest set expansion is2set: it has four elements, all of them
signature constants: 0,1, ⊥ and�. With respect to⊕, ⊗, and the complementation
c 2set is a Boolean algebra, though with respect to∨, ∧ it is not even a lattice since
� is anonsignificance value.2set can be considered with its internal negation¬ (in-
herited from the Boolean algebra2), it also has a sort ofconflation operation (cf. Fit-
ting [8], [9] for the definition and the properties of conflation in a bilattice setting)−,
related toc and the internal negation¬ by −X = (¬X)c (by the way, in this struc-
ture this equals¬(Xc)). In this way−1 = 1, −0 = 0, −⊥ = �, −� = ⊥ (just as a
conflation should act), moreover we haveX ≤k Y implies−Y ≤k −X.



246 GEORGE GARGOV

2.5 Singletons and other curiosities in Lset In this subsection we present several
examples of interesting expressive possibilities inLset. Let us start with the obser-
vation that some relevant properties of subsets ofL can be guaranteed by simple
equations inLset, e.g., X ∨ ⊥ = X defines all subsets ofL that areupward closed;
X ∧ ⊥ = X defines all subsets ofL that aredownward closed; X ∨ X = X defines
all ∨-closed subsets ofL, i.e., subsets with the propertya, b ∈ X ⇒ a ∨ b ∈ X;
X ∧ X = X defines all∧-closed subsets, and in generalo(X, . . . , X) = X defines
the sets that are closed with respect to the operationo.

The meaning of the “bilattice projection operations” (cf. Ginsberg [16] or Fit-
ting [9]) (x)0 and(x)1 may also be of interest, so we mention that(X)0 = X ∧ ⊥ is
thedownward cone of X; (X)1 = X ∨ ⊥ is theupward cone of X. The combinations

(X)0 ⊕ (X)1 = {y : ∃x0, x1 ∈ X(x0 ≤ y ≤ x1)} and

(X)0 ⊗ (X)1 = {y : ∃x0, x1 ∈ X(y ≤ x0 andx1 ≤ y)}

give us the so-calledconvex hull andcylinder of X, respectively.
Using these observations one can give a definition of filters inL as the solutions

of a simple system of equations:

X ∨ ⊥ = X (i.e., (X)1 = X)

X ∧ X = X.

For ideals there is a dual system:

X ∧ ⊥ = X (i.e., (X)0 = X)

X ∨ X = X

Wecan define singletons inLset as atoms in the lattice of set-theoretic operations, or,
equivalently, as co-atoms in the≤k order, where,

X is a co-atom iffX �= � and∀Y(X ≤k Y ⇒ X = Y or Y = �).

Singletons have the following characteristic properties:

∏{Xi : i ∈ I} ≤k {x} ⇒ ∃iXi ≤k {x};
X = ∏{{x} : X ≤k {x}}.

2.6 Homomorphisms of set expansions General algebraic considerations suggest
the importance of studying homomorphisms of set expansions and in particular ho-
momorphisms into the smallest such algebra2set. As turns out, if homomorphisms
f : Lset → Mset should respect the infinitaryk-operations, i.e.,f (

∑{Xi : i ∈ I}) =∑{ f (Xi) : i ∈ I} and f (
∏{Xi : i ∈ I}) = ∏{ f (Xi) : i ∈ I}, then the rigid structure

of the set expansions leaves no room for variety, as witnessed by the following facts.

1. Homomorphisms isolate �. For a homomorphismf : Lset → Mset and a sin-
gleton {x} in Lset one has{x} ∨ 1 = 1, so f ({x}) ∨ 1 = 1, which implies
that f ({x}) �= �. Now using the representationX = ∏{{x} : x ∈ X} we get
f (X) = ∏{ f ({x}) : x ∈ X}. Thus if X �= �, then f (X) �= �.
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2. Source singletons are mapped into special partitions of the target singletons.
If x �= y, then inLset {x} ⊕ {y} = �, so f ({x}) ⊕ f ({y}) = �. Thus different
singletons are mapped into disjoint elements ofMset. Moreover from

∏{{x} :
x ∈ L} = ⊥, weget that

∏{ f ({x}) : x ∈ L} = ⊥, so the restriction off over the
singletons generates a special partition ofM: let Px = f ({x}), then the family
{Px : x ∈ L} is a partition ofM of a special kind, i.e., besidesx �= y ⇒ Px ∩
Py = ∅ and∪{Px : x ∈ L} = M, we have also Px ∨ Py = Px∨y; Px ∧ Py =
Px∧y, and in generalPo(x,...,y) = o(Px, . . . , Py). Applied to homomorphisms
of 2set this has the following effect:if L is different from 2, then there are no
homomorphisms f : 2set → Lset.

3. Epimorphisms are isomorphisms. Epimorphisms of set expansions map sin-
gletons onto singletons: iff (X) = {z} for a z ∈ M, then having, for anyx ∈ X,
X ≤k {x} and consequently{z} ≤k f ({x}), by the properties of co-atoms in
Mset, {z} = f ({x}), but that, in view of (2) above, impliesX = {x}. Therefore
there exist no epimorphisms of set-expansions except isomorphisms. Applied
to homomorphism into2set, which are all epimorphisms (since all elements of
2set are signature constants), the latter fact yields the following corollary:if L
is different from 2, then there are no homomorphisms f : Lset → 2set.

2.7 The external modalities If it is assumed thatL is complete, then one can in-
troduce inLset a pair of unary operations:�X = {inf X}; �X = {supX}, with the
following elementary properties.

��X = ��X = �X ��X = ��X = �X
�1 = 1 �0 = 0 �1 = 1 �0 = 0
�� = 1 �⊥ = 0 �� = 0 �⊥ = 1

These can be easily checked as well as the next proposition.

Proposition 2.13 In the set expansion of a complete lattice L the following identi-
ties hold:

�(X ⊗ Y ) = �X ∧ �Y, �(X ⊗ Y ) = �X ∨ �Y,

and their infinitary versions

�
∏

{Xi : i ∈ I} = ∧{�Xi : i ∈ I};
�

∏
{Xi : i ∈ I} = ∨{�Xi : i ∈ I}.

For X, Y �= � we have also:

ν(X ∧ Y ) = �X ∧ �Y, �(X ∨ Y ) = �X ∨ �Y,

and the infinitary (for Xi �= �)

� ∧ {Xi : i ∈ I} = ∧{�Xi : i ∈ I};
� ∨ {Xi : i ∈ I} = ∨{�Xi : i ∈ I}.

If L is in addition completely distributive, then for X, Y �= �
�(X ∨ Y ) = �X ∨ �Y, �(X ∧ Y ) = �X ∧ �Y,
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and the infinitary laws (for Xi �= �):

� ∨ {Xi : i ∈ I} = ∨{�Xi : i ∈ I};
� ∧ {Xi : i ∈ I} = ∧{�Xi : i ∈ I}.

If there is a de Morgan negation ¬ among the internal operations, then

¬�X = �¬X and ¬�X = �¬X.

Having� and� the notion “X is a singleton” can be expressed as�X = X (which
is equivalent to�X = X).

Proposition 2.14 The set S of singletons in Lset can be characterized as follows:

1. S = {X : �X = X} = {X : �X = X}
2. S is the set of co-atoms in Lset.

Corollary 2.15

1. By the above we have in Lset: �X = X iff X �= � and ∀Y(X ≤k Y ⇒ X = Y
or Y = �).

2. With the internal operations ∧, ∨ restricted to it S becomes a lattice isomorphic
to L.

3. If s = t is an L-identity, then s′ = t′ is an Lset-identity,where s′ is sσ, t′ is tσ and
the subsitution σ assigns to a variable X the term �X.

Remark 2.16 Unfortunately complementation and⊕ behave erratically with re-
spect to the external modalities. This could be explained by the intuition behind ex-
ternal modalities: both operators reflect the implicit information contained in a gener-
alized truth valueX, �X representing the greatest “possible” ordinary truth value con-
sistent with the infromation inX, whereas�X gives the “necessary” ordinary truth
value implicit in X. When we join the information inX andY according to the rule
“accept anything” (getting their intersection) we in fact may overgenerate restrictions
and thus overgenerate information, leading to a senseless truth value.

2.8 Info-algebras Here we try algebraically to define the “useful” part of the set
expansions of lattices of truth values. Perhaps it is already clear from the results cited
above that the operation⊕ (together with the constant�) is the cause of most of the
discrepancies between set algebras and bilattices. One way out of this is to drop⊕
andc from the signature (but keep� as some interesting applications involve such
nonsensical values). A similar connsrtruction, in a restricted setting, was studied by
Vakarelov [27].

Definition 2.17 An info-algebraA of a given internal signature(∧,∨, . . . ,0,1) is
apartially ordered set〈A,≤k〉 which is acomplete lower semi-lattice. The least and
greatest elements ofA are⊥ and� respectively. The join operation is denoted by

∏
(its finitary version by⊗). The algebra has the following properties.

A1. Internal structure:

(a) internal operations are monotone with respect to≤k;
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(b) s(. . . ,�, . . .) = � for internal terms;

(c) s(. . . ,
∏{Xi : i ∈ I}, . . .) = ∏{s(. . . , Xi, . . .) : i ∈ I}, for linear terms.

A2. Singletons:

(a) the set of singletonsa, b, c . . .of A: LA is a distributive lattice with respect
to the restrictions of∧ and∨ (and it is bounded by 0 and 1);

(b)
∏{Xi : i ∈ I} ≤k a ⇒ ∃iXi ≤k a;

(c) X = ∏{a : X ≤k a}.

Lemma 2.18 For an internal operation o(X1, . . . , Xn) and a singleton a:

o(X1, . . . , Xn) ≤k a ⇒ ∃b1, . . . , bn ∈ LA(Xi ≤k bi(i = 1, . . . , n)

and
o(b1, . . . , bn) = a).

Proof: By A2.c o(X1, . . . , Xn) = o(
∏{a : X1 ≤k a}, . . .,

∏{a : Xn ≤k a}). Apply-
ing A1.c we geto(X1, . . . , Xn) = ∏{o(b1, . . . , bn) : X1 ≤k b1, . . . , Xn ≤k bn}. Now
if o(X1, . . . , Xn) ≤k a, then

∏{o(b1, . . . , bn) : X1 ≤k b1, . . . , Xn ≤k bn} ≤k a, and
using axiom A2.b we get the desired result.

It is not difficult to see thatLset is an info-algebra. Conversely, any info-algebraA
can be represented as a set expansion (with the restricted signature), namely asLset

A ,
as the next lemma points out.

Lemma 2.19 Let A be an info-algebra, then A ∼= Lset
A (as info-algebras).

Proof: The mapf : A → �(LA) defined asf (X) = {a : X ≤k a} is an isomorphism
of A andLset

A :

f (o(X1, . . . , Xn)) = {a : o(X1, . . . , Xn) ≤k a}
= {a : ∃b1, . . . , bn(Xi ≤k bi(i = 1, . . . , ν) and

o(b1, . . . , bn) = a)}
= {a : ∃b1, . . . , bn(bi ∈ f (Xi) ando(b1, . . . , bn) = a}
= o( f (X1), . . . , f (Xn));

f (
∏

{Xi : i ∈ I}) = {a :
∏

{Xi : i ∈ I} ≤k a} = {a : ∃iXi ≤k a}
=

∏
{{a : Xi ≤k a} : i ∈ I} =

∏
{ f (Xi) : i ∈ I}.

The rest of conditions are checked as usual.

2.9 Homomorphisms of info-algebras An interesting special case of the info-
algebra homomorphims are the homomorphisms of info-algebras into2set which exist
in abundant numbers in contrast with the full set expansions.

Lemma 2.20 Let f : A → 2set be a homomorphism. The subset F of LA defined
by F = {a : f (a) ∈ D1}, where D1 = {�,1} is a prime filter in LA.

Proof: Checking thatF possesses the properties of a prime filter:
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1. If a ∈ F anda ≤ b, thenb ∈ F: a ∈ F means thatf (a) ∈ D1, a ≤ b implies that
a ∨ b = b. Considera ∨ b = a ∨ b = b. Apply f and getf (a) ∨ f (b) = f (b).
In 2set the equationa ∨ b = b together witha ∈ D1 guarantees thatb ∈ D1,
therefore f (b) ∈ D1.

2. a ∧ b ∈ F iff a ∈ F andb ∈ F: if a ∧ b ∈ F, then clearly by1 a, b ∈ F. Assume
now thata ∈ F andb ∈ F, which is equivalent tof (a) ∈ D1 and f (b) ∈ D1,
that gives f (a) ∧ f (b) ∈ D1 (by the laws of2set) and, sincef is a homomor-
phism, f (a ∧ b) ∈ D1, soa ∧ b ∈ F.

3. a ∨ b ∈ F iff a ∈ F or b ∈ F: clearly, if a ∈ F or b ∈ F, thena ∨ b ∈ F. In
the opposite direction: ifa ∨ b ∈ D1 , then f (a) ∨ f (a) ∈ D1, but in 2set this
guarantees that eitherf (a) ∈ D1 or f (b) ∈ D1, i.e.,a ∈ F or b ∈ F.

Lemma 2.21 Let A be an info-algebra of the minimal internal signature (∧,∨,0,

1). Then the mapping f : A → 2set defined from a prime filter F in LA by first stipu-
lating for the singletons:

f (a) =
{

1 if a ∈ F
0, otherwise

and then for arbitrary elements of Lset: f (X) = ∏{ f (a) : X ≤k a}, is a homomor-
phism.

Proof: Clearly the constants 0,1,⊥,� are mapped correctly byf : f (1) = 1 and
f (0) = 0 by the fact thatF is a proper filter,f (⊥) = ⊥, since 1⊗ 0 = ⊥ and f (�) =
� trivially. Let us also note that fora, b ∈ L,

f (a ∧ b) = f (a) ∧ f (b);
f (a ∨ b) = f (a) ∨ f (b),

sinceF is prime. To check iff (X ∧ Y ) = f (X) ∧ f (Y ) reason as follows:

f (X ∧ Y ) =
∏

{ f (c) : X ∧ Y ≤k c}
=

∏
{ f ({a ∧ b}) : X ≤k a, Y ≤k b}

=
∏

{ f (a) ∧ f (b) : X ≤k a, Y ≤k b}
=

∏
{ f (a) : X ≤k a} ∧

∏
{ f (b) : Y ≤k b}

= f (X) ∧ f (Y ).

Similarly we can establish thatf (X ∨ Y ) = f (X) ∨ f (Y ). As for the operation⊗,
we proceed as follows:

f (X ⊗ Y ) =
∏

{ f (c) : X ⊗ Y ≤k c}
=

∏
{ f (a) : X ≤k a} ⊗

∏
{ f (b) : Y ≤k b}

= f (X) ⊗ f (Y ).

Now we can formulate an effect of the above construction important for the logical
developments below.
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Lemma 2.22 If X /∈ D1 (= {1,�}) in a minimal info-algebra A, then there is a
homomorphism f : A → 2set such that f (X) /∈ D1 in 2set.

Proof: SinceX /∈ D1, there is ana with X ≤k a and such thata �= 1, and we can
find a filterF in LA which omitsa. The homomorphismf : A → 2set associated with
this filter mapsX either on 0 (ifX ∩ F = ∅) or on⊥ (whenX ∩ F �= ∅). Anyway,
f (X) /∈ D1.

It would be a natural next step to formulate a representation theorem for info-algebras
as sub-algebras of the set expansions of frame lattices. Along the lines of the clas-
sical approach to the representation of lattices as sublattices of set based ones, one
needs to define first the notion of2set model on a frameF = 〈W, . . .〉 as a mapping
f : W × Fml → 2set where for eachw ∈ W, f (w, A) ∈ Hom(L, 2set) for the mini-
mal signature.|A|1 denotes the set{w : f (w, A) = 1}, |A|0, |A|⊥, |A|� have similar
meanings. A singletona in the frameF is a partition ofW, i.e., |a|1 = W\|a|0, in
other words singletons are exact truth values. We writeA ≤ϕ B if ∀w(ϕ(w, A) ≤k

ϕ(w, B)). Now let ||A|| = {a : a is a singleton inF and A ≤ ϕa}. The idea is to es-
tablish that||.|| is a member of Hom(L, (A(F ))set). Disappointingly enough this is
true only for the internal part of the language.

Lemma 2.23 The mapping ||.|| belongs to the family Hom(L0, (A(F ))set), where
L0 is the language without ⊗.

Proof: To begin with, note that|A|� �= ∅ iff ||A|| = ∅. That takes care of the sit-
uation when there are occurrences of� in the valuations ofA or B. Observe also
that |A ∧ B|1 = |A|1 ∩ |B|1, |A ∧ B|0 = |A|0 ∪ |B|0, |A ∨ B|1 = |A|1 ∪ |B|1, and
|A ∨ B|0 = |A|0 ∩ |B|0. Using these we can prove, e.g.,||A ∧ B|| = ||A|| ∧ ||B||:
||A ∧ B|| = {c : A ∧ B ≤ϕ c}, but A ∧ B ≤ϕ c means that|c|1 ⊇ |A|1 ∩ |B|1 and
|c|0 ⊇ |A|0 ∪ |B|0. Let now a, b be the singletons with|a|1 = c ∪ |A|1 and|b|1 =
c ∪ |B|1 . It is easy to see thatA ≤ϕ a and B ≤ϕ b, and thata ∩ b = c. Thus
||A|| ∧ ||B|| ⊇ ||A ∧ B||. To justify the opposite inclusion note that ifA ≤ϕ a and
B ≤ϕ b, then A ∧ B ≤ϕ a ∧ b.

The case with∨ is left to the reader.

2.10 Link to supervaluations The above construction can be cast in a slightly dif-
ferent form in order to reveal its kinship to a very well-known idea in many-valued
logic: the notion ofsupervaluations. Call a mappingψ : W × Fml → 2set a super-
valuation forϕ if:

1. ϕ ≤k ψ;

2. ψ is exact, i.e., for variablesp, ψ(w, p) ∈ {0,1}.
Let ||A||s = {|A|ψ1 : ψ is a supervaluation forϕ}. The claim that||A||s = ||A|| for

A ∈ Fml(L0) is easily justified by the fact that{|A|ψ1 , |A|ψ0 } is a singleton.
The difference from the tradition of van Fraasen lies in the way supervaluations

are used: whereas customarily the family of supervaluations for a givenϕ is converted
into a valuation̄ϕ, which in our case would look as follows:ϕ̄(w, A) = � if there are
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no supervaluations; and in the presence of supervaluations,

ϕ̄(w, A) =



1 if ∀y(y(w, A) = 1)

0 if ∀y(y(w, A) = 0)

⊥ otherwise.

Our usage avoids such a conversion and keeps the family of supervaluations as a new
generalized truth value.

2.11 External info-algebras An info-algebraA is calledexternal if two unary op-
erations� and� can be defined inA satisfying:

1. ��{Xi : i ∈ I} = ∧{�Xi : i ∈ I};
2. �

∏{Xi : i ∈ I} = ∨{�Xi : i ∈ I};
3. �a = �a = a, for singletons.

All relevant properties of the external modalities in set expansions (as documented in
Proposition2.13) can be derived from the above definition (which presupposes that
LA is a complete lattice).

It should have become clear by now that admitting arbitrary sets of lattice ele-
ments as generalized truth values, insisting at the same time that this move is caused
by incompleteness of information, uncertainty of data, or vagueness of predicates,
etc., is somewhat inconsistent: to define anarbitrary setX requires very detailed in-
formation about the individual members ofX, which seems implausible in circum-
stances when onelacks the relevant knowledge. Thus restricted classes of such gen-
eralized truth values seem to be a more realistic way of modeling imperfect epistemic
situations.

As an example of restrictions that arise from specific imperfections of data let us
consider a frameF = 〈W, . . .〉 where the available knowledge permits us to discern
different possible worlds only up to certain equivalence relation≈, so the only subsets
of W one “can be aware of” are unions of equivalence classes [w] = {w′ : w ≈ w′}
with respect to theindiscernibility relation≈ (calledrough sets, cf. Pawlak’s intro-
ductory paper [20]). For a setV ⊆ W denote byV1 the set{w : [w] ⊆ V} and let
V0 = {w : [w] ∩ V �= ∅}; these are respectively the biggest rough set insideV and the
biggest rough set includingV . An observer having the above limitations can know
the “real” truth value||A|| only to contain||A||1 and to be contained in||A||0, soany
set between these two bounds would be a possible “real” truth value for him, i.e.,
the generalized interpretation ofA would be{U : ||A||1 ⊆ U ⊆ ||A||0}. Note that
in such a setting the existence of the operations� and� is a natural consequence:
�{U : ||A||1 ⊆ U ⊆ ||A||0} = ||A||1 and�{U : ||A||1 ⊆ U ⊆ ||A||0} = ||A||0.

3 Logical aspects of set expansions and info-algebras In this section we explore
the possibility of treating some of the algebras introduced above in the traditional
fashion of algebraic logic: as logical matrices semantically defining logical systems,
i.e., as a generalization of the truth-table method used in classical logic.

3.1 Generalized matrices Let us recall some definitions and some basic facts from
the theory of propositional logics (cf. [4], [29]), restricted to our current needs, e.g.,
we presuppose only a finite number of finitary logical connectives.
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A propositional languageL over an infinite (countable in our case) set of vari-
ablesVar(L ) is an absolutely free algebra of some signature (with the above restric-
tions), freely generated byVar(L ). We assume that the operations include conjunc-
tion and disjunction, the two constants 0,1, and eventually other constants and oper-
ationsoi. The elements of this algebra are calledformulas and form a setFml(L ), so
L = 〈Fml(L ),∧,∨, . . . ,0,1〉. Reference toL will be dropped from now on when-
ever possible.

A mappingC: �(Fml) → �(Fml) is a consequence operation, if the following
conditions are satisfied for all subsets�, 	 of Fml:

1. � ⊆ C(�);
2. C(�) = C(C(�));
3. � ⊆ 	 impliesC(�) ⊆ C(	).

A consequence operationC is compact if for every�:

C(�) = ∪{C(	) : 	 ⊆ � and	 is finite}.

A generalized matrix M = 〈A, D, H〉 for L is a triple where:

1. A is an algebra similar to the languageL : the truth-value space;
2. D is subset of the truth-value space: the elements of D are thedesignated truth

values;
3. H ⊆ Hom(L, A): its elements are calledadmissible valuations.

A matrix M is called standard whenH = Hom(L, A). Every class of matricesK
determines a consequence operationCK:

A ∈ CK(�) iff ∀M = 〈A, D, H〉 ∈ K ∀h ∈ H (if h[�] ⊆ D, thenh(A) ∈ D).

For singleton classes{M } we write simplyCM . As arule instead ofA ∈ CK(�) we
write � |=K A, or just� |= A when there is no danger of confusion.

A propositional logic S is a pair〈L, C〉 whereC is a consequence operation in
the languageL of S . A classK is called a semantics for the logic〈L, C〉, if C =
CK. Finitely-approximable logics S are characterized by a class of finite matrices,
i.e., there is a classK of finite matrices which is a semantics forS. Finite logics (or
finite-valued logics) are determined by a finite class of finite matrices.

Below we present a variety of logical systems arising from the truth spaces con-
sidered in the previous section in a unified framework by proving theorems of the
following kind: the system S is characterized by a class of algebras (set expansions,
info-algebras), viewed as generalized logical matrices.

Within this framework one is confronted with severalchoices which determine
the logical system:

• the choice of languageL , i.e., what operations should be consideredlogical, as
opposed to others that are computational in character;

• the choice ofD, the distinguished truth values;
• the choice of the classH, the admissible valuations, i.e., what types of homo-

morphisms are considered relevant.
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With respect to the first mentioned choice there are several approaches. The
liberal approach is to considerall operations available in the investigated class as
equally logical, so the propositional language is to have the same signature as the
class itself, i.e., all operations have corresponding logical connectives. We are go-
ing to give several examples of this approach, e.g., the logic of info-algebras, etc.

A second, morerestrictive, approach is to put down criteria by which an opera-
tion can be judged to be logical or not. Let us formulate a few criteria as an example.

1. A logical operation should preserve acquired information about truth values.
Assuming this, we arrive at the requirement ofk-monotonicity. Such a crite-
rion excludes for example the external modalities as candidates for logical op-
erations.

2. One may insist onconservativity of a logical operation in the sense that when
applied to exact truth values (i.e., singletons) it should yield exact values. This
criterion excludes thek-operations⊕ and⊗ but admits the external modalities.

3. An even less restrictive requirement is to demand the operations topreserve
consistency, i.e., when applied to consistent truth values the operation should
give consistent truth values; the operation⊕ is excluded in this case.

The problem with the set of distinguished truth values is in fact a version of the
more general question of what conditions should be met in order to recognize a state-
ment as “true.” A first thing that comes to mind is that the intended meaning of the
elements of set expansions implies that 1∈ D, so the simplest decision isD = {1},
i.e., to recognize as valid only such inferences that preserve the property of “being
only true.” But, besides being a not very happy choice technically, the restriction of
D to {1} is not easily justifiable.

Now one might wish to be positive, i.e., to accept a statement as true if having
all the reasons to do so ( in this case let the set of distinguished truth values beD1),
or he might assume a negative attitude and favor statements that arenot refutable,
i.e., if there are no reasons to reject a statement one accepts it (let the corresponding
set beD0). In set expansionsD1 and D0 can be viewed as the sets of elementsX
satisfying respectively∀x ∈ X(x = 1) and∃x ∈ X(x = 1). Unfortunately the former
definition leads to some technical complications and destroys the duality between the
two choices. A better option isD0 = {X : supX = 1}, dual to{X : inf X = 1}(= D1).

Restrictions concerning the set of admitted homomorphisms can include such
requirements as the following.

• H is the set of all consistent valuations, i.e., functions whose range contains
only consistent elements, or

• H is the set of valuations into info-algebras that contain only finite sets in their
ranges, etc.

Let us fix some terminology: if a logic is defined by a class of generalized logical
matrices with no restrictions on the admissible homomorphisms we speak of astan-
dard system, ifH is restricted to the homomorphisms with consistent values, then we
use the termconsistent logics; if it contains only finite sets as values (this in the case
of set expansions), then the logic isfinitary. If the set of distinguished truth values is
D1, wespeak ofpositive logics; if it is D0, wesay that the logic isnegative. If the sig-
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nature of the language and the algebras of the class coincide, we speak of afull logic,
otherwise we use different adjectives showing which operations in the algebras have
language connectives as counterparts.

For the presentation of this and subsequent logical systems we choosesequential
style calculi. For our purposes it is sufficient to adopt the view that sequents are of the
form � � A, where� is a finite set of formulas andA is a formula. Thus our systems
are inherently intuitionistic (having the restriction of single formula in the right-hand
side).

3.2 The standard positive logic of all info-algebras Our basic system will be for-
mulated in a language which includes the operations∧,∨,⊗, and hasno proposi-
tional constants. Werestrict the language in this way with simplicity of presentation
in mind (the addition of the constants does not change the results but complicates the
system of rules and the proofs). We consider the info-algebras as standard matrices
with the setD1 = {�,1} as the set of distinguished truth values. Let us point out that
this semantics has the following property: there are no tautologies in the language,
i.e., for no formulaA, ∅ |= A (e.g., for anyA one can always find a valuationh with
h(A) = ⊥).

Call a formulainternal if ⊗ does not occur in it. A set� is internal if all its
members are internal formulas. The systems will have as basic sequents expressions
of the form� � A, whereA ∈ �.

3.2.1 Rules With each connective ofL two types of rules are associated, governing
association of formulas in the left-hand and the right hand side respectively:

(∧ �)+ �, A � C
�, A ∧ B � C

�, B � C
�, A ∧ B � C

(� ∧)
� � A; � � B

� � A ∧ B

(∨ �) �, A � C; �, B � C
�, A ∨ B � C

(� ∨) � � A
� � A ∨ B

� � B
� � A ∨ B

(⊗ �)
�, A � C

�, A ⊗ B � C
�, B � C

�, A ⊗ B � C

(� ⊗)
� � A; � � B

� � A ⊗ B

Note that conjunction poses a problem: although (� ∧) isacceptable, the rules (∧ �)
are not correct without any restriction when interpreted in info-algebras (because of
the possibility to assignA ∧ B a value in D1 keeping the value ofA outsideD1, as
for example is the case with the valuation h defined forp andq ash(p) = � and
h(q) = 0, soh(p ∧ q) ∈ D1 buth(q) /∈ D1). Therefore we have to put up with weaker
rules(∧ �)+, where the plus sign marks the restriction on the type and variables of the
formulas which appear in the bottom sequents:A is internal and Var(A) ⊇ Var(B),
for the left rule andB is internal and Var(B) ⊇ Var(A), for the right one. Such a
weakening calls for additional compensatory rules. In the first place we need thecut
rule:
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(Cut) � � A; �, A � B
� � B

but also the followingdistributivity rules:

(∧∨ �)
�, (A ∧ C) ∨ (B ∧ C) � D

�, (A ∨ B) ∧ C � D

(� ∧∨)
� � (A ∧ C) ∨ (B ∧ C)

� � (A ∨ B) ∧ C

(∧⊗ �)
�, (A ∧ C) ⊗ (B ∧ C) � D

�, (A ⊗ B) ∧ C � D

(� ∧⊗)
� � (A ∧ C) ⊗ (B ∧ C)

� � (A ⊗ B) ∧ C

(∧∧ �)
�, (A ∧ B) ∧ C � D
�, (A ∧ C) ∧ B � D

(� ∧∧)
� � (A ∧ C) ∧ (B ∧ C)

� � (A ∧ B) ∧ C .

A sequent is provable if it can be derived from basic sequents by means of the rules.

Lemma 3.1 The resulting system is correct: if � � A is provable, then � |= A.

Proof: The proof is by straightforward checking. The only more exciting rules to
treat are the additional distributivity rules, since most of them do not correspond to
identities in the info-algebras. Let us do as an example the(∧∨)-rules. For(∧∨ �)

it is sufficient to establish that(A ∨ B)∧ C |= (A ∧ C)∨ (B ∧ C). Take a valuationh
such thath((A ∨ B) ∧ C)) ∈ D1. If the value is�, then at least one ofh(A), h(B) or
h(C) is �, but thenh((A ∧ C) ∨ (B ∧ C)) = �, too. For the other possibility, let the
value be 1. This means that(a ∨ b) ∧ c = 1 for anya ∈ h(A), b ∈ h(B), c ∈ h(C),
and impliesc = 1 anda ∨ b = 1. But then for a typical member ofh((A ∧ C) ∨
(B ∧ C))—(a ∧ c1) ∨ (b ∧ c2)—we have(a ∧ c1) ∨ (b ∧ c2) = a ∨ b = 1. For(�
∧∨) we have to check whether(A ∧ C) ∨ (B ∧ C) |= (A ∨ B) ∧ C, but this is easy:
skipping the case of occurrence of�, weconsider a typical member of the left-hand
side(a ∧ c1) ∨ (b ∧ c2) = 1, and moreover(a ∧ c) ∨ (b ∧ c) = 1 for anya, b, c from
the appropriate sets. Applying the distributive law in the underlying lattice we obtain
(a ∨ b) ∧ c = 1 for a typical member of the right-hand side.

Let� now be an arbitrary set of formulas. We define [�] as{B: for some finite subset
�0 of � the sequent�0 � B is provable}. Call 	 a theory if [	] = 	. The set of all
formulasFml is an example of a theory: the trivial theory. A nontrivial theory	 is
prime if A ∨ B ∈ 	 ⇒ A ∈ 	 or B ∈ 	.

Remark 3.2 A slightly more sophisticated counterexample involvingA = p ⊗ q
andB = p for which A ∧ B �|= A (as witnessed by the assignmenth(p) = �, h(q) =
0) shows that the restriction to internal formulas in(∧ �)+ is indeed necessary.

The next technical lemma is left entirely to the diligent reader (its proof relies on such
provable sequents asA ⊗ B � A; A ⊗ B � B; A, B � A ⊗ B; A ∧ (B ⊗ C) � (A ∧
B) ⊗ (A ∧ C); (A ∧ B) ⊗ (A ∧ C) � A ∧ (B ⊗ C), etc.).

Lemma 3.3 For any � there exists an internal �′ such that [�′] = [�].
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The lemma shows that questions of the type “Is� � A provable?” can be reduced to
the same questions about internal formulas and sets of internal formulas.

Here is another list of provable sequents to be used in the lemma that follows:

A ∧ B � A ∨ B,

A ∧ B � B ∧ A,

A ∧ (B ∧ C) � (A ∧ B) ∧ C,

(A ∧ B) ∧ C � A ∧ (B ∧ C),

((A ∧ C) ∧ (B ∧ C)) ∧ D � ((A ∧ B) ∧ C) ∧ D),

((A ∧ B) ∧ C) ∧ D � ((A ∧ C) ∧ B) ∧ D,

((A ∧ C) ∨ (B ∧ C)) ∧ D � ((A ∨ B) ∧ C) ∧ D,

((A ∨ B) ∧ C) ∧ D � ((A ∧ C) ∨ (B ∧ C)) ∧ D.

The space permits one proof as an example.

A ∧ B � A ∧ B
A ∧ B � (A ∧ B) ∨ (B ∧ B)

(� ∨)

A ∧ B � (A ∨ B) ∧ B
(� ∧∨)

A ∨ B � A ∨ B
(A ∨ B) ∧ B � A ∨ B

(∧ �)+

A ∧ B � A ∨ B
(Cut)

Unfortunately the derivations known to the author depend crucially on applications of
the cut rule, so the cut elimination property of the above system is an open problem.

Lemma 3.4 For internal formulas B1, . . . , Bn, A, if B1, . . . , Bn � A is provable,
then B1 ∧ C, . . . , Bn ∧ C � A ∧ C is also provable for any C.

Proof: By induction on the height of the derivation tree. The case of axioms is clear,
so we need to check the induction step, proving that if the top sequent in an applica-
tion of a rule satisfies the above property, then the bottom sequent also satisfies this
property. The notorious fate of such proofs notwithstanding, we present just a sample
of the simplest cases. In general the derivations use (Cut) and depend on the provable
sequents shown above.

Let B1, . . . , Bn � A be obtained by an application of(∧ �)+, i.e., Bn = B ∧ D,
Var(B) ⊇ Var(D) and

B1, . . . , B � A
B1, . . . , Bn � A

(∧ �)+
.

By the induction hypothesis:B1 ∧ C, . . . , B ∧ C � A ∧ C is provable. But then the
following is a proof of what is needed.

B1 ∧ C, . . . , B ∧ C � A ∧ C
B1 ∧ C, . . . , (B ∧ C) ∧ D � A ∧ C

(∧ �)+

B1∧ C, . . . , (B ∧ D) ∧ C � A ∧ C
(∧∧ �)

.

Let us also consider the case when the last applied rule is(� ∧). Now A = A1 ∧ A2,
and the application is:

B1, . . . , Bn � A1; B1, . . . , Bn � A2

B1, . . . , Bn � A1 ∧ A2 .



258 GEORGE GARGOV

By the induction hypothesis:B1 ∧ C, . . . , Bn ∧ C � A1 ∧ C and B1 ∧ C, . . . , Bn ∧
C � A2 ∧ C are provable. But then

B1 ∧ C, . . . , Bn ∧ C � A1 ∧ C; B1 ∧ C, . . . , Bn ∧ C � A2 ∧ C
B1 ∧ C, . . . , Bn ∧ C � (A1 ∧ C) ∧ (A2 ∧ C)

B1 ∧ C, . . . , Bn ∧ C � (A1 ∧ A2) ∧ C
(� ∧)

(� ∧∧),

and we are done.
One more rule as the last applied one:(∧∧ �). In this caseBn = (B1 ∧ B2)∧ B3

and by the induction hypothesisB1 ∧ C, . . . , ((B1 ∧ B3) ∧ B2) ∧ C � A1 ∧ C is
provable. The following derivation gets the desired result:

B1 ∧ C, . . . , ((B1 ∧ B3) ∧ B2) ∧ C � A1 ∧ C;
(B1 ∧ B2) ∧ B3) ∧ C � (B1 ∧ B3) ∧ B2) ∧ C (see above)

B1 ∧ C, . . . , ((B1 ∧ B2) ∧ B3) ∧ C � A1 ∧ C
(Cut)

The rest of the cases are left to the reader.

Theorem 3.5 If � |= A, then A ∈ [�].

Proof: We follow an already familiar path with some minor deviations: assuming
without loss of generality thatA and� are internal andA /∈ �, we find a maximal the-
ory	 among the theories that extend� and omitA. Such a theory need not be prime,
but it still does the job because it turns out to berelatively prime, namely with respect
to the class of internal formulas built up from the propositional variables occurring in
A.

Call the variables ofA significant. A significant formula B is such thatVar(B) ⊆
Var(A).

Lemma 3.6 For significant internal formulas B and C:

1. B ∧ C ∈ 	 iff B ∈ 	 and C ∈ 	.

For any formulas B and C:

2. B ∨ C ∈ 	 iff B ∈ 	 or C ∈ 	

3. B ⊗ C ∈ 	 iff B ∈ 	 and C ∈ 	.

Proof: The establishing of (2) and (3) is routine. Let us check (1), which differs
from the standard case. IfB ∈ 	 andC ∈ 	, then by(� ∧) B ∧ C ∈ 	. In the opposite
direction: if B ∧ C ∈ 	, then by one of the listed provable sequentsB ∨ C ∈ 	 and
so eitherB or C belong to	. Let B ∈ 	. Now, C /∈ 	 means thatA ∈ [	, C], so for
some internal formulasD1, . . . , Dm ∈ 	,

D1, . . . , Dm, C � A is provable.

Applying Lemma3.4we get thatD1 ∧ B, . . . , Dm ∧ B, C ∧ B � A ∧ B is also prov-
able. All formulas of the left-hand side are from	. Thus A ∧ B ∈ 	. Since B is
significant,A ∧ B � A is provable, soA ∈ 	—a contradiction with the assumptions
on	. ThereforeC ∈ 	, too.



UNCERTAINTY 259

Having a theory	 with the above properties, we can define a functionh : Var → 2set:

h(p) =



1, if p is significant andp ∈ 	

0, if p is significant andp /∈ 	

�, if p is not significant.

Note first that the extension ofh to a homomorphismL → 2set maps all internal in-
significant formulas to�. For significant ones it can be established by induction that

h(B) = 1 iff B ∈ 	.

To conclude the proof of the completeness theorem we note thatA is significant and
soh(A) /∈ D1, whereas all members of� are mapped onto an element ofD1.

Remark 3.7 Wehave found a simple algebra adequate for the system: the logic of
all info-algebras coincides with the logic of2set. In this way it turns out to be in fact
afinite logic, consequently decidable.

Remark 3.8 The admission of the constants 0,1,�,⊥ to the language though not
changing the rules will necessitate changes in the notion of a basic sequent. Axioms
will have to include also� � A where one of the following holds:

1. A is aninternal formula with an occurrence of�;
2. A = 1;
3. 0,⊥ ∈ �;
4. A = B ∧ C and{0∧ B,0∧ C,⊥ ∧ B,⊥ ∧ C} ∩ � �= ∅.

3.3 The general negative case The full standardnegative logic of info-algebras,
defined by choosing as distinguished truth valuesD0 = {X : 1 ∈ X} poses the first
major setback to our program: this logic isnot anything like a dual to the above sys-
tem. Let us start with the observation that the info-algebra2set is not adequate for this
particular consequence relation any more: for exampleA ∨ A |= A is in 2set but not in
the set expansion of the four element Boolean algebra (with elementsa, b �= 0,1), as
shown by the valuationh for whichh(A) = {a, b} /∈ D0 whenh(A ∨ A) = {a, b,1} ∈
D0. This and similar counterexamples demonstrate the incorrectness of several rules,
e.g., (� ∨) or the distributivity rules. Although the logic can be axiomatized and
shown to be finitely approximable (but not finite) we leave that matter to another pa-
per. The problem lies in the origin of the “nice” properties of the elements ofD1 and
D0: in the former case infX = 1 isequivalent toX ∈ D1, while in the latter supX = 1
(the “real” dual) is weaker thanX ∈ D0. Below we consider several systems with the
weaker condition onD0.

3.4 The positive logic of info-algebras with negation Consider now the class of
info-algebras with underlying de Morgan lattices. Its full positive standard logic is
an extension of the system in the previous subsection.

• the language has an additional connective,¬;
• the notion of basic sequent is augmented to incorporate a restricted version of

theDuns Scot law: � � A is an axiom ifA is internal and alsoB ∧ ¬B ∈ �,
for some formulaB with Var(B) ⊆ Var(A);
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• new rules concerning¬ are added:

(¬∧ �)
�,¬A � C; �,¬B � C

�,¬(A ∧ B) � C

(� ¬∧) � � ¬A
� � ¬(A ∧ B)

� � ¬B
� � ¬(A ∧ B)

(¬∨ �)
�,¬A ∧ ¬B � C
�,¬(A ∨ B) � C

(� ¬∨)
� � ¬A; � � ¬B

� � ¬(A ∨ B)

(¬⊗ �)
�,¬A � C

�,¬(A ⊗ B) � C
�,¬B � C

�,¬(A ⊗ B) � C

(� ¬⊗)
� � ¬A;� � ¬B
� � ¬(A ⊗ B)

(¬¬ �)
�, A � C

�,¬¬A � C

(� ¬¬) � � A
� � ¬¬A

Lemma 3.9 The resulting system is correct.

Proof: The correctness of the new rules is obvious. As for the new axiom: ifh(B ∧
¬B) ∈ D1, thenh(B) = � and therefore for some variablep, h(p) = �, because, if
h(B) is nonempty, then it has membersa ∧ ¬a which cannot be 1. SinceVar(B) ⊆
Var(A) and A is internal,h(A) = �, also.

Lemma 3.10 For any � there exists an internal �′ such that [�′] = [�].

Lemma 3.11 If B1, . . . , Bn � A is provable, then B1 ∧ C, . . . , Bn ∧ C � A ∧ C is
also provable (under the same conditions as above).

Proof: The induction step now requires checking of the added rules. Let us do an
example in which the last applied rule is(¬∨ �). In this caseBn = ¬(B ∨ D) and
by the induction hypothesisB1 ∧ C, . . . , (¬B ∧ ¬D) ∧ C � A ∧ C. The following
sequent is provable:¬(B ∨ D) ∧ C � (¬B ∧ ¬D) ∧ C. Applying (Cut) we getB1 ∧
C, . . . ,¬(B ∨ D) ∧ C � A ∧ C, the desired result.

All other details are left to the reader.

Theorem 3.12 If � � A, then A ∈ [�].

Proof: Once again we can assume without loss of generality that we deal exclu-
sively with internal formulas. LetA in particular be an internal formula such that
A /∈ [�]. Just as in the proof of Theorem3.5we can extend� to a maximal theory	,
for which� ⊆ 	 andA /∈ 	. This theory turns out to be relatively prime with respect
to internal significant formulas, i.e., to formulasB with Var(B) ⊆ Var(A).

Note now that in this case:p is a significant variable impliesp ∧ ¬p /∈ 	, because
p ∧ ¬p ∈ 	 would mean thatA is also from	 (recall thatp ∈ Var(A) and A is in-
ternal). Otherwise we have to add to the properties of relatively prime theories (from
Lemma3.6) some clauses concerning the negation (B, C significant):
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4. ¬(B ∧ C) ∈ 	 iff ¬B ∈ 	 or ¬C ∈ 	 (B, C internal);

5. ¬(B ∨ C) ∈ 	 iff ¬B ∈ 	 and¬C ∈ 	;

6. ¬(B ⊗ C) ∈ 	 iff ¬B ∈ 	 and¬C ∈ 	 (in fact not needed in the proof);

7. ¬¬B ∈ 	 iff B ∈ 	.

From	 we can define a mappingh by settingh(p) = � for insignificant variables
and for significant ones:

h(p) =



1, if p ∈ 	, ¬p /∈ 	

0, if p /∈ 	, ¬p ∈ 	

⊥, if p /∈ 	, ¬p /∈ 	.

Clearly the extension ofh to a homomorphism assigns� to insignificant internal for-
mulasB, whereas for the significant ones by induction on their complexity one can
prove:

h(B) ∈ D1 iff B ∈ 	.

3.5 The positive logic of intuitionistic info-algebras Our next example will be the
logic determined by the class of all info-algebrasLset whereL is a pseudo-Boolean
algebra. In this case the language has an internal operation of implication⊃ and an
internal pseudo-negation¬(¬A = A ⊃ 0). The system extends the basic info-algebra
logic with rules for the implication and an additional class of basic sequents similar
to the case of info-algebras with negation:� � A is an axiom, ifA is internal and also
B,¬B ∈ �, for some formulaB with Var(B) ⊆ Var(A). The rules for⊃ include:

(⊃�)+ � � A; �, B � C
�, A ⊃ B � C

with the restrictions:C is internal,Var(A) ⊆ Var(C) and a series of distributivity
rules which compensate the absence of a suitable(�⊃)-type rule:

(⊃ ∧ �)
�, (C ⊃ A) ∧ (C ⊃ B) � D

�, C ⊃ (A ∧ B) � D

(�⊃ ∧)
� � (C ⊃ A) ∧ (C ⊃ B)

� � C ⊃ (A ∧ B)

(⊃ ∨ �)
�, (A ⊃ C) ∧ (B ⊃ C) � D

�, (A ∨ B) ⊃ C � D

(�⊃ ∨)
� � (A ⊃ C) ∧ (B ⊃ C)

� � (A ∨ B) ⊃ C

(⊃ ⊗ �)
�, (C ⊃ A) ⊗ (C ⊃ B) � D

�, C ⊃ (A ⊗ B) � D
�, (A ⊃ C) ⊗ (B ⊃ C) � D

�, (A ⊗ B) ⊃ C � D

(�⊃ ⊗)
� � (C ⊃ A) ⊗ (C ⊃ B)

� � C ⊃ (A ⊗ B)

� � (A ⊃ C) ⊗ (B ⊃ C)

� � (A ⊗ B) ⊃ C

(⊃⊃�)
�, (A ∧ B) ⊃ C � D
�, (A ⊃ B) ⊃ C � D

(�⊃⊃)
� � (A ∧ B) ⊃ C
� � (A ⊃ B) ⊃ C
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A list of useful provable sequents would contain, e.g.,B, B ⊃ C � B ∧ C, ¬(B ⊃
C) � ¬¬B ∧ ¬C, ¬¬B ∧ ¬C � ¬(B ⊃ C), ¬(B ∨ C) � ¬B ∧ ¬C, ¬B ∧ ¬C �
¬(B ∨ C), ¬B ∨ ¬C � ¬(B ∧ C), etc., besides sequents likeC ⊃ (A ⊗ B) � (C ⊃
A) ⊗ (C ⊃ B), (C ⊃ A) ⊗ (C ⊃ B) � C ⊃ (A ⊗ B), (A ⊗ B) ⊃ C � (A ⊃ C) ⊗
(B ⊃ C), (A ⊃ C) ⊗ (B ⊃ C) � (A ⊗ B) ⊃ C, etc., needed to show that just as in
the previous cases one can concentrate exclusively on internal formulas when dealing
with problems of derivability and semantic consequence: an analog of Lemmas3.3
and3.10holds here, too. A counterpart of Lemmas3.4 and3.11also holds for the
present case. Thus in the proof of the completeness theorem we tread a familiar path.

Theorem 3.13 The positive logic of intuitionistic info-algebras is complete with
respect to the semantic consequence relation.

Proof: We need the construction of relatively prime theories used in the previous
two proofs. Starting from an unprovableinternal sequent� � A one can find a theory
	0 maximal among theories containing� and omittingA. 	0 has three nice proper-
ties with respect to significant formulasB, C:

1. B ∧ C ∈ 	 iff B ∈ 	 andC ∈ 	;

2. B ∨ C ∈ 	 iff B ∈ 	 or C ∈ 	;

3. if B ∈ 	 andB ⊃ C ∈ 	, thenC ∈ 	.

For (3) recall thatB, B ⊃ C � B ∧ C is provable, so ifB ∈ 	 andB ⊃ C ∈ 	, then
B ∧ C ∈ 	. For significantB andC this impliesC ∈ 	.

Now we define a frame (in fact a generated subframe of the canonical frame)F =
〈W,⊆〉, whereW = {	: 	0 ⊆ 	 and	 is relatively prime with respect to the sig-
nificant formulas}. Thus the elements ofW satisfy (1) – (3) above. The pseudo-
Boolean algebraA(F ) of all cones inW (with operationsa ∪ b, a ∩ b, a → b and
¬a = a → ∅) will be used in the spirit of Lemma 2.22, setting:

ϕ(	, p) =




�, if p ∈ 	, ¬p ∈ 	

1, if p ∈ 	, ¬p /∈ 	

0, if p /∈ 	, ¬p ∈ 	

⊥, if p /∈ 	, ¬p /∈ 	,

we extendϕ(D, p) to a member of Hom(L0, 2set); having thisϕ we are able to define
amapping||.|| by

||B|| = {a : |B|1 ⊆ a, |B|0 ⊆ ¬a},
where|B|1 = {	 ∈ W : ϕ(	, B) = 1}, |B|0 = {	 ∈ W : ϕ(	, B) = 0}, and then
to prove that when restricted to significant formulas||.|| is a homomorphism into
A(F )set, establishing thereby the fact that� �|= A since� ⊆ 	 for all members of
W (thus forB ∈ � one has||B|| = {W} = 1 in A(F )set or ||B|| = �) but obviously
||A|| �= {W}, sinceA /∈ 	0. We need to check whether:

1. ||B ∧ C|| = ||B|| ∩ ||C||;
2. ||B ∨ C|| = ||B|| ∪ ||C||;
3. ||B ⊃ C|| = ||B|| → ||C||.
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Leaving (1) and (2) to the reader, we treat the third equality: let us for example prove
that||B|| → ||C|| ⊆ ||B ⊃ C||, i.e., thatb ∈ ||B|| andc ∈ ||C|| ⇒ b → c ∈ ||B ⊃ C||.
To this end we first demonstrate that|B ⊃ C|1 ⊆ b → c, in other words that

ϕ(	, B ⊃ C) = 1 ⇒ 	 |= b → c.

We reason from the contrary: letϕ(	, B ⊃ C) = 1 but 	 �|= b → c, thus∃	′ ⊇
	(	′ � b and	′ �|= c). Now 	′ � b implies¬B /∈ 	′, whereas	′ �|= c impliesC /∈
	′. Therefore we can extend [	′, B,¬C] to an element ofW − 	′′. Since	 ⊆ 	′′

we haveB ⊃ C ∈ 	′; together withB ∈ 	′′ this yields{C,¬C} ⊆ 	
′′
. This is a

contradiction sinceC is significant.
Our second problem is|B ⊃ C|0 ⊆ ¬(b → c), i.e., whether

ϕ(	, B ⊃ C) = 0 ⇒ 	 � ¬(b → c).

Reason as follows: assuming the contrary, i.e., thatϕ(	, B ⊃ C) = 1 but 	 �|=
¬(b → c). Now we have a	′ ⊇ 	 such that	′ � b → c. Recalling that¬(B ⊃
C) � ¬¬B ∧ ¬C is provable and thatϕ(	, B ⊃ C) = 0 forces¬(B ⊃ C) ∈ D, it
is clear that one can produce a	′′ ⊇ 	′ such thatB ∈ 	′′, ¬C ∈ 	′′ which would
obviously contradict the fact that	′′ � b → c. The opposite inclusion is established
by similar reasoning.

3.6 Finitary logics of info-algebras Wedevote this subsection to the study of log-
ics which arise when in the general algebraic scheme for the consequence operation
the set of admissible valuations Hom(L, A) is replaced by smaller familiesH of ho-
momorphisms. As a first example we treat classes of generalized logical matrices
based on info-algebras withH = {h : h(A) is a finite set for allA}. Clearly any fini-
tary maph : Var → A can be extended to a unique homomorphismh ∈ H.

The positive finitary logic of all info-algebras coincides with the logic of all info-
algebras (presented above). The interesting news here is the possibility of treating
without complications a negative version of the logic, which is defined by the set of
distinguished truth valuesD− = {X : supX = 1}, i.e., D− consists of the elements
{x1, . . . , xm} of A for which x1 ∨ . . . ∨ xm = 1.

For the axiomatization of the logic we need the following:

• the notion of an axiom taken unchanged from the positive case;
• we keep the rule (Cut);
• the rules for conjunction are taken without any restriction;
• (∨ �) is the same, but examples likep �|= p ∨ q (considerh(p) = 1, h(q) = �)

show that(� ∨) is not correct and has to be altered to a weaker rule:

(� ∨)− � � A
� � A ∨ B

� � B
� � A ∨ B

where we have familiar requirements:Var(B) ⊆ Var(A) and A is internal, for
the left rule, andVar(A) ⊆ Var(B) and B is internal for the right;

• as should be expected the new rules for⊗ are dual to the previous ones:

(⊗ �) �, A � C; �, B � C
�, A ⊗ B � C
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(� ⊗) � � A
� � A ⊗ B

� � B
� � A ⊗ B;

• the added distributivity rules concern∨ as a main connective:

(∨∧ �)
�, (A ∨ C) ∧ (B ∨ C) � D

�, (A ∧ B) ∨ C � D

(� ∨∧)
� � (A ∨ C) ∧ (B ∨ C)

� � (A ∧ B) ∨ C

(∨⊗ �)
�, (A ∨ C) ⊗ (B ∨ C) � D

�, (A ⊗ B) ∨ C � D

(� ∨⊗)
� � (A ∨ C) ⊗ (B ∨ C)

� � (A ⊗ B) ∨ C

(∨∨ �)
�, (A ∨ B) ∨ C � D
�, (A ∨ C) ∨ B � D

(� ∨∨)
� � (A ∨ C) ∨ (B ∨ C)

� � (A ∨ B) ∨ C

One can easily check now that for each formulaA there is a finite set of internal
formulas{D1, . . . , Dm} for which A � D1 ⊗ . . . ⊗ Dm and D1 ⊗ . . . ⊗ Dm � A.
This fact together with the corresponding semantic one,A |= D1 ⊗ . . . ⊗ Dm and
D1 ⊗ . . . ⊗ Dm |= A, reduces problems of provability of sequents and consequence
relations to such problems in the domain of internal formulas:� � A iff for some i,
� � Di, � � A iff for some i, � � Di.

Lemma 3.14 The resulting system is correct: if � � A is provable, then � |= A.

Proof: Standard. When checking for example the correctness of(∨ �) we need the
proposition about homomorphisms into2set defined by prime filtersF in the lattice
underlying a given info-algebra and the fact that such homomorphisms map any set
X with supX ∈ F into D− (because of the finiteness ofX).

The proof of the completeness theorem mimics the proofs offered above: if� � A
is not provable (assume without loss of generality that they are both internal) extend
� to a maximal theory	 omitting A. Call a variablep significant, if i t occurs in an
internal formulaB ∈ 	. For	 we have:

1. B ∧ C ∈ 	 iff B ∈ 	 andC ∈ 	 (for any formulasB andC);

2. B ∨ C ∈ 	 iff B ∈ 	 or C ∈ 	 (for significant internalB andC);

3. B ⊗ C ∈ 	 iff B ∈ 	 or C ∈ 	 (for any formulasB andC).

Although (1) and(3) are routine, (2) needs some attention. The implication from
left to right depends on the unrestricted rule(∨ �) and is standard; the converse im-
plication is checked as follows: assumeB ∈ 	, then if C ∈ 	, we haveB ∧ C ∈ 	

and in view of the provability ofB ∧ C � B ∨ C, so we are done. IfC /∈ 	, then
sinceC is significant, there is an internal formulaD with Var(C) ⊆ Var(D) such that
D ∈ 	 and consequentlyB ∧ D ∈ 	. Onone hand:

B ∧ D � B ∧ D
B∧D � (B∧D)∨C; (B∧D)∨C � (B∨C)∧(D∨C) (provable sequent)

(� ∨)−

B ∧ D � (B ∨ C) ∧ (D ∨ C)
(Cut)
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On the other hand
B ∨ C � B ∨ C

(B ∨ C) ∧ (D ∨ C) � B ∨ C
(∧ �)

and applying (Cut) again, we obtainB ∧ D � B ∨ C, which is what we need.
Defining for variablesp:

h(p) =



1, if p is significant andp ∈ 	

0, if p is significant andp /∈ 	

�, otherwise,

and extending it to a homomorphism from Hom(L, 2set), we can see that for signifi-
cant internal formulasB:

B ∈ D iff h(B) ∈ D−.

To nonsignificant formulash assigns�. All members of� get values which are
“true.” Consider our formulaA: either it is significant, and then its value is 0; or
it is nonsignificant, and then its value is�. Anyway A is not “true” according toh.
Thus we have established the following.

Theorem 3.15 The logic is complete: if � |= A, then A ∈ [�].

The finitary logics of the class ofexternal info-algebras coincide in fact with the fini-
tary logics ofall info-algebras (in a language extended with� and�) since finite sets
X have always supX and infX. Now we can identifyD1 with {X : �X = 1} andD0

with {X : �X = 1}. Thus the positive finitary logic extends the basic info-algebra sys-
tems with all the rules concerning� and�. Since the set of distinguished truth values
is D1 we have�A |= A and A |= �A , so the corresponding rules should be:

(� �)
�, A � C

�,�A � C

(� �) � � A
� � �A.

For� we have a series of rules (parallel to the rules concerning negation):

(�∧ �)
�,�A � C

�,�(A ∧ B) � C
�,�B � C

�,�(A ∧ B) � C

(� �∧)
� � �A; � � �B
� � �(A ∧ B)

(�∨ �)
�,�A � C; �,�B � C

�,�(A ∨ B) � C

(� �∨)
� � �A

� � �(A ∨ B)

� � �B
� � �(A ∨ B)

(�⊗ �)
�,�A � C; �,�B � C

�,�(A ⊗ B) � C

(� �⊗)
� � �A; � � �B
� � �(A ⊗ B)

(�� �)
�,�A � C

�,��A � C
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(�� �)
�,�A � C

�,��A � C

(� ��)
� � �A

� � ��A

(� ��) � � �A
� � ��A.

The correctness of the additions follows easily from the fact that modalized formulas
cannot have� as a value. For the proof of completeness we need the machinery of
relatively prime theories developed above, but fortunately there are no unexpected
complications. The negative logic extends the basic finitary negative system with the
k-dualized versions of the just cited rules and can be proven complete with respect to
the finitary info-algebra matrices withD0.

3.7 Consistent logics Under the termconsistent we understand here logical sys-
tems that are defined semantically by classes of matrices with the following require-
ment onH ⊆ Hom(L, A): the values in the range of any h ∈ H are consistent., i.e.,
different from �. The restriction causes changes in the language of the logics:� is
dropped for obvious reasons.

In the info-algebra situation the consistent valuations validate such rules as
(∧ �), as well as (� ∨) in the negative case, without any restrictions (so in the cor-
responding consistent logics the distributivity rules are redundant). In view of the
above remark we have the following.

Proposition 3.16 The positive and negative consistent logic of all info-algebras
coincide with the logic of 3. The same is true for the case of algebras with negation.

4 Conclusion Let us first briefly recapitulate our findings, namely the logics we
have axiomatized:

• the standard positive full logics of all info-algebras, all info-algebras with nega-
tion, all set expansions of pseudo-Boolean algebras;

• the finitary logics (positive and negative) of all info-algebras, all info-algebras
with negation, etc.

• the consistent versions of all the systems mentioned above.

All these logics are new, a fact due mainly to the presence of new connectives:⊗, −,
constants, etc., but even in the case of a language containing only traditional operators
some systems appear in print for the first time, in particular the systems related to
intuitionistic semantics.

Our aim here was to investigate in some detail the construction of set expansions
as a way of treating uncertainty in logic, so let us mention some other approaches and
compare very briefly the basic ideas behind them.

4.1 Probability approaches Under this title we classify attempts to represent the
uncertainty/plausibility of knowledge and inference by assigning a probabilistic mea-
sure to statements, the so-calledprobability distributions, with the idea that the more
plausible a propositionA, the greater its probabilityp(A), etc. Many thought that a
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unique value is not realistic and turned to probabilityintervals, discussed by Demp-
ster [6] among others.

Interval values take care of uncertainty pretty much in the same way as our sets,
intervals being special cases of sets of real numbers. For example in Gärdenfors [10]
we find the note that the two limiting probabilities—left and right ends of the cor-
responding interval—p∗(A) and p∗(A) must be interconnected with the following
relation:

p∗(A) = 1− p∗(¬A),

which strenghtens the similarity with external modalities in set expansions. Still
within the probabilistic approach not much attention is paid to the degree of knowl-
edge ordering.

4.2 Fuzzy logic Earlier, some people working in fuzzy set theory felt uneasy with
the possibility of knowing the exact numerical value which a fuzzy predicate assigns
to a particular object, so among the proposals for a more quantitatively realistic pic-
ture was the idea ofinterval valued fuzzy sets: functions assigning to elements of a do-
main E not numbers but open intervals(a, b) of the unit interval [0,1] (cf. e.g., [1]).

In the same vein, but in another field—Artificial Intelligence—Sandewall [25]
proposed to consider intervals of real numbers [a, b] as representatives ofwhat we
know about the truth value of a proposition evaluated by “fuzzy” methods. He also
explicitly defined the knowledge order as inverse set inclusion.
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