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Failure of Interpolation in
Combined Modal Logics

MAARTEN MARX and CARLOS ARECES

Abstract We investigate transfer of interpolation in such combinations of
modal logic which lead to interaction of the modalities. Combining logics by
taking products often blocks transfer of interpolation. The same holds for com-
binations by taking unions, a generalization of Humberstone’s inaccessibility
logic. Viewing first-order logic as a product of modal logics, we derive a strong
counterexample for failure of interpolation in the finite variable fragments of
first-order logic. We provide a simple condition stated only in terms of frames
and bisimulations which implies failure of interpolation. Its use is exemplified
in a wide range of cases.

1 Introduction In 1957, Craig proved the interpolation theorem for first-order
logic [3]. Comer [2] showed that the property fails for all finite variable fragments
except the one-variable fragment. Then-variable fragment of first-order logic—for
shortLn—contains all first-order formulas using justn variables and containing only
predicate symbols of arity not higher thatn (we assume the language has only vari-
ables as terms). Here we will show that the axiom which makes the quantifiers com-
mute can be seen as the reason for this failure.

Since Craig’s paper, interpolation has become one of the standard properties that
one investigates when designing a logic, though it hasn’t received the status of a com-
pleteness or a decidability theorem. One of the main reasons why a logic should have
interpolation is because of “modular theory building.” As we will see below interpo-
lation in modal logic is equivalent to the following property (which is the semantical
version of Robinson’s consistency lemma).

If two theoriesT1, T2 both have a model, and they don’t contradict each other on
the common language (i.e., there is no formulaθ built up from atoms occurring
both inT1 and inT2 such thatT1 |= θ andT2 |= ¬θ), thenT1 ∪ T2 has a model.

The property is not only intuitively valid for scientific reasoning, it also has practical
(and computational) consequences. In practice it shows up in the incremental design,
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specification and development of software and has received quite some attention in
that community (cf. Maibaum and Sadler [13], Renardel [18]). Below we will give
a more technical reason why interpolation is desirable: it can help in showing that
irreflexivity style rules in an unorthodox axiom system are conservative over the or-
thodox part. In this paper we look at interpolation in combined modal logics (and we
will see that first-order logic is just an instance of such a combination).

Combined modal logics (Gabbay [6]) are systems that are built up from simpler
and familiar systems in very diverse ways. They are polymodal logics with some “ad-
ditional structure” or requirements set over their classes of frames. One of the most
interesting questions in the field of combining logics is that oftransfer theorems: un-
der which conditions does a metalogical property—such as finite axiomatizability,
decidability, or interpolation—transfer to the combined system? We will show that
interpolation usually does not transfer in products of modal logics (Gabbay and She-
htman [7]). (Compare this with combining through fibering, where we often have
transfer of interpolation (see Marx [15].) We obtain our mentioned result for first-
order logic by consideringLn as a product of modal logics. We will also show fail-
ure in Humberstone’s logic of inaccessibility (a combination of a modal logic with
its complement modality [12]) and several generalizations of this logic. Often, com-
bined modal logics are proposed in an effort to capture some class of frames that the
familiar modal systems cannot represent. Our article shows that the gain in expres-
sive power has a price: in many cases the interpolation property is lost.

The article is organized as follows. In the next section we show failure of inter-
polation in first-order logic with finitely many variables. Section3 presents different
Interpolation Properties that can be found in the literature and explores their intercon-
nections. We will also present a general proof-method for disproving interpolation
which allows us to work solely with models, and truth preserving constructions like
zigzag-morphisms. We then apply this method in the following sections to combi-
nations of modal logics and see how certain types of combinations block transfer of
interpolation.

Modal logic A modal similarity type Sis a pair〈O, ρ〉 with O aset of logical con-
nectives andρ : O �→ ω a function assigning to each symbol inO a finite rank or
arity. We callM L(KS) a modal logicfor type S = 〈O, ρ〉, if M L(KS) is a tuple
〈LS,KS,�S〉 in which,

1. LS is the smallest set containing countably many propositional variables, and
which is closed under the Boolean connectives and the connectives inO.

2. KS is a class of frames of the form〈W, R�〉�∈O, in which W is a nonempty set
and eachR� is a subset ofWρ(�)+1. Weuse calligraphic capitalsF to denote
frames and their corresponding RomanF for their domains.

3. �S is the usual truth-relation from modal logic between models over frames in
K, worlds and formulas. For the modal connectives it is defined as

M, x � �(ϕ1, . . . , ϕρ(�)) iff (∃x1, . . . , xρ(�)) : R�xx1, . . . , xρ(�) &
M, x1 � ϕ1 & · · · & M, xρ(�) � ϕρ(�).

If the similarity typeS is clear from the context, we usually omit it. A formulaϕ is
true in a modelM (notation:M |= ϕ) if i t holds in every world inM. A formulaϕ
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is said to bevalid in M L(K) (notation:|=K ϕ) if i t is true in every model over every
frame inK. Wewill often equateM L(K) with its set of valid formulas.

2 First order logic We will show that interpolation fails very badly in first-order
logic with two variables. For every finiten, we createL2 formulasϕ, ψ such that va-
lidity of ϕ |= ψ can be proved using only a minimum of resources from the derivation
system, and there is no interpolant forϕ |= ψ in Ln. This strengthens a similar result
of Andréka (unpublished) who used the complete derivation system ofL2. Our result
shows that the axiom making the quantifiers commute causes failure of interpolation
in the finite variable fragments.

We define a (highly incomplete) derivation system forLn as follows. Let�2

denote the derivation system consisting of these axioms schemas and rules.

Ax1 Every propositional tautology is an axiom scheme.
Ax2i ∀vi (ϕ → ψ) → (∀viϕ → ∀viψ), for i ∈ {0,1}.
Ax3 ∀v1∀v0ϕ → ∀v0∀v1ϕ.
M P Fromϕ andϕ → ψ infer ψ.
UGi Fromϕ infer ∀viϕ, for i ∈ {0,1}.

Clearly�2 is sound for first-order logic but hopelessly incomplete. Trivial validities
like ∀v0(v0 = v0) and∃v0∃v0ϕ ←→ ∃v0ϕ are not theorems of�2.

Theorem 2.1 For every n, there exists L2 formulasϕ, ψ such that

1. ϕ �2 ψ, and
2. for every Ln formula θ in the common language ofϕ andψ, either ϕ �|= θ or

θ �|= ψ.

These formulas can be algorithmically obtained and have size polynomial in n. Either
ϕ andψ are in disjoint languages but both contain the equality symbol, or they are
equality-free but the common language contains one binary predicate.

Proof: Fix n. Let∀kvi abbreviatek many∀vi . Since all our atomic formulas will be
of the formR(v0, v1), we might as well forget about the variables and write atomic
formulas as lowercase variablesp, q, and so on. We propose the following formulas.

A1 (d ←→ ∨{pi | 0 ≤ i ≤ n}).
A2 (pi → ¬pj ) 0 ≤ i, j ≤ n, i �= j.

A3 (pi → ∧{∀kv0(d → pi ) | k ≤ n}) 0 ≤ i ≤ n.

A4 (pi → ∧{∀kv1(d → pi ) | k ≤ n}) 0 ≤ i ≤ n.

A5 ∃v1∃v0(p0 ∧ ∃v1∃v0(p1 ∧ ∃v1∃v0(p2 . . .∃v1∃v0 pn)) . . .).

C1
∧

k≤n+1 ∀kv1∀kv0(d ←→ ∨{qi | 0 ≤ i < n}).
C2

∨
k≤n+1 ∃kv1∃kv0(

∨
i<n[qi ∧

∨{∃kv1(¬d ∧ ∃kv0qi ) | 1 ≤ i ≤ n}]).
Clearly these formulas can be algorithmically obtained fromn and their size is linear
in n. The predicated can stand for the equality statementv0 = v1, or alternatively it
can be seen as an arbitrary formulaD(v0, v1).

Let A abbreviateA1∧ · · · ∧ A5. We claim that

A �2 (C1 → C2). (1)

There is no interpolant forA |= (C1 → C2) in Ln. (2)
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Before we look at the proof, let us see the intuition behind the formula and its va-
lidity in first-order logic. In classical first-order logic,∀kviϕ is equivalent to just
∀viϕ. WheneverA is true on a model, the predicated is partitioned in then + 1 pi-
predicates.A5 tells us that all thepi occur, so the domain of any model satisfyingA
should contain at leastn + 1 elements. The intended interpretation ofd is v0 = v1.
ThenA3andA4are trivially true. With that interpretation ofd, the formulaC1→ C2
says that ifd is partitioned inn qi-atoms(C1), then “there must be two different el-
ements having the sameqi-value” (C2).

Wehave to use the more lengthy formulations of our formulas because we want
to use as little from the first-order proof system as possible. We first prove (1). In-
stead of a derivation using the axioms, we give a semantic proof using the fact that
�2 completely axiomatizes anormal modal logic. If we read∀vi as a modal box op-
erator [i], then�2 axiomatizes the bimodal logic over the class of frames〈W, R0, R1〉
where the following law holds:

∀xyz((xR0y∧ yR1z) → ∃y(xR1y∧ yR0z)), (3)

this by virtue of (the Sahlqvist) axiomAx3. We will show that in this semantics
the validity of (1) must hold. Now our way of writing binary predicatesP(v0, v1)

as (propositional) variablesp comes in handy because the formulas involved are in
the appropriate modal language. Suppose to the contrary that (1) fails. So we find
a modelM = 〈W, R0, R1, v〉 and a worldw ∈ W such thatM |= A andM,w �
C1 ∧ ¬C2. By A5 there aren + 1 worldswi such that for somex, wR1xR0w0 and
for all i there exists anx, wi R1xR0wi+1, andM,wi � pi . By A1, A2, they are all
d-worlds and all different. Moreover, since (3) holds in this model, we have

for all i �= j such thati + k = j, there is anx such thatwi Rk
1xRk

0w j , (4)

wherexRky stands for ak-long R-path. We claim that all the intermediatex in (4)
make¬d true. Suppose to the contrary that for one suchx, M, x � d. Then by A4,
alsoM, x � pi , and byA3, alsoM,w j � pi . But M,w j � pj andi �= j. So this is
impossible byA2.

BecauseM,w � C1, and there is oneq-variable less than there arepi ∧ d-
worlds, there must be twowi making the sameq-atom true. But then, by (4), we can
go from aqi-world to aqi-world, via a¬d world. This is just whatC2 says and that
is false atw: our desired contradiction. This proves (1).

LetMA = 〈{0, . . . , n}, I 〉 be the first-order model whereI (d) = {(x, y) | x = y}
and I (pi ) = {(i, i )}, andMC = 〈{0, . . . , n− 1}, I 〉 whered is also interpreted as the
equality, andI (qi ) = {(i, i )}. It is easy to see thatMA |= A andMC |= C1∧ ¬C2.
Let θ be anyLn-sentence constructed from the atomd which is true inMA. Because
in MA, d is interpreted as the equality,θ is equivalent to a pure (i.e., containing only
= as atomic symbols)Ln-sentence. But then alsoMC |= θ because pureLn formulas
cannot distinguish between models of size at leastn, and also inMC, d is interpreted
as the equality. But thenθ cannot be an interpolant. This proves (2). �
The last theorem shows that by just looking at the number of variables inϕ → ψ, we
cannot predict how many variables are needed for the interpolant. Our counterexam-
ple showed two variable formulas of length polynomial inn, which didn’t have an
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interpolant inn variables. Is there some way of predicting the number of variables
needed for an interpolant as a function of some combination of the parameters, num-
ber of variables inϕ → ψ, number of relation symbols inϕ → ψ, and the length of
ϕ → ψ?

3 Kinds of interpolation For first-order logic we find the following definitions of
interpolation in the literature. LetIP(ϕ) be the set of atomic symbols occurring inϕ

(propositional variables in modal logic, relation symbols in first-order logic.)

AIP A logic L has theArrow Interpolation Property(AIP) if, whenever
|=L ϕ → ψ, there exists a formulaθ such that|=L ϕ → θ, |=L θ →
ψ, and IP(θ) ⊆ IP(ϕ) ∩ IP(ψ).

TIP A logic L has theTurnstile Interpolation Property(TIP) if, when-
everϕ |=L ψ, there exists a formulaθ such thatϕ |=L θ, θ |=L ψ,
and IP(θ) ⊆ IP(ϕ) ∩ IP(ψ).

SIP A logic L has theSplitting Interpolation Property(SIP) if, when-
everϕ0 ∧ ϕ1 |=L ψ, there exists a formulaθ such thatϕ0 |=L θ,
ϕ1 ∧ θ |=L ψ, andIP(θ) ⊆ IP(ϕ0) ∩ ( IP(ϕ1) ∪ IP(ψ)).

For first-order logic they are all equivalent but in general this is not the case (as we see
below this depends on both compactness and the availability of a deduction theorem,
cf. also Czelakowski [4]). The meaning of TIP and SIP in modal logic depends on
the way we define the consequence relationϕ |= ψ. There are two options: a local
and a global one (cf. van Benthem [20] or Marx andVenema [16] for a discussion of
their relative merits). LetK be a class of frames and�,ψ (set of)M L(K)-formulas.

|=loc Thelocal consequence relation� |=loc ψ holds iff for everyF ∈
K, for every valuationv, for every worldw in F, 〈F , v〉,w � �

implies〈F , v〉,w � ψ.
|=glo The global consequence relation� |=glo ψ holds iff for every

F ∈ K, for every valuationv, 〈F , v〉 |= � implies〈F , v〉 |= ψ.

The global relation is the one familiar from first-order logic, but it is usually defined
for � a set ofsentences(if they are formulas, the universal closure is considered). If
we view the worldw as an assignment, then for sentences as premises, the two no-
tions are equivalent. Indeed, when� is a set of formulas—and they are treated as
formulas—the local definition becomes the more interesting (cf. the definition just
before Proposition 2.3.6 in Chang and Keisler [1]). In modal logic, the different in-
terpolation properties are related as follows.

Proposition 3.1

(i) With the local consequence relation, AIP, TIP, and SIP are all equivalent.

(ii) If |=loc is compact and the classK of frames of the logic is closed under taking
point-generated subframes, then AIP implies TIP, and TIP and SIP are equiv-
alent.

For this reason, we will only use TIP and SIP defined using the global consequence
relation. As compactness is a common notion in modal logic (e.g., every modal logic
of an elementary class of frames is compact), AIP and TIP are often referred to as
the strong and weak interpolation property, respectively. We note that the splitting



258 MAARTEN MARX and CARLOS ARECES

interpolation version is the one used in connection with modularization of programs
[13, 18]. In the rest of the article|= always refers to the global consequence relation.

Proof: For (i), use the fact that with the local relation the deduction theoremϕ |=loc

ψ if and only if |= ϕ → ψ holds. We prove (ii) for the unimodal case only. The
proof extends easily to any modal similarity type. For (ii) we use that we can switch
from the global to the local perspective byϕ |=glo ψ iff {�nϕ | n < ω} |=loc ψ ([20],
Lemma 2.33). Here we use the assumption of being closed under point-generated
subframes.

AIP implies TIP. Assumeϕ |=glo ψ. This holds if and only if{�nϕ | n <

ω} |=loc ψ, if and only if (by compactness)�m∗ϕ |=loc ψ for somem, where�m∗ϕ =
ϕ ∧�ϕ ∧��ϕ ∧ · · · ∧�mϕ. If and only if, by the deduction theorem,|= �m∗ϕ → ψ.
But then, by AIP, there is an interpolantθ such that|= �m∗ϕ → θ and |= θ → ψ.
Whenceϕ |=glo θ andθ |=glo ψ.

SIP is equivalent to TIP. The direction from SIP to TIP is trivial. For the
other direction, assumeϕ0 ∧ϕ1 |=glo ψ. Asabove we obtain,�m∗ϕ0 ∧�k∗ϕ1 |=loc ψ.
Then by the deduction theorem,�m∗ϕ0 |=loc �k∗ϕ1 → ψ. Whence,�m∗ϕ0 |=glo

�k∗ϕ1 → ψ. By TIP, we find an interpolantθ such that�m∗ϕ0 |=glo θ and θ |=
�k∗ϕ1 → ψ. Whence,ϕ0 |=glo θ andϕ1 ∧ θ |=glo ψ. �
In the absence of the notion of a sentence, Robinson’s consistency property is rather
hard to formulate globally. The local version follows.

RCP A logic L has the Robinson consistency property if whenever
�1, �2 are both satisfiable and there is noθ such thatIP(θ) ⊆
IP(�1)∩ IP(�2) and�1 |=loc θ and�2 |=loc ¬θ, then also�1 ∪�2

is satisfiable.
It is a standard proof to show the following proposition.

Proposition 3.2 Assuming that the local consequence relation is compact,AIP
andRCP are equivalent.

Relevance property The version of the interpolation property where there are no
common variables in the given formulas is sometimes called therelevance property.
Again we have three versions of this property corresponding to AIP, TIP, and SIP. If in
amodal logic�� ←→ � and�⊥ ←→ ⊥ are valid for all modalities, then the AIP
relevance property is equivalent to thedisjunction propertyfor formulasϕ, ψ without
common variables: if|= ϕ ∨ ψ, then|= ϕ or |= ψ. The standard term for this prop-
erty is Halldén-completeness(see e.g., van Benthem and Humberstone [21]). The
relevance property—insignificant as it may look at first sight—is a strong weapon for
axiomatizing “difficult logics.” We mean logics for which it is not easy to find a fi-
nite (Sahlqvist) axiomatization, but there is a finite axiomatization using irreflexivity-
style rules. The relevance property can help to decide whether such rules are really
needed, viz., Proposition 2.9.2 in Venema [22]. The result states that for a logic ax-
iomatized using unorthodox rules, these rules are conservative (i.e., not needed) if the
axiom system without these rules has the AIP relevance property and the two axiom
systems derive precisely the same formulas built up from constants only.

We will now provide some simple semantical conditions on frames that imply the
failure of SIP. The proof is given for unary monomodal logics (the similarity type
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S= {�} is assumed fixed throughout the proof) for notational convenience, but the
result can be easily extended ton-ary polymodal logics. First we recall the notion of
bisimulation and zigzag-morphism.

Bisimulation Let G andH be two frames of typeS. Let B ⊆ G× H, B nonempty.

1. We say thatB is abisimulationbetweenG andH if for any operator〈i〉 ∈ S
the following clauses (called forth and back) hold:

if Bxx′ & R〈i〉
G xy, then(∃y′)(Byy′ & R〈i〉

H x′y′)

and similarly in the other direction,

if Bxx′ & R〈i〉
H x′y′, then(∃y)(Byy′ & R〈i〉

G xy).

If Bxx′ holds we will callx andx′ bisimilar.
2. If B is a total functionf , then it is called azigzag morphism. If f is also sur-

jective we use notationG
f

� H and callH thezigzag morphic imageof G by
f .
Note that in this case, it is equivalent to say thatf is a homomorphism that
furthermore satisfies the (zag) condition

if R〈i〉
H f (x)y′, then(∃y)( f (y) = y′ & R〈i〉

G xy).

3. The notions of bisimulation and zigzag morphism can also be defined for mod-
elsMG = 〈G, vG〉 andMH = 〈H , vH 〉, relative to a given set of propositional
variablesV by adding the following condition:

if Bxx′ then for all pi ∈ V,MG, x � pi iff MH , x′ � pi .

Wewill say in this case thatB is aV-bisimulationor aV-zigzag morphism.

Lemma 3.3 LetK be a class of frames.

1. SIP fails in the modal theory ofK if there are finite framesG, H ∈ K, aframeF
and surjective zigzag morphisms m, n such thatG

m
� F

n
� H , F is generated

by one pointw, every m-pre-image ofw in G generatesG, and similarly for
H , and there is no frameJ ∈ K with commuting surjective zigzag morphisms

g and h fromJ ontoG andH (i.e.,G
g
� J

h
� H and m◦ g = n◦ h).

Moreover, an explicit counterexample for SIP can be algorithmically con-

structed from the frames and functionsG
m
� F

n
� H .

2. If in addition,K is elementary and closed under point-generated subframes,
then also AIP and TIP fail.

The proof relies on the fact that for any finite frameF generated by a point there is an
algorithmically constructible formula�F that characterizes the frame up to bisimu-
lation. The formulas that describe framesG andH together with a description of the
zigzag morphismsmandn, will play the role of formulasϕ0 andϕ1 in the premise of
SIP , whereasψ is simply a negated propositional symbol that will be “standing” in
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a world in F . FromG
m
� F

n
� H we will be able to prove that there is no splitting

interpolant forϕ0 ∧ ϕ1, ψ, whereas the inexistence of a frameJ impliesϕ0 ∧ ϕ1 |= ψ.
We start by proving that we are able to syntactically characterize finite frames,

up to bisimulation. The following lemma is a generalization of Lemma 1 in Fine [5].

Lemma 3.4 LetF = 〈F, R〉 be a finite frame generated byw1 and let|F| = n. Let
M = 〈F , v〉 be a model such thatv(pi ) = {wi} for p1, . . . , pn. Define�F as the
conjunction of the following formulas.

A1:
∨

pi ,
A2: pi → ∧{¬pj | i �= j},
A3: pi → ∧{〈i〉pj | Rwiw j},
A4: pi → ∧{¬〈i〉pj | ¬Rwiw j}.

LetM′ = 〈F ′, v′〉 be any model such that

1. M′ |= �F , and

2. M′,w′ � p1 for somew′.

Then the relation B⊆ F′ × F defined as

Bw′w iff w′ andw agree in the truth value assigned to{p1, . . . , pn}

is a surjective{p1, . . . , pn}-zigzag morphism fromM′ ontoM.

Proof: Trivially, bisimilar worlds agree on the variablesp1, . . . , pn. The back
and forth clauses hold precisely because ofA3 and A4. So B is a {p1, . . . , pn}-
bisimulation.B is functional byA2 and it is always defined byA1. Finally B is sur-
jective becauseF was generated by thep1-world w1, there exists ap1-world in M′,
andB is a zigzag morphism. �

Now we are ready for the proof of Lemma3.3.

Proof of Lemma3.3: Let G
m
� F

n
� H be given as in the Lemma, and supposeF

is generated byw1. Weuse three disjoint sets of propositional variables:

f1, . . . , f|F| one for each point inF ,
g1, . . . , g|G| one for each point inG,
h1, . . . , h|H| one for each point inH .

We create three models by making each variable true at precisely one point in the
respective model, and by making thefi true inG andH at precisely those worlds
which are mapped to anfi-world in F by m andn, respectively. Formally we define
modelsMF = 〈F , vF 〉, MG = 〈G, vG〉 andMH = 〈H , vH 〉, by setting

vF ( fi ) = {wi}
vG(gi ) = {wi}, vG( fi ) = {w ∈ G | m(w) = wi}
vH (hi ) = {wi}, vH ( fi ) = {w ∈ H | n(w) = wi}.

(Any value can be assigned to the other propositional letters.) We define two formulas
describing

m
� and

n
�:
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�m = ∧
1≤i≤|F|( fi ←→ ∨{gj | m(w j ) = wi})

�n = ∧
1≤i≤|F|( fi ←→ ∨{hj | n(w j ) = wi}).

Let �G and�H be the descriptions ofMG andMH in the variablesg1, . . . , g|G| and
h1 . . . , h|H|, respectively, just as in Lemma3.4. By the valuations it is immediate that

m, n are surjective{ f1, . . . , f|F|} − zigzag morphisms

from MG andMH ontoMF , (5)

MG |= �G ∧ �m andMH |= �H ∧ �n. (6)

Note that�G,�H, �m, and�n can be algorithmically obtained fromG
m
� F

n
� H .

These formulas will provide the counterexample to SIP.

Claim 3.5

(�G ∧ �m) ∧ (�H ∧ �n) |= ¬ f1, (7)

there is no splitting interpolant for (7). (8)

Proof: We start with the easy part, (8). Suppose to the contrary that there is an in-
terpolantθ for (7). Then we have�G ∧ �m |= θ and(�H ∧ �n) ∧ θ |= ¬ f1 andθ is
constructed from the variables{ f1, . . . , f|F|}.

We will derive a contradiction. By (6), MG |= �G ∧ �m. So by hypothesis,
alsoMG |= θ. But then by (5) and the fact thatθ is in the common{ fi , . . . , f|F|}-
language, alsoMF |= θ. Then again by (5) but for n, alsoMH |= θ. By (6) now,
MH |= (�H ∧ �n) ∧ θ. So by hypothesis,MH |= ¬ f1. But MF contains anf1-
point andn is surjective, soMH must contain anf1-point as well: the desired con-
tradiction. This proves Claim3.5(8).

Now we show (7). Suppose (7) is not true. Then, there is a frameJ ∈ K and a
valuationvJ such that

〈J , vJ 〉 |= (�G ∧ �m) ∧ (�H ∧ �n)

and there is
w ∈ J such that〈J , vJ 〉,w � f1.

Define two relationsBG andBH as follows.

BG = {〈x, y〉 ∈ J × G | x andy agree on thegi},
BH = {〈x, y〉 ∈ J × H | x andy agree on thehi}.

Let x ∈ G andy ∈ H be points such thatBGwx andBHwy hold (they exist because
MJ |= �G ∧ �H ). As MJ |= �m ∧ �n, alsoMG, x � f1 andMH , y � f1. Whence,
m(x) = n(y) = w1, the generating point ofF . Since we assumed that anyx ∈ G such
thatm(x) = w1 generatesG, and similarly forH , G andH are generated fromx and
y, respectively. Thus the frames satisfy all the conditions in Lemma3.4and we can
derive the following.

BG is a surjective{g1, . . . , g|G|}-zigzag morphism fromMJ ontoMG . (9)

BH is a surjective{h1, . . . , h|H|}-zigzag morphism fromMJ ontoMH . (10)
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BecauseMJ |= �m ∧ �n, BG andBH are also{ f1, . . . , f|F|}-zigzag morphisms. But
then the diagram must commute, since every world inMF satisfies precisely onefi .
So we found a frame inK with commuting zigzag morphisms ontoG andH , contrary
to our assumption. This proves Claim3.5(7). �
Part (1) of the lemma follows immediately from this claim. IfK is also elementary,
then the local consequence relation of Modal-Th(K) is compact (by compactness of
first-order logic, using the standard translation), so by Proposition3.1also AIP and
TIP fail. �
If we slightly strengthen the conditions imposed onF ,G, H in Lemma3.3we obtain
amethod for disproving the relevance version of SIP.

Lemma 3.6 Assume the conditions of Lemma3.3. If, in addition, F consists of
one world andG andH are bothsimple(i.e., every generated subframe is the frame
itself), then there are formulasϕ andψ without common variables such that

ϕ ∧ ψ |= ⊥, (11)

there is no splitting interpolant for11. (12)

Proof: A copy of the proof of Lemma3.3will do. We have to prove that in Claim3.5
we can delete�m, �n, and f1 from the given formula. We used the�’s to show that
the functions commute. But now that is always the case sinceF consists of just one
point. We usedf1 to guarantee that the functionsBG andBH are surjective. But since
G andH are simple, the definedBG and BH are always surjective.�m, �n, and f1
were not used any further in the proof of Lemma3.3. �

4 Transfer of interpolation in combined modal logics In [16] the following tool is
presented to prove interpolation in canonical modal logics. LetG andF be two modal
frames. A frameH is called azigzag productof G andF if H is a substructure of
the direct productG × F in the standard model-theoretic sense, where in addition the
projections are surjective zigzag morphisms (also called bounded or p-morphisms).

The notion of zigzag product is a generalization of the(a1, a2)-products in Mak-
simova [14]. ((a1, a2)-products are defined for unimodal Kripke frames with a re-
flexive and transitive accessibility relation.) The following Lemma generalizes The-
orem 2 in [14] to arbitrary classes of frames.

Lemma 4.1 ([16]: Theorem B.4.5) If the modal logic of a classK of frames is
canonical andK is closed under zigzag products, then the logic enjoys (Arrow) in-
terpolation.

An immediate consequence of being closed under zigzag products (because universal
Horn sentences are preserved under substructures of direct products) is the following
theorem.

Theorem 4.2 Every Sahlqvist axiomatizable modal logic whose axioms corre-
spond to universal Horn formulas enjoys the (Arrow) interpolation property.

Our examples show how existential, or universal but disjunctive, frame conditions
can indeed lead to failure of interpolation.
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For the relevance property/Halldén-completeness there exists a similar criterion
provided in [21]. We present the short proof for completeness.

Lemma 4.3 LetK be a class of frames closed under taking finite direct products in
which the condition∀x∃yRi xyholds for all relations Ri. Then the relevance property
holds in the modal logic ofK.

Proof: On such frame classes there are up to logical equivalence only two formulas
built up from constants,� and⊥. So we might as well prove the disjunction prop-
erty. Suppose�|= ϕ and �|= ψ. Then we haveK modelsM andM′, satisfying¬ϕ and
¬ψ, respectively. Because inK every relation is serial, the two models have the one-
element reflexive frame as a∅-zigzag morphic image. From this it follows quickly
that the product of the two frames underlyingM andM′ is a zigzag product. The
obvious valuation now turns this product into a model satisfying¬ϕ ∧ ¬ψ. �

In Figure1 we have listed a few well-known conditions on frames, together with the
axioms that characterize them. Note that these axioms give rise to canonical modal
logics, so by Theorem4.2every modal logic defined by these axioms enjoys interpo-
lation.

Wewill see that interpolation does not transfer for any of these logics by taking
products or by forming unions in the sense defined below.

T. p → �p ∀xRxx reflexivity
4. ��p → �p ∀xyz((Rxy∧ Ryz) → Rxz) transitivity
B. p∧ �q → �(q∧ �p) ∀xy(Rxy→ Ryx) symmetry
5. �p∧ �q → �(q∧ �p) ∀xyz((Rxy∧ Rxz) → Ryz) euclidicity

Figure 1: Conditions on frames.

4.1 Products of modal logics In [7], bi-dimensional products logicsare defined as
follows. The productF × G of two standard modal framesF = 〈F, RF 〉 andG =
〈G, RG〉 is the modal frame〈F × G, H, V〉, whereH andV are defined as

(x, y)H(x′, y′) iff RF xx′ andy = y′

(x, y)V(x′, y′) iff RG yy′ andx = x′.

The product of two unimodal frames leads to a bimodal frame. We will use� and
� for the modalities defined over theV-relation and theH-relation (V andH are for
vertical and horizontal), respectively. Their meaning is defined in the standard way,
for example,M,w � �ϕ if and only if there exists aw′ such thatwVw′ andM,w′ �
ϕ.

For classes of modal framesK andK′ the productK × K′ is the class of frames
{F × G | F ∈ K andG ∈ K′}. If K = K′ we also use the notationK2 to denoteK × K.
For familiar modal logics such asK, S4, S5, and so forth, we will useK×K and so
on, to denote the product of the largest classes of frames for which these logics are
complete.
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The notion of product logic can very easily be extended ton-dimensional prod-
uct logics by just taking the product ofn unimodal systems, but for simplicity we will
restrict ourselves to bi-dimensional logics.

Completeness theorems are known for several cases, cf. [7]. We only mention
the complete inference systems forK2 andS52. The classK2 of all product frames
can be axiomatized by adding the axioms of commutativity�� p ←→ �� p and
confluence�� p → �� p to the standard axiomatization for a bi-modal system.
The classS52 of all product frames whereV is the universal relation on the columns
andH the universal relation on the rows, can be axiomatized by adding to the above
system the axioms that make both� and� S5-modalities.

Products of modal logics have applications in computer science through their
connection with labeled transition systems and are closely related to (finite variable
fragments of) first-order logic as follows. Let(D, I ) be a first-order model. Create the
modal frame(nD,≡i )i<n wheres≡i t if and only if s( j) = t( j) for all j except pos-
sibly i. Then that frame is just a product ofn frames(D, D × D). Its set of “worlds”
is composed by all then-tuples overD, which we can view as all assignments of the
first n variables onD. Every relation≡i corresponds to a diamond〈i〉, which in turn
is the modal counterpart of the first-order quantifier∃vi , as is easy to see by writing
out the truth-definition. For more on this way of modalizing first-order logic, we refer
to [16].

Taking products of modal logics is a method of combining logics [6] which im-
mediately leads to interaction between the modalities (viz. the commutativity and
the confluence axioms above). [15] shows that the method of dovetailing (a special
case of the fibering logic approach) usually lets interpolation transfer to the combined
system. The difference between dovetailing and taking products is that in the dove-
tailed system there is no interaction between the combined modalities. We will show
that the existential nature of the interaction obtained by taking products often pro-
hibits transfer of interpolation. Both the commutativity and the confluence axiom
are Sahlqvist formulas which correspond to∀xy(∃z(xVzHy) ←→ ∃z(xHzVy)) and
∀xyz(xVy∧ xHz→ ∃w(yHw ∧ zVw)), respectively.

Wefirst provide a general result. Afterward we derive some corollaries. Letn2,
for n a natural number viewed as the set{0,1, . . . , n−1}, denote the product frame
with domainn × n whereV andH are universal relations on columns and rows, re-
spectively.

Theorem 4.4 Let K be a class of bi-dimensional product frames containing the
frames22 and32. Then SIP fails in the modal logic ofK.

Proof: The proof is a purely semantical recast of the proof of Theorem2.1, now
using Lemma3.3. Take the frames 22 and 32 and define a frameF consisting of two
states withH andV universal accessibility relations. The functions mapping all states
on the diagonal to one state inF , and all states not in the diagonal to the other are
surjective zigzag morphisms. Cf. the picture below (the relations inG, H , andF are
actually the reflexive transitive closure of the relations shown).
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m n

a bF

H

V

a1’

b1’ a2’

H

b2’

a3b1

a1

a2

b5

b3

b2

b4

b6

G

Since all three frames are simple, in the sense that every world generates the whole
frame, the conditions on generation of Lemma3.3are met. We will prove now that
there is no frameJ such that

J |= �� p → �� p, or equivalently,

J |= ∀xyz((xHy∧ yVz) → ∃w(xVw ∧ wHz)), (13)

there are surjective zigzag morphismsg andh from J ontoG andH, (14)

the morphisms commute,m◦ g = n◦ h. (15)

By (15) we have for every elementx in J, eitherm◦ g(x) = n◦ h(x) = aorm◦ g(x) =
n◦ h(x) = b.

We will now try to constructJ and show we will fail. Sinceg must be surjec-
tive, there should be an elementx1 ∈ J such thatg(x1) = b3. By (15) then either
h(x1) = b′

1 or h(x1) = b′
2. Sayh(x1) = b′

1 (by the symmetrical nature ofH , the
proof also goes through if we start fromh(x1) = b′

2). Becauseb3Ha2, by (14) we
must have anx2 ∈ J such thatx1Hx2 andg(x2) = a2. The homomorphism condition
on h makesh(x2) eithera′

2 or b′
1, but using restriction15 the former should hold. In

the same way we obtain, by the zigzag condition ofg, x2Vx3 andg(x3) = b2, and by
homomorphism ofhand (15), h(x3) = b′

2. Now by (13), fromx1Hx2Vx3 we can infer
the existence of anx4 such thatx1Vx4Hx3. But then to keep the projections homo-
morphisms we have to makeg(x4) = b1 andh(x4) = a′

1 and this is excluded by (15).
Hence we cannot find aJ as asked for in Lemma3.3and SIP fails. The picture below
shows where the contradiction is found.

H

VJ

x2 [g->a2, h->a2’]

x3 [g->b2, h->b2’]

x1 [g->b3, h->b1’]

x4 [g->b1, h->a1’]

�

Corollary 4.5 LetS1 andS2 be modal logics both weaker thanS5. Then SIP fails
in the product ofS1 andS2.
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Section 7 of [7] shows that the product of two elementary frame classes is itself ele-
mentary. So in these cases, the local consequence relation is compact and failure of
SIP implies failure of all three types of interpolation. Now we can infer many non-
transference results, for example:

Corollary 4.6 LetK1 andK2 be two classes of frames defined by some subset of the
list of axioms in Figure1. Both the logics ofK1 andK2 enjoy all types of interpolation
but all of them fail in the logic of the productK1 × K2.

In general we can conclude that interpolation does not transfer when taking prod-
ucts. (A noticeable exception is the product of two classes where the accessibility
relation is a (partial) function. Interpolation for this class can easily be shown using
Lemma4.1.)

Sain [19], Theorem 2 implies that the Beth definability property fails for the class
S5 × S5 but that the AIP relevance property holds. We conjecture that the Beth prop-
erty also fails in the product of two tense logics (where we assume nothing about the
accessibility relations). The proof would be a combination of Sain’s counterexample
and the proof of Theorem 1.1.

Wehave some positive news concerning the relevance property though.

Theorem 4.7 Let K1, K2 be two classes of frames, both closed under finite direct
products in the model-theoretic sense. If the relations inK1 andK2 are serial, then
the logic of the bi-dimensional productK1 × K2 has the AIP relevance property.

Proof: By Lemma4.3 it is sufficient to show thatK1 × K2 is closed under finite
direct products. Let× denote the bi-dimensional product, and⊗ the direct product
of structures. We claim that for all framesA ,B,C ,D ,

(A × B ) ⊗ (C × D ) ∼= (A ⊗ C ) × (B ⊗ D ). (16)

(16) is simple to prove using the obvious isomorphism which sends〈〈a, b〉, 〈c, d〉〉
to 〈〈a, c〉, 〈b, d〉〉. BecauseK1 andK2 are closed under finite direct products, (16)
implies thatK1 × K2 is closed under them as well. �

Wewill now turn our attention to other combined modal logics: Humberstone’s logic
of inaccessibility and its generalization to unions of modal logics.

4.2 Humberstone’s inaccessibility logic In [12], Humberstone presented the logic
of inaccessibility HIL, an extension of the classical modal systems through the intro-
duction of a new modality〈−〉 that has as associated relation the complement of the
accessibility relation of〈 〉 (which in this case we will denote by〈+〉). Humberstone
proved that the inaccessibility operator〈−〉 greatly increases the expressive power of
the logic. New properties of frames such asirreflexivity, asymmetry, andintransitivity
can now be captured by the system. For this logic, the questions about finite axiom-
atization and finite model property were already solved (Gabbay [8]; Gargov, Passy,
and Tinchev [10]) but interpolation was still open. We will show that interpolation
fails.

A framefor HIL is a structureF = 〈F, R+, R−〉 whereF is a nonempty set and
R+, R− are binary relations onF that satisfy the condition(R−)c = R+ (Rc stands
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for the complement ofR). Truth is defined as usual.

For j ∈ {+,−}, 〈F , v〉,w � 〈 j〉ϕ iff ∃w′ ∈ F, Rjww′ & 〈F , v〉,w′ � ϕ.

[10] contains an axiom system for HIL. They show that the class of HIL-frames and
the class of frames〈W, R1, R2〉 whereR1 ∪ R2 is an equivalence relation have the
same modal{〈+〉, 〈−〉}-theory. (The notion of “conditions over unions” will be gen-
eralized in Section4.3). But then, by a simple Sahlqvist argument, the basic bi-
modal axiom system enriched with axioms which make the defined modality〈∗〉ϕ �=
(〈−〉ϕ ∨ 〈+〉ϕ) anS5-modality is sound and complete for HIL.

Theorem 4.8 All three types of interpolation fail for Humberstone’s Inaccessibility
Logic, even in the strong sense of the relevance property.

Proof: Let K be the class of all frames〈W, R1, R2〉 whereR1 ∪ R2 is an equiva-
lence relation. We will show that SIP fails for the bi-modal logic ofK. In Section4.3
we will show that each of the conditions reflexivity, symmetry and transitivity of the
union alone leads to failure of interpolation (Corollary4.11). SinceK is elementary
and obviously closed under point-generated subframes this implies that all interpola-
tion properties fail, and because the intended HIL-frames andK have the same modal
theory, this implies the theorem. �
This is the “lazy” proof using Lemma3.3. We will now provide an explicit coun-
terexample, which also works for the expansion of HIL with the “past” or inverse
operators.

Goranko [11] extended the expressive power of HIL by defining the system HILi

which includes not only the complement operator〈−〉, but also the inverse operators
〈+〉i and〈−〉i that have as associated relations the converse ofR+ andR−, respectively.
This system is so powerful that it can give a categorical characterization of the natural
order〈N,<〉 (which cannot be achieved in, for example, first-order logic).

A framefor HIL i is a structureF =〈F, R+, R−, Ri+, Ri−〉 whereF is a nonempty
set andR+, R−, Ri+, Ri− are relations onF × F that satisfy the conditions(R−)c =
R+, Ri+ = R−1+ , Ri− = R−1− . Notice that given a HILi frame we can obtain a HIL
frame just “forgetting” the inverse relations.

Truth is defined using the standard clauses.

For j ∈ {+,−}, 〈F , v〉,w � 〈 j〉ϕ iff ∃w′ ∈ F, Rjww′ & 〈F , v〉,w′ � ϕ.
For j ∈ {+,−}, 〈F , v〉,w � 〈 j〉iϕ iff ∃w′ ∈ F, Ri

jww′ & 〈F , v〉,w′ � ϕ.

A complete Sahlqvist axiomatization for this system is given in [10]. Again defining
〈∗〉ϕ �= (〈−〉ϕ ∨ 〈+〉ϕ) the axiomatic system for HILi is built from the distributive ax-
ioms, the basic temporal axioms and anS5 system for〈∗〉. Thus, just as in the case
of HIL, the intended HILi frames and the class HIL∗

i of frames〈F, R1, R2, R3, R4〉
whereR1 = R−1

3 , R2 = R−1
4 and R1 ∪ R2 is an equivalence relation have the same

modal{〈+〉, 〈−〉, 〈+〉i , 〈−〉i}-theory.
Wewill prove that the addition of the inverse modalities to HIL is not enough to

regain interpolation.

Theorem 4.9 All three types of interpolation fail for Humberstone’s Inaccessibility
Logic with Inverse Operators. Furthermore all three relevance properties fail.
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Proof: Applying Lemma3.6 to the following frames proves the theorem. Instead
of using that lemma we extract two formulas which describe the crucial properties of
these frames.

c

G

ba

w

m n

F

c’

H

b’a’
R-

R+

(Here we don’t show the converse relations.)
We propose the following HIL-formulas (the subscriptedg andh are proposi-

tional variables):

ϕ : 〈−〉(ga ∧ [+]¬ga) ∧ 〈+〉(gc ∧ [+]¬gc)

ψ : 〈−〉((ha′ → 〈−〉ha′ ) ∧ (¬ha′ → 〈−〉¬ha′ )) ∧ 〈+〉((hb′ →
〈−〉hb′ ) ∧ (¬hb′ → 〈−〉¬hb′ )).

Weclaim thatϕ → ψ is HIL i-valid, whence also HIL-valid.
Take any HILi frame F , any valuationvF and any worldw ∈ F and as-

sume that〈F , vF 〉,w � ϕ. By the semantic definitions of〈−〉 and〈+〉, there exist
worldsw′,w′′ ∈ F such thatwR−w′ andwR+w′′ and〈F , vF 〉,w′ � ga ∧ [+]¬ga,
〈F , vF 〉,w′′ � gc ∧ [+]¬gc. As F is a HILi-frame this impliesw′ R−w′ and
w′′ R−w′′ (w′ � ga ∧ [+]¬ga andw′′ � gb ∧ [+]¬gb forbid w′ R+w′ andw′′ R+w′′,
respectively.) But this directly implies〈F , vF 〉,w � ψ. Thusϕ → ψ is valid in HILi .

To prove that there is no interpolant we use the frames proposed above. Trans-
form framesG andH into models by providing the valuationsvG andvH such that
vG(gw) = {w} for w ∈ {a, b, c} andvH (ha′ ) = {a′}, vH (hb′ ) = {b′, c′} andvH (hc′ ) =
{c′}.

From this,〈G, vG〉, b � ϕ. Let θ be any HILi-formula in the common language
of ϕ andψ, that is, it is constructed from constants, such thatϕ → ψ is HIL i valid.
Then also〈G, vG〉, b � θ. Now, using the fact that the functionmsending all elements
in G to w in F is a zigzag morphism (for HILi), 〈F , vF 〉,w � θ. Asall elements inH
are mapped tow andn (defined just asmoverH) is also a zigzag morphism, all force
θ. But, as is easy to check,〈H , vH 〉 |= ¬ψ. Thusϕ → ψ has no interpolant, whence
the relevance version of AIP fails in HILi . Becauseϕ → ψ is already HIL-valid, this
is also a counterexample for AIP in HIL.

We provided a counterexample to AIP and not to TIP. But the fact that in HIL
(and then also in HILi) the universal diamond〈∗〉 can be defined, makes it easy to
transform it in such a proof (〈∗〉ϕ ≡ 〈−〉ϕ ∨ 〈+〉ϕ means “ϕ somewhere in the frame”).
Becauseϕ → ψ is HIL i-valid, 〈∗〉ϕ |= 〈∗〉ψ. If weassume there is a (turnstile) inter-
polantθ we can again use models〈F , vF 〉, 〈G, vG〉 and〈H , vH 〉 to derive a contra-
diction. Clearly〈G, vG〉 |= 〈∗〉ϕ which implies〈G, vG〉 |= θ. As above, this makes
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〈F , vF 〉 |= θ and hence〈H , vH 〉 |= θ. As θ is an interpolant we obtain〈H , vH 〉 |=
〈∗〉ψ. But as we said before, nowhere in〈H , vH 〉 doesψ hold. �
We will now provide a more fine-grained analysis of the failure of interpolation in
HIL by generalizing it to unions of modal logics. This will show that there are several
reasons for this failure and indicate the possible ways in which interpolation can be
regained by expanding the language.

4.3 Unions of modal logics As we saw, the HIL-system is equivalent to the bi-
modal logic of the class of frames〈W, R1, R2〉 where theunionof R1 and R2 is an
equivalence relation. We can generalize this to a way of combining logics which we
call union logics. Let I be some index set. AnI -union logic is a polymodal logic
(containing modalities{〈i〉 | i ∈ I }) of aclass ofI -frames〈W, Ri〉i∈I where the union
of all relationsRi satisfies some condition.

Union logics are a natural class in a polymodal framework. In many cases, a
requirement over a relation in the model is too strong. Suppose for example that rela-
tions represent actions. Then we might want to require that in each state, there is some
action that does not change the state. But perhaps this action is not always the same!
If the temperature is increasing, for example, a stable state is obtained by cooling,
whereas we need heating if the temperature is going down. In these cases a reflexive
condition over the union of the relations representing the possible actions is what we
need.

Union logics are also related to the field of Informations Systems (Pawlak [17]).
Based on the notion of rough sets, these systems try to capture relationships of indis-
cernibility among objects. Clearly, these relations are equivalence relations, but usu-
ally a further condition of Local Agreement is needed to obtain an accurate model of
the situation: for each frame〈F, Ri〉i∈I there is a linear order≤ on I such thati ≤ j
implies Ri ⊆ Rj . This condition reflects the fact that the different relations are mod-
eling different degrees of indiscernibility over the same objects. Garbov [9] proves
that if R andSare equivalence relations then the Local Agreement condition overR
andS is equivalent to transitivity ofR∪ S. Because of this, Local Agreement Logics
are a kind of union logic. It is at present open whether interpolation holds for this
logic of local agreement.

For the axiomatization of union logics, we can also generalize the idea used for
HIL. Let S be a modal system, defining〈∗〉ϕ �= ∨

i∈I 〈i〉ϕ, the axiomatic system for⋃
i∈I S is built from the distribution axioms for each〈i〉 plus anS system for〈∗〉. Are-

ces (unpublished) proves that ifS is an axiomatic system with axioms in Sahlqvist
form, then the system given above for

⋃
i∈I S is a correct and complete Sahlqvist ax-

iomatization for its corresponding class of frames. The proof is simple and relies on
the fact that changing a diamond modality〈 〉 in a Sahlqvist formula by a finite dis-
junction of modalities

∨
i∈I 〈i〉 gives again a Sahlqvist formula which characterizes

the same property the former formula did but this time over the union of the accessi-
bility relations.

We will now show that any of the conditions from Figure1 leads to failure of
interpolation when they are stipulated over a union of relations and when the class of
frames contains a few, very small frames where the union is an equivalence relation.
Recall that any monomodal logic defined by a subset of these conditions enjoys in-
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terpolation, so we obtain another example where transfer of interpolation fails. We
first prove a general result, then mention some corollaries.

Theorem 4.10 Let I be a set of indices of size larger than 1. LetK be a class of
frames〈W, Ri〉i∈I which satisfies

min K contains all finite frames〈W, Ri〉i∈I where
⋃

i∈I Ri is an equiv-
alence relation.

max at least one of the conditions from Figure1, but now specified
over

⋃
i∈I Ri is valid inK.

Then the relevance version of SIP fails in the union logicM L(K).

Proof: Wewill use Lemma3.6. Fix an index setI . First we give three frames which
lead to failure of SIP when the union is either reflexive or transitive.

a c

b

G R1

R2

a’ c’

b’

H

m n

F w

The relationsRi with i �= 1,2 are empty. Clearlymandn mapping all elements tow
are zigzag morphisms and each element ofG andH generates the full frame.

First assume
⋃

i Ri must be reflexive inK. Then no frame inK can exist with
commuting zigzag morphisms ontoG andH , becauseG contains anR1-reflexive
point, whileH does not.

Now assume
⋃

i Ri must be transitive. Again, we start the intended construction
of J by an elementx1 ∈ J which is mapped toa in G, g(x1) = a (it exists by surjec-
tivity.) We analyze the caseh(x1) = a′ (for the other elements inH the argument is
similar, note the symmetry ofH .) Using the relationR1 in frameG and the condi-
tions ong andh there exist elementsx2 andx3 in J such thatR1x1x2 andR1x2x3 and
furthermore,g(x2) = b, h(x2) = b′, g(x3) = c, andh(x3) = c′. Then transitivity of
the union would forceRi x1x3 for somei, but the homomorphism condition makes
this impossible.
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J

x2 [g->b, h->b’]
R1

Ri

x3 [g->c, h->c’]x1 [g->a, h->a’]

For the cases where the union of the relations is either symmetric or Euclidean, we
only give the frames and leave it to the reader to check that the counterexample works.
In both cases the relationsRi for i �∈ {1,2} are empty and the zigzag morphismsm, n
map all elements tow.

R1

R2

G
a b

w

m n

F

H
a’ b’

wF

R1

R2

H
a’ b’

G
a b

m n

�

Corollary 4.11 Wejust obtained four different reasons why SIP fails in the union
logic of an equivalence relation, whence four reasons for failure of SIP in HIL.

The next corollary is the counterpart of Corollary4.6(for products) which shows that
transfer of interpolation fails for these unions of modal logics.

Corollary 4.12 Consider the modal theory of the class of frames〈W, Ri〉i∈I where⋃
i∈I Ri satisfies some (nonempty) subset of the axioms from Figure1. If |I | = 1, all

types of interpolation hold. If|I | > 1 and finite, the relevance version of all types of
interpolation fails.

5 Conclusion and further directions Wehave seen that interaction of an existen-
tial or disjunctive kind between modalities often blocks transfer of interpolation in
combinations of modal logics. If interpolation or the Robinson consistency property
is important for the intended application of the combined modal logic, then further
work in the logic-design phase is needed to fix the failure. Interpolation can show
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complex behavior when we consider reducts and expansions. For instance, monadic
first-order logic with just one variable (i.e., modal logicS5) has interpolation, it fails
in all other finite variable fragments, but it holds again in full first-order logic. If
the counterexample is based on a “limited counting argument,” then one often has to
consider infinite similarity types to regain interpolation (e.g., interpolation fails for
the difference operator, but is obtained when expanding the logic with all counting
modalities). The four different reasons we provided for failure of interpolation in HIL
each suggest an expansion of the language in which it might be recovered. For ex-
ample, the symmetry-example leads one to consider modalities with the following
truth-definition.

w � 〈i, j〉ϕ iff ∃w′ : wRiw
′ & w′ Rjw & w′ � ϕ.

Using them, we can eliminate the indeterminacy arising from the symmetry condition
over the union. We think that the recipe provided by Lemma3.3 is useful for a sys-
tematic search for expansions which lead to regaining interpolation. We finish with
the following open problem concerning the logic of inaccessibility.

Problem 5.1 Find an expansion of HIL which enjoys interpolation and keeps the
HIL-properties of decidability and finite (schema) axiomatizability. In the optimal
case not even the complexity of the validity problem should go up.
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