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Failure of Interpolation in
Combined Modal Logics

MAARTEN MARX and CARLOS ARECES

Abstract  We investigate transfer of interpolation in such combinations of
modal logic which lead to interaction of the modalities. Combining logics by
taking products often blocks transfer of interpolation. The same holds for com-
binations by taking unions, a generalization of Humberstone’s inaccessibility
logic. Viewing first-order logic as a product of modal logics, we derive a strong
counterexample for failure of interpolation in the finite variable fragments of
first-order logic. We provide a simple condition stated only in terms of frames
and bisimulations which implies failure of interpolation. Its use is exemplified
in a wide range of cases.

1 Introduction In 1957, Craig proved the interpolation theorem for first-order
logic [3]. Comer B showed that the property fails for all finite variable fragments
except the one-variable fragment. Tim@ariable fragment of first-order logic—for
shortL,—contains all first-order formulas using jusvariables and containing only
predicate symbols of arity not higher thafwe assume the language has only vari-
ables as terms). Here we will show that the axiom which makes the quantifiers com-
mute can be seen as the reason for this failure.

Since Craig’s paper, interpolation has become one of the standard properties that
one investigates when designing a logic, though it hasn't received the status of a com-
pleteness or a decidability theorem. One of the main reasons why a logic should have
interpolation is because of “modular theory building.” As we will see below interpo-
lation in modal logic is equivalent to the following property (which is the semantical
version of Robinson’s consistency lemma).

If two theoriesTy, T, both have a model, and they don't contradict each other on
the common language (i.e., there is no formutauilt up from atoms occurring
both inT; and inT, such thafl; = 6 andT, = —6), thenT; U T, has a model.

The property is not only intuitively valid for scientific reasoning, it also has practical
(and computational) consequences. In practice it shows up in the incremental design,
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specification and development of software and has received quite some attention in
that community (cf. Maibaum and SadIgfd], Renardel[[8]). Below we will give
amore technical reason why interpolation is desirable: it can help in showing that
irreflexivity style rules in an unorthodox axiom system are conservative over the or-
thodox part. In this paper we look at interpolation in combined modal logics (and we
will see that first-order logic is just an instance of such a combination).

Combined modal logics (Gabbdg]] are systems that are built up from simpler
and familiar systems in very diverse ways. They are polymodal logics with some “ad-
ditional structure” or requirements set over their classes of frames. One of the most
interesting questions in the field of combining logics is thatamsfer theoremsun-
der which conditions does a metalogical property—such as finite axiomatizability,
decidability, or interpolation—transfer to the combined system? We will show that
interpolation usually does not transfer in products of modal logics (Gabbay and She-
htman [7J). (Compare this with combining through fibering, where we often have
transfer of interpolation (see Mark3].) We obtain our mentioned result for first-
order logic by considerindy, as a product of modal logics. We will also show fail-
ure in Humberstone’s logic of inaccessibility (a combination of a modal logic with
its complement modalitylZ]) and several generalizations of this logic. Often, com-
bined modal logics are proposed in an effort to capture some class of frames that the
familiar modal systems cannot represent. Our article shows that the gain in expres-
sive power has a price: in many cases the interpolation property is lost.

The article is organized as follows. In the next section we show failure of inter-
polation in first-order logic with finitely many variables. Secti@ipresents different
Interpolation Properties that can be found in the literature and explores their intercon-
nections. We will also present a general proof-method for disproving interpolation
which allows us to work solely with models, and truth preserving constructions like
zigzag-morphisms. We then apply this method in the following sections to combi-
nations of modal logics and see how certain types of combinations block transfer of
interpolation.

Modal logic A modal similarity type $s a pair{O, p) with O aset of logical con-
nectives ang : O — w afunction assigning to each symbol @ a finite rank or
arity. We call M L(Ks) amodal logicfor type S= (O, p), if M L(Ks) is a tuple
(Ls, Kg, IFg) in which,

1. Lsis the smallest set containing countably many propositional variables, and
which is closed under the Boolean connectives and the connectis in

2. Ksis a class of frames of the forfV, R®) o, in which W is a nonempty set
and eactR® is a subset ofV*(“)+1, We use calligraphic capital§ to denote
frames and their corresponding Ronfarfior their domains.

3. IFsis the usual truth-relation from modal logic between models over frames in
K, worlds and formulas. For the modal connectives it is defined as

M, X1 (e, ..., (pp(Q)) iff (3xq, ..., Xp(<>)) . ROXX]_, cees Xp(0) &
omn, X1 I @1 & --- &M, Xp(<) I Pp(0)-

If the similarity typeSis clear from the context, we usually omit it. A formufas
true in a modebJt (notation: 9t = ¢) if it holds in every world ird)t. A formulag
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is said to bevalid in M L(K) (notation: =k o) if itistrue in every model over every
frame inK. We will often equateM £(K) with its set of valid formulas.

2 First order logic  We will show that interpolation fails very badly in first-order
logic with two variables. For every finite we aeatel, formulase, ¥ such that va-
lidity of ¢ = 4 can be proved using only a minimum of resources from the derivation
system, and there is no interpolant foi= + in L. This strengthens a similar result
of Andréka (unpublished) who used the complete derivation systdrp. dur result
shows that the axiom making the quantifiers commute causes failure of interpolation
in the finite variable fragments.
We define a (highly incomplete) derivation system tqr as follows. Let;

denote the derivation system consisting of these axioms schemas and rules.

Axl Every propositional tautology is an axiom scheme.

AX2i V(g — ¥) — (Yvip — Vi), fori € {0, 1}.

AX3  VviYugp — YvgVuie.

MP  Fromg andg — v infer .

UG, Fromg infer Vujgp, fori e {0, 1}.
Clearlyt, is sound for first-order logic but hopelessly incomplete. Trivial validities
like Yvg(vg = vg) and3IvgIvgp <— Jvge are not theorems of,.

Theorem 2.1  For every n, there existsylformulase, v such that

1. ¢ot5 ¢, and
2. for every I, formulaé in the common language @fand y, either ¢ |~ 6 or
0 = .
These formulas can be algorithmically obtained and have size polynomial in n. Either

¢ and are in disjoint languages but both contain the equality symbol, or they are
equality-free but the common language contains one binary predicate.

Proof: Fix n. LetVXv; abbreviat& manyvuv;. Since all our atomic formulas will be
of the form R(vg, v1), we might as well forget about the variables and write atomic
formulas as lowercase variablpsg, and so on. We propose the following formulas.

Al (d<«— \{pi|0<i=n).

A2 (pi— —pj) 0<i,j<n,i#].
A3 (pi — AlV*vo(d — pi) [k < n}) 0<i<n.
A4 (pi— AV*vi(d — pi) [k <n}) 0O<i<n.

A5 FJv3vg( Po A Jv1Fvg(P1 A FveTve(P2. .. Jv1TvePn)) - - .).

Cl  Apensr V¥u1¥*vo(d «— \/{Gi [0 <i < n}).

C2  Vienpa FvaTvo(Vi_nlai A V{F va(=d A Fvoqi) | L < i < n}]).
Clearly these formulas can be algorithmically obtained froamd their size is linear
in n. The predicatel can stand for the equality statemegt= v, or alternatively it
can be seen as an arbitrary formD&vg, v1).

Let A abbreviateA1 A --- A A5. We claim that
A, (C1— C2). Q)
There is no interpolant foA = (C1 — C2) in L. (2)
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Before we look at the proof, let us see the intuition behind the formula and its va-
lidity in first-order logic. In classical first-order logi&/*vip is equivalent to just
Vvip. WheneverA is true on a model, the predicalds partitioned in then + 1 p;-
predicates A5 tells us that all thep; occur, so the domain of any model satisfyiAg
should contain at least+ 1 elements. The intended interpretationdo vy = v;.
ThenA3andA4 are trivially true. With that interpretation df the formulaC1 — C2
says that ifd is partitioned inn g-atoms(C1), then “there must be two different el-
ements having the sanggvalue” (C2).

We have to use the more lengthy formulations of our formulas because we want
to use as little from the first-order proof system as possible. We first pigven:
stead of a derivation using the axioms, we give a semantic proof using the fact that
ko completely axiomatizesmormal modal logic If we readvv; as a modal box op-
erator [], thent, axiomatizes the bimodal logic over the class of fraf\Ws Ry, Ry)
where the following law holds:

VXYZA(XRoy A YR1Z) — JY(XRiy A YRoZ)), 3

this by virtue of (the Sahlqvist) axiomAx3. We will show that in this semantics
the validity of [TJ must hold. Now our way of writing binary predicat®vg, v1)

as (propositional) variableg comes in handy because the formulas involved are in
the appropriate modal language. Suppose to the contranfIhtgils. So we find
amodeldM = (W, Ry, Ry, v) and a worldw € W such thatht = A and9t, w I+

C1 A —=C2. By A5 there aren + 1 worlds w; such that for some, wR;xRywg and

for all i there exists ax, wi RixRywj;1, and9t, w; I+ p;. By Al, A2, they are all
d-worlds and all different. Moreover, sind@(holds in this model, we have

for alli # j such thai + k = j, there is anx such thatw; RExR§wj, (4)

wherex Ry stands for &-long R-path. We claim that all the intermediaten
make—d true. Suppose to the contrary that for one sychit, x IF d. Then by A4,
alsoM, x I p;, and by A3, alsoMt, wj I- pi. ButM, w; I- pj andi # j. Sothisis
impossible byA2.

Becauset, w I C1, and there is ong-variable less than there amg A d-
worlds, there must be twe; making the samg-atom true. But then, bydj, we can
go from agj-world to ag;-world, via a—d world. This is just whaC2 says and that
is false atw: our desired contradiction. This prové.(

Let9ia= ({0, ..., n}, I) be the first-order model whet€d) = {(X, y) | Xx=}
andl(p) = {(, )}, andMc = ({0, ...,n— 1}, I) whered is also interpreted as the
equality, andl (g;) = {(i,i)}. Itiseasy to see th&lia = AandMic = C1 A -C2.
Let 6 be anyL-sentence constructed from the atdmwhich is true in9Jt 5. Because
in M4, dis interpreted as the equaliyjs equivalent to a pure (i.e., containing only
= as atomic symbold),-sentence. But then al$ic = 6 because purk, formulas
cannot distinguish between models of size at leaahd also if)ic, dis interpreted
as the equality. But theficannot be an interpolant. This provEs.( O

The last theorem shows that by just looking at the number of variables-in, we
cannot predict how many variables are needed for the interpolant. Our counterexam-
ple showed two variable formulas of length polynomiahinwhich didn’t have an
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interpolant inn variables. Is there some way of predicting the number of variables
needed for an interpolant as a function of some combination of the parameters, num-
ber of variables inp — v, number of relation symbols ip — v, and the length of

o — Y?

3 Kindsof interpolation  For first-order logic we find the following definitions of
interpolation in the literature. LdP (¢) be the set of atomic symbols occurringgn
(propositional variables in modal logic, relation symbols in first-order logic.)

AIP Alogic L has theArrow Interpolation Propert§AlP) if, whenever
EL ¢ — ¥, there exists aformul@such that=| ¢ — 0, = 60 —

¥, andIP(0) C IP(¢) N IP(y).
TIP Alogic L has theTurnstile Interpolation PropertyTIP) if, when-

every = v, there exists a formula such thaty = 6, 6 = v,

andIP(0) C IP(¢) N IP(¥).
SIP A logic L has theSplitting Interpolation PropertySIP) if, when-

evergg A @1 =L ¥, there exists a formulé such thatpg =\ 6,

1 A0 =LY, andIP(6) € IP(go) N (IP(p1) U IP(Y)).
For first-order logic they are all equivalent but in general this is not the case (as we see
below this depends on both compactness and the availability of a deduction theorem,
cf. also Czelakowsk[4]). The meaning of TIP and SIP in modal logic depends on
the way we define the consequence relatioa: . There are two options: a local
and a global one (cf. van BentheR] or Marx andVenemal[§] for a discussion of
their relative merits). Le be a class of frames anit] v (set of) M L(K)-formulas.

E°¢  Thelocal consequence relatidn ='°¢  holds iff for every F e
K, for every valuation, for every worldw in F, (7, v), wIF T
implies(F, v), w I+ .

=99 Theglobal consequence relation =9'° y holds iff for every
F € K, for every valuatiorv, {( F, v) &= T'" implies{ ¥, v) &= .

The global relation is the one familiar from first-order logic, but it is usually defined
for I' a set ofsentencegif they are formulas, the universal closure is considered). If
we view the worldw as an assignment, then for sentences as premises, the two no-
tions are equivalent. Indeed, whénis a set of formulas—and they are treated as
formulas—the local definition becomes the more interesting (cf. the definition just
before Proposition 2.3.6 in Chang and Keisl&) [ In modal logic, the different in-
terpolation properties are related as follows.

Proposition 3.1

(i) With the local consequence relation, AIP, TIP, and SIP are all equivalent.

(i) If ="°is compact and the clags of frames of the logic is closed under taking
point-generated subframes, then AIP implies TIP, and TIP and SIP are equiv-
alent.

For this reason, we will only use TIP and SIP defined using the global consequence
relation. As compactness is a common notion in modal logic (e.g., every modal logic
of an elementary class of frames is compact), AIP and TIP are often referred to as
the strong and weak interpolation property, respectively. We note that the splitting
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interpolation version is the one used in connection with modularization of programs
[T3I@8]. In the rest of the articlé= always refers to the global consequence relation.

Proof:  For (i), use the fact that with the local relation the deduction theares°
Y if and only if = ¢ — v holds. We prove (ii) for the unimodal case only. The
proof extends easily to any modal similarity type. For (ii) we use that we can switch
from the global to the local perspective by=9"° v iff {07 | n < w} E'°¢ ¥ (20,
Lemma 2.33). Here we use the assumption of being closed under point-generated
subframes.

AIP implies TIP.  Assumey =9° v. This holds if and only iff0"¢ | n <
w} ='°¢ y, if and only if (by compactness)™ ¢ ='°¢ ¢ for somem, whereO ™ =
e AOpAOOpA---AOM. If and only if, by the deduction theorefa, O™ ¢ — .
But then, by AIP, there is an interpolafitsuch that= O™ ¢ — 6 andk= 6 — .
Whencey =9'° 9 andg =9'° .

SIP is equivalent to TIP. The direction from SIP to TIP is trivial. For the
other direction, assumg A g1 =9'° y. Asabove we obtair;)™ pg A 0% =€ .,
Then by the deduction theorem™ ¢ ='°¢ Ok o, — . Whence,0™ ¢ =9'°
0%, — . By TIP, we find an interpolan® such thatd™ g =9'° ¢ and6 =
0% — . Whenceggy =9'° 6 andpq A 6 =90 . O

In the absence of the notion of a sentence, Robinson’s consistency property is rather
hard to formulate globally. The local version follows.

RCP A logic L has the Robinson consistency property if whenever
I'1, T'> are both satisfiable and there is icuch thatlP (9) C
IP(I'1) N IP(T,) andl'; ='°¢ 6 andrl', ='°¢ —6, then alsd™; UT,
is satisfiable.
It is a standard proof to show the following proposition.

Proposition 3.2  Assuming that the local consequence relation is comp4ge,
and RCP are equivalent.

Relevance property  The version of the interpolation property where there are no
common variables in the given formulas is sometimes calledeieyance property

Again we have three versions of this property corresponding to AIP, TIP, and SIP. Ifin
amodal logicCT «<— T andO_L «<— 1 are valid for all modalities, then the AIP
relevance property is equivalent to ttisjunction propertyfor formulasy, ¥ without
common variables: i ¢ v ¢, thenk= ¢ or = . The standard term for this prop-

erty is Hallden-completenegsee e.g., van Benthem and Humberst@iB)[ The
relevance property—insignificant as it may look at first sight—is a strong weapon for
axiomatizing “difficult logics.” We mean logics for which it is not easy to find a fi-
nite (Sahlgvist) axiomatization, but there is a finite axiomatization using irreflexivity-
style rules. The relevance property can help to decide whether such rules are really
needed, viz., Proposition 2.9.2 in Vene@a]] The result states that for a logic ax-
iomatized using unorthodox rules, these rules are conservative (i.e., not needed) if the
axiom system without these rules has the AIP relevance property and the two axiom
systems derive precisely the same formulas built up from constants only.

We will now provide some simple semantical conditions on frames that imply the
failure of SIP. The proof is given for unary monomodal logics (the similarity type
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S= {<} is assumed fixed throughout the proof) for notational convenience, but the
result can be easily extendedrery polymodal logics. First we recall the notion of
bisimulation and zigzag-morphism.

Bisimulation Let Gand# be two frames of typ&. Let B < G x H, B nonempty.

1. We say thaB is abisimulationbetweeng and # if for any operator(i) € S
the following clauses (called forth and back) hold:

if BxX & Rgxy, then(3y)(Byy & RI'x'y)
and similarly in the other direction,
if BxxX & RIX'y, then(Qy)(Byy & Rgxy).

If BxX holds we will callx andx’ bisimilar.
2. If Bis a total functionf, then it is called &igzag morphismif f is also sur-

f
jective we use notatiof — A and call# thezigzag morphic imagef G by
f.
Note that in this case, it is equivalent to say thHais a homomorphism that
furthermore satisfies the (zag) condition

if RY) Ty, then@y)(f(y) =Y & Rgxy).

3. The notions of bisimulation and zigzag morphism can also be defined for mod-
elsMg = (G, vg) andMy = (H , vy), relative to a given set of propositional
variablesV by adding the following condition:

if BxX then forallp; € V, Mg, x I p; iff My, X' IF pi.
We will say in this case thaB is aV-bisimulationor aV-zigzag morphism

Lemma3.3 LetK be aclass of frames.

1. SIP failsinthe modal theory d¢f if there are finite frames;, # € K, aframe 7
and surjective zigzag morphisms msuch thatg = F - H, Fis generated
by one pointw, every m-pre-image ab in G generates;, and similarly for
# , and there is no fram¢g € K with commuting surjective zigzag morphisms

gand h fromJ onto Gand A (i.e., ge'i ]—h» H and mog=noh).
Moreover, an explicit counterexample for SIP can be algorithmically con-
structed from the frames and functioGsfa T

2. If in addition, K is elementary and closed under point-generated subframes,
then also AIP and TIP fail.

The proof relies on the fact that for any finite frafiegenerated by a point there is an
algorithmically constructible formul& ¢ that characterizes the frame up to bisimu-
lation. The formulas that describe framg@snd# together with a description of the
zigzag morphisme andn, will play the role of formulaspg andg; in the premise of
SIP, whereasy is simply a negated propositional symbol that will be “standing” in
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aworld in . From G 5 F - # we will be able to prove that there is no splitting
interpolant forpg A @1, ¥, whereas the inexistence of a framhanpliesgg A @1 = .

We start by proving that we are able to syntactically characterize finite frames,
up to bisimulation. The following lemma is a generalization of Lemma 1 in fGhe [

Lemma3.4 Let7 = (F, R) be afinite frame generated lwy; and let|F| = n. Let
M = (F,v) be a model such that(p;) = {w;} for py,..., pn. DefineX ¢ as the
conjunction of the following formulas.

AV pi, o
Az: pi = Nl=pj [T #
Ag: pi — AU pj | Rwiwjl,
Az pi = A=) pj | ~Rwjw;}.
Let9' = (F', V') be any model such that
1. M EXg,and
2. M, w' Ik pp for somew’.

Then the relation BE F’ x F defined as

Bw'w iff w’ andw agree in the truth value assigned{ps, ..., pn}
is a surjective{py, . . ., pn}-zigzag morphism fromt’ onto .
Proof: Trivially, bisimilar worlds agree on the variablgs, ..., pn. The back

and forth clauses hold precisely becausefgfand A4. So B is a{pi,..., pn}-
bisimulation. B is functional byA, and it is always defined bg;. Finally B is sur-
jective becaus¢f was generated by thegy-world wq, there exists g;-world in 9%/,
andB is a zigzag morphism. O

Now we are ready for the proof of Lemrga3

Proof of Lemm&.3] Let G = F & H be given as in the Lemma, and suppdse
is generated bw;. We use three disjoint sets of propositional variables:

f1, ..., fiF one for each point inff,
01, ..., 9 one for each point irg,
hi, ..., hw one for each point i/ .

We create three models by making each variable true at precisely one point in the
respective model, and by making tlietrue in G andH at precisely those worlds
which are mapped to afj-world in ¥ by mandn, respectively. Formally we define
models s = (F, vy), Mg = (G, vg) andMy = (H , vy), by setting

vr(fi) = {wi}

vg(9) = {wi}, vg(f) ={we G| mw) =wi}

vy (hi) = {wi}, vgr (fi) ={w e H[n(w) = wi}.

(Any value can be assigned to the other propositional letters.) We define two formulas
m n
describing— and—:



INTERPOLATION FAILURE IN MODAL LOGICS 261
Im= /\1§i§|F|(fi ~— V{gj I m(wj) = wi})
Tn = Ap<iqr (i <= Vihj In(w)) = wi}).

Let X5 andX, be the descriptions a5 anddi,, in the variablesy, ..., g and
hy ..., hy, respectively, just as in Lemrizadl By the valuations it is immediate that

m, n are surjective fq, ..., fjr} — zigzag morphisms
from Mg andM,, ontoN 7, (5)
f)ﬁg E XAy andimg{ =Xy Al (6)

Note thatXg, Xy, I'm, andI", can be algorithmically obtained fro = ya b H.
These formulas will provide the counterexample to SIP.

Claim 3.5

(ZGATm) A (Zy ATn) E— 1y, (7)
there is no splitting interpolant for7. (8)

Proof: We start with the easy parfg). Suppose to the contrary that there is an in-
terpolant for (Z). Then we have&ig ATm Efand(Zy AT'n) AQ = —frandbis
constructed from the variabl¢s,, ..., ).

We will derive a contradiction. Byld), Mg = Xg A I'm. S0 by hypothesis,
also9M; k= 6. But then by[f) and the fact tha# is in the commor{ fi, ..., fjr}-
language, als@t + = 6. Then again byl@) but for n, alsoMty = 6. By (6) now,
My = (Zgr ATn) A 6. So by hypothesis)ity, = — 1. But 9ty contains anf-
point andn is surjective, sdt,, must contain arf;-point as well: the desired con-
tradiction. This proves Claiff.3).

Now we showl[). Suppose) isnot true. Then, there is a franfec K and a
valuationvy such that

(Tovg) = (BGATm) A (B ATh)

and there is
w € Jsuchthat g, vs), w ik f1.

Define two relation88g and By as follows.

Bs = {(X,y) € J x G| xandy agree o theg;},
By ={(X,y) € J x H| xandy agree on thé}.

Let x € G andy € H be points such thaBgwx and By wy hold (they exist because
My = ZgA Yy). Asy =T AT, alsoimg, xIF f1 and9M,, yI- f1. Whence,
m(x) = n(y) = w1, the generating point of . Since we assumed that aryg G such
thatm(x) = wy generates;, and similarly for, G and are generated fromand
y, respectively. Thus the frames satisfy all the conditions in Lefiniland we can
derive the following.

Bg is a surjective(gy, . . ., 9ig|}-zigzag morphism fromty ontoMg.  (9)
B is a surjectivghy, ..., hjy }-zigzag morphism frorty ontoMt,,. (10)
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Becausélly =I'm A I'n, Bg andBy are alsq{ fy, ..., fjr}-zigzag morphisms. But
then the diagram must commute, since every worlllii satisfies precisely ong.
So we found a frame i with commuting zigzag morphisms onépand#, contrary
to our assumption. This proves ClaBrE(7). a

Part (1) of the lemma follows immediately from this claim.Kfis also elementary,
then the local consequence relation of Modalhis compact (by compactness of
first-order logic, using the standard translation), so by Propodiidalso AIP and
TIP fail. O

If we slightly strengthen the conditions imposed®ngG, # in Lemma3.3we obtain
amethod for disproving the relevance version of SIP.

Lemma3.6 Assume the conditions of Lemfaal If, in addition, F consists of
one world andg and A are bothsimple(i.e., every generated subframe is the frame
itself), then there are formulag and ¢» without common variables such that

oAy E L, (11)
there is no splitting interpolant fotl. (12)

Proof: A copy of the proof of Lemnia_3will do. We have to prove that in Claifa5]
we can deleté', 'y, and f; from the given formula. We used th&s to show that
the functions commute. But now that is always the case sihcensists of just one
point. We used; to guarantee that the functioBg andBy are surjective. But since
G and# are simple, the defineBg and By are always surjectivel’y, I'n, and f;
were not used any further in the proof of Lemfal O

4 Transfer of interpolation in combined modal logics  In [[L6] the following tool is
presented to prove interpolation in canonical modal logics.g.atd # be two modal
frames. A frame# is called azigzag producof G and ¥ if # is a substructure of
the direct product; x ¥ in the standard model-theoretic sense, where in addition the
projections are surjective zigzag morphisms (also called bounded or p-morphisms).
The notion of zigzag product is a generalization ofthg a,)-products in Mak-
simova m ((a1, ap)-products are defined for unimodal Kripke frames with a re-
flexive and transitive accessibility relation.) The following Lemma generalizes The-
orem 2 in [L4] to arbitrary classes of frames.

Lemma 4.1 (Lg): Theorem B.4.5) If the modal logic of a clas of frames is
canonical andK is closed under zigzag products, then the logic enjoys (Arrow) in-
terpolation.

Animmediate consequence of being closed under zigzag products (because universal
Horn sentences are preserved under substructures of direct products) is the following
theorem.

Theorem 4.2 Every Sahlqgvist axiomatizable modal logic whose axioms corre-
spond to universal Horn formulas enjoys the (Arrow) interpolation property.

Our examples show how existential, or universal but disjunctive, frame conditions
can indeed lead to failure of interpolation.
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For the relevance property/Halid-completeness there exists a similar criterion
provided in[21]. We present the short proof for completeness.

Lemma4.3 LetK be a class of frames closed under taking finite direct products in
which the conditio’vx3y R xy holds for all relations R Then the relevance property
holds in the modal logic dk.

Proof: On such frame classes there are up to logical equivalence only two formulas
built up from constants] and L. So we might as well prove the disjunction prop-
erty. Supposé= ¢ andi= . Then we havek modelstt and9t’, satisfying—¢ and

-, respectively. Because Kievery relation is serial, the two models have the one-
element reflexive frame as@zigzag morphic image. From this it follows quickly
that the product of the two frames underlyioiy and9t’ is a zigzag product. The
obvious valuation now turns this product into a model satisfyhggA —. O

In Figure[llwe have listed a few well-known conditions on frames, together with the
axioms that characterize them. Note that these axioms give rise to canonical modal
logics, so by Theorefd.Zlevery modal logic defined by these axioms enjoys interpo-
lation.

We will see that interpolation does not transfer for any of these logics by taking
products or by forming unions in the sense defined below.

T. p—><p VX RXX reflexivity
4, OOp—>Op VXYZ (RXYA Ry2 — Rx2 transitivity
B. pAOg—=> (AP YXY(RXy— RyX symmetry
5. OpAaoq—> (A Op) VXyZ((RXyA Rx2 — Ry2 euclidicity

Figure 1: Conditions on frames.

4.1 Productsof modal logics In [[Z], bi-dimensional products logicae defined as
follows. The product¥ x G of two standard modal frame$ = (F, R¢) and G =
(G, Rg) is the modal framéF x G, H, V), whereH andV are defined as

X YHX,Y) iff Rexxandy=y
X, YV, y) iff Rgyy andx=X.

The product of two unimodal frames leads to a bimodal frame. We wilkkised
< for the modalities defined over thérelation and theH-relation (v andH are for
vertical and horizontal), respectively. Their meaning is defined in the standard way,
forexamplednt, w I & ¢ if and only if there exists @’ such thatwVw’ andd, w' I+
Q.

For classes of modal framé&sandK'’ the producK x K’ is the class of frames
{Fx G| FeKandGeK'}. If K=K’ we also use the notatidf? to denoteK x K.
For familiar modal logics such ds§, $4, S5, and so forth, we will us&k xK and so
on, to denote the product of the largest classes of frames for which these logics are
complete.
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The notion of product logic can very easily be extendeg-timensional prod-
uct logics by just taking the product nfunimodal systems, but for simplicity we will
restrict ourselves to bi-dimensional logics.

Completeness theorems are known for several caseE].ciMe only mention
the complete inference systems #f andS5°. The clas? of all product frames
can be axiomatized by adding the axioms of commutati®ity p «<— < <> p and
confluence® 8 p — D¢ p to the standard axiomatization for a bi-modal system.
The classS5? of all product frames wher¥ is the universal relation on the columns
and H the universal relation on the rows, can be axiomatized by adding to the above
system the axioms that make bathand< S5-modalities.

Products of modal logics have applications in computer science through their
connection with labeled transition systems and are closely related to (finite variable
fragments of) first-order logic as follows. L@D, |) be afirst-order model. Create the
modal frame("D, =j)i.n Wheres =; tif and only if s(j) = t(j) for all j except pos-
siblyi. Then that frame is just a producteframes(D, D x D). Its set of “worlds”
is composed by all the-tuples overD, which we can view as all assignments of the
first n variables orD. Every relation=; corresponds to a diamorjg, which in turn
is the modal counterpart of the first-order quantifier, as is easy to see by writing
out the truth-definition. For more on this way of modalizing first-order logic, we refer
to [16].

Taking products of modal logics is a method of combining lod&@shich im-
mediately leads to interaction between the modalities (viz. the commutativity and
the confluence axioms abovelq shows that the method of dovetailing (a special
case of the fibering logic approach) usually lets interpolation transfer to the combined
system. The difference between dovetailing and taking products is that in the dove-
tailed system there is no interaction between the combined modalities. We will show
that the existential nature of the interaction obtained by taking products often pro-
hibits transfer of interpolation. Both the commutativity and the confluence axiom
are Sahlqvist formulas which correspond/toy(3z(xVzHy «— 3z(xHzVy) and
VXyzZ(XVyA xHz— Jw(yHw A zVw)), respectively.

Wefirst provide a general result. Afterward we derive some corollariesni, et
for n a ndural number viewed as the s 1, ..., n—1}, denote the product frame
with domainn x n whereV andH are universal relations on columns and rows, re-
spectively.

Theorem 4.4 LetK be a class of bi-dimensional product frames containing the
frames2? and32. Then SIP fails in the modal logic df.

Proof: The proof is a purely semantical recast of the proof of Thedzethnow
using Lemm4.3 Take the frames2and ¥ and define a fram¢ consisting of two
states withH andV universal accessibility relations. The functions mapping all states
on the diagonal to one state ff, and all states not in the diagonal to the other are
surjective zigzag morphisms. Cf. the picture below (the relatior t# , and F are
actually the reflexive transitive closure of the relations shown).
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et ———>gt——— >

b1 b2 a3 P
S b1 NV
— —»H
V N
G ®s 8% T T T .
®ar ® b2
m n
T T T T T T %
Since all three frames are simple, in the sense that every world generates the whole

frame, the conditions on generation of Lemfalare met. We will prove now that
there is no framef such that

JESO p— ©Sp, orequivalently,
JEVXyA(XHYyA yV2 — Jw(xVw A wH2)), (13)
there are surjective zigzag morphisgnandh from J ontoG andH, (14)
the morphisms commutejog=noh. (15)

By (IE we have for every elementin J, eithermo g(x) = noh(x) =aormog(x) =
noh(x) =h.

We will now try to construct and show we will fail. Sincey must be surjec-
tive, there should be an element € J such thatg(x;) = bs. By (I5) then either
h(x;) = b} or h(x;) = b,. Sayh(x;) = bj (by the symmetrical nature off, the
proof also goes through if we start frohix;) = b}). BecausdzHay, by (4] we
must have am, € J such that; Hx, andg(x,) = a,. The homomorphism condition
on h makesh(xy) eithera, or b}, but using restrictiofL5lthe former should hold. In
the same way we obtain, by the zigzag conditiog,of,V Xz andg(x3) = b,, and by
homomorphism ofiand [L5), h(xz) = b,. Now by {13), fromx; Hx,V xg we can infer
the existence of ar, such thatx;Vx;Hxs. But then to keep the projections homo-
morphisms we have to makgxs) = by andh(xs) = a; and this is excluded biif).
Hence we cannot find Aas asked for in Lemnfa3land SIP fails. The picture below
shows where the contradiction is found.

x4 [9>‘€l, h->al]l x3 [g->b2, h->b2']
e ——-——-——-—+>0

__,H

J Y

x1 [g->b3, h->b1] X2 [g->a2, h->a2’]

O

Corollary 45 LetS, andS, be modal logics both weaker th&5. Then SIP fails
in the product of5; andS,.
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Section 7 of[f] shows that the product of two elementary frame classes is itself ele-
mentary. So in these cases, the local consequence relation is compact and failure of
SIP implies failure of all three types of interpolation. Now we can infer many non-
transference results, for example:

Corollary 4.6 LetK;andK; be two classes of frames defined by some subset of the
list of axioms in Figur&] Both the logics oK, andK» enjoy all types of interpolation
but all of them fail in the logic of the produé&; x Ko.

In general we can conclude that interpolation does not transfer when taking prod-
ucts. (A noticeable exception is the product of two classes where the accessibility
relation is a (partial) function. Interpolation for this class can easily be shown using
LemmaZ1])

Sain [L9], Theorem 2 implies that the Beth definability property fails for the class
S5 x S5 but that the AIP relevance property holds. We conjecture that the Beth prop-
erty also fails in the product of two tense logics (where we assume nothing about the
accessibility relations). The proof would be a combination of Sain’s counterexample
and the proof of Theorem 1.1.

We have some positive news concerning the relevance property though.

Theorem 4.7 LetKq, K> be two classes of frames, both closed under finite direct
products in the model-theoretic sense. If the relationkirand K, are serial, then
the logic of the bi-dimensional produkt x K, has the AIP relevance property.

Proof: By LemmalZ3lJit is sufficient to show thaK; x K is closed under finite
direct products. Lek denote the bi-dimensional product, aRdhe direct product
of structures. We claim that for all frames B, C, D,

AxB)RICxD)=(ARC) x (BRD). (16)

(16) is simple to prove using the obvious isomorphism which sefgdsh), (c, d))
to ((a, c), (b, d)). BecauseK; andK, are closed under finite direct produc
implies thatk; x K5 is closed under them as well. O

Wewill now turn our attention to other combined modal logics: Humberstone's logic
of inaccessibility and its generalization to unions of modal logics.

4.2 Humberstone'sinaccessibility logic  In [[LZ], Humberstone presented the logic
of inaccessibility HIL, an extension of the classical modal systems through the intro-
duction of a new modality—) that has as associated relation the complement of the
accessibility relation of ) (which in this case we will denote byt)). Humberstone
proved that the inaccessibility operatej greatly increases the expressive power of
the logic. New properties of frames suchrasflexivity, asymmetryandintransitivity
can now be captured by the system. For this logic, the questions about finite axiom-
atization and finite model property were already solved (GalBh@argov, Passy,
and Tinchev[[dJ) but interpolation was still open. We will show that interpolation
fails.

A framefor HIL is a structure? = (F, R, R_) whereF is a nonempty set and
R,, R_ are binary relations of that satisfy the conditiodR_)¢ = R, (R stands
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for the complement oR). Truth is defined as usual.
Forje{+, -}, (F. v, wlk (j)e iff 3Jw' eF Rww & (F,v), w I ¢.

[1d) contains an axiom system for HIL. They show that the class of HIL-frames and
the class of frameéW, Ry, Ry) whereR; U Ry is an equivalence relation have the
same modaj{+), () }-theory. (The notion of “conditions over unions” will be gen-
eralized in SectiofL3). But then, by a simple Sahlqvist argument, the basic bi-
modal axiom system enriched with axioms which make the defined modgality=

(e v B e) anS5-modality is sound and complete for HIL.

Theorem 4.8  All three types of interpolation fail for Humberstone’s Inaccessibility
Logic, even in the strong sense of the relevance property.

Proof: Let K be the class of all framedV, Ry, R,) whereR; U R, is an equiva-
lence relation. We will show that SIP fails for the bi-modal logidofin Sectiorf4.3]

we will show that each of the conditions reflexivity, symmetry and transitivity of the
union alone leads to failure of interpolation (Coroll&Z]). SinceK is elementary

and obviously closed under point-generated subframes this implies that all interpola-
tion properties fail, and because the intended HIL-framed<anave the same modal
theory, this implies the theorem. O

This is the “lazy” proof using Lemmia.3] We will now provide an explicit coun-
terexample, which also works for the expansion of HIL with the “past” or inverse
operators.

Gorankol[LT] extended the expressive power of HIL by defining the system HIL
which includes not only the complement operater, but also the inverse operators
(H); and(-); that have as associated relations the converBe @hdR_, respectively.
This systemis so powerful that it can give a categorical characterization of the natural
order(N, <) (which cannot be achieved in, for example, first-order logic).

A framefor HIL; isa structuref =(F, R,, R_, Ri+, Ri,) whereF is a nonempty
setandR,, R_, R, R_ are relations orF x F that satisfy the condition6R_)¢ =
Ri, R, = R71, R = R Notice that given a HI|.frame we can obtain a HIL
frame just “forgetting” the inverse relations.

Truth is defined using the standard clauses.

Forje{+, -}, (F.v),wl-(j)e iff 3Juw' eF, Riww/ & (F,v), w IF o.

Forje{+, -}, (F,v),wlk (j)jp iff 3Juw' eF, ijw/ & (F,v), w IFo.
A complete Sahlqvist axiomatization for this system is givem.[Again defining
()¢ = (e Vv (Pe) the axiomatic system for Hilis built from the distributive ax-
ioms, the basic temporal axioms and@msystem for(x). Thus, just as in the case
of HIL, the intended HIl. frames and the class Hilof frames(F, Ry, Ry, Rs, Rs)
whereR; = R3—1, R, = R;l andR; U Ry is an equivalence relation have the same
modal{(H), (=), (i, (-)i}-theory.

We will prove that the addition of the inverse modalities to HIL is not enough to

regain interpolation.

Theorem 4.9  All three types of interpolation fail for Humberstone’s Inaccessibility
Logic with Inverse Operators. Furthermore all three relevance properties fail.
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Proof: Applying LemmaB.6lto the following frames proves the theorem. Instead
of using that lemma we extract two formulas which describe the crucial properties of
these frames.

(Here we don't show the converse relations.)
We propose the following HIL-formulas (the subscriptg@ndh are proposi-
tional variables):

¢ (Gan[+]=0a) A B (Ge A+]=0c)
(2 H((hy = Hha) A (=hy — (H)=hy)) A (H((hy —
) hy) A (=hy — (=) =hy)).
We claim thaty — v is HIL;-valid, whence also HIL-valid.

Take any HIL frame ¥, any valuationvs and any worldw € F and as-
sume that{ 7, v¢), w I ¢. By the semantic definitions af-) and (+), there exist
worldsw’, w” € F such thawR_w’ andwR,w” and( ¥, vg), w' IF ga A [+]—0a,
(Fovg),w” IF gec A [+]—0c. As ¥ is a HILi-frame this impliesw’'R_w’ and
w’R_w” (w'IF ga A [+]—ga andw” IF gp A [+]—0p forbid w’ R, w’ andw” R, w”,
respectively.) But this directly impliesF, v¢), w - . Thusp — v is valid in HIL;.

To prove that there is no interpolant we use the frames proposed above. Trans-
form framesG and# into models by providing the valuationg; andv,, such that
v5(gw) = {w}forw e {a, b, ¢} andvy (hy) = {@'}, vy (hy) = {b', ¢’} andvy (he) =
{c}.

From this,(G, vg). bl ¢. Let 6 be any Hil-formula in the common language
of ¢ andy, that is, it is constructed from constants, such that v is HIL; valid.
Thenalsq g, VG)s b 6. Now, using the fact that the functionsending all elements
in Gtow in F is a zigzag morphism (for Hil), ( F, v¢), w - 6. Asall elements irH
are mapped ta andn (defined just amoverH) is dso a zigzag morphism, all force
6. But, as is easy to checkf{ , v4/) = —v. Thusg — v has no interpolant, whence
the relevance version of AIP fails in HILBecause — 1 is already HIL-valid, this
is also a counterexample for AIP in HIL.

We provided a counterexample to AIP and not to TIP. But the fact that in HIL
(and then also in HIY) the universal diamong«) can be defined, makes it easy to
transform it in such a proof£)¢ = ()¢ v ()¢ means  somewhere in the frame”).
Because& — v is HIL;-valid, (x)¢ = (). If weassume there is a (turnstile) inter-
polantf we can again use model§, vy), (G, vg) and(#H , vy) to derive a contra-
diction. Clearly(G, vg) = (*)¢ which implies(G, vg) = 6. As aove, this makes
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(F,vg) =6 and hencéH , vy ) = 6. As 6 is an interpolant we obtait?{ , vy) =
(*)v¥. But as we said before, nowhere(#/, v,) doesy hold. O

We will now provide a more fine-grained analysis of the failure of interpolation in
HIL by generalizing it to unions of modal logics. This will show that there are several
reasons for this failure and indicate the possible ways in which interpolation can be
regained by expanding the language.

4.3 Unions of modal logics As we saw, the HIL-system is equivalent to the bi-
modal logic of the class of frame&¥V, Ry, Ry) where theunionof R; andR; is an
equivalence relation. We can generalize this to a way of combining logics which we
call union logics Let | be some index set. Atrunion logic is a polymodal logic
(containing modalitie$(i) | i € 1}) of aclass ofl-frames(W, R;);c, where the union

of all relationsR; satisfies some condition.

Union logics are a natural class in a polymodal framework. In many cases, a
requirement over a relation in the model is too strong. Suppose for example that rela-
tions represent actions. Then we might want to require that in each state, there is some
action that does not change the state. But perhaps this action is not always the same!
If the temperature is increasing, for example, a stable state is obtained by cooling,
whereas we need heating if the temperature is going down. In these cases a reflexive
condition over the union of the relations representing the possible actions is what we
need.

Union logics are also related to the field of Informations Systems (Pali@k [
Based on the notion of rough sets, these systems try to capture relationships of indis-
cernibility among objects. Clearly, these relations are equivalence relations, but usu-
ally a further condition of Local Agreement is needed to obtain an accurate model of
the situation: for each fram@=, R));c, there is a linear ordex on | such thai < |
implies Ry € R;. This condition reflects the fact that the different relations are mod-
eling different degrees of indiscernibility over the same objects. Gal@oprpves
that if RandSare equivalence relations then the Local Agreement conditionRver
andSis equivalent to transitivity oRU S. Because of this, Local Agreement Logics
are a kind of union logic. It is at present open whether interpolation holds for this
logic of local agreement.

For the axiomatization of union logics, we can also generalize the idea used for
HIL. Let Sbe a modal system, defining)y = Vie (i)Yo, the axiomatic system for
Ui Sis built from the distribution axioms for ea¢h plus anSsystem for(x). Are-
ces (unpublished) proves that3fis an axiomatic system with axioms in Sahlgvist
form, then the system given above fof;_, Sis a correct and complete Sahlqvist ax-
iomatization for its corresponding class of frames. The proof is simple and relies on
the fact that changing a diamond modalftyin a Sahlqvist formula by a finite dis-
junction of modalities\/;, (i) gives again a Sahlqvist formula which characterizes
the same property the former formula did but this time over the union of the accessi-
bility relations.

We will now show that any of the conditions from Figuideads to failure of
interpolation when they are stipulated over a union of relations and when the class of
frames contains a few, very small frames where the union is an equivalence relation.
Recall that any monomodal logic defined by a subset of these conditions enjoys in-
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terpolation, so we obtain another example where transfer of interpolation fails. We
first prove a general result, then mention some corollaries.

Theorem 4.10 Let | be a set of indices of size larger than 1. kebe a class of
frames(W, R;);c, which satisfies

min K contains all finite frame$W, Ri);c; where( J;., R is an equiv-
alence relation.

max at least one of the conditions from Figlickbut now specified
over| i, Riis valid inK.

Then the relevance version of SIP fails in the union Ig¥c (K).

Proof: Wewill use Lemm42.6] Fix an index set. Firstwe give three frames which
lead to failure of SIP when the union is either reflexive or transitive.

oF O,
[ ] [}
/' \\ Rl /' \\
G - \ - = H - \
/ \ / \
1 \ — R2 i \
| l} | ]
v 4 ) v
a’l c m n a T c
o - 4 o . [ ] [ )
' \
Q \_/ N s Q V\\_—// Q
F eV

<N
v

The relationsR; with i # 1, 2 are empty. Clearlyn andn mapping all elements te
are zigzag morphisms and each elemengaind# generates the full frame.

First assumé J; R must be reflexive ik. Then no frame irK can exist with
commuting zigzag morphisms ontg and A, becauseg contains anR;-reflexive
point, while H does not.

Now assum¢ J; R, must be transitive. Again, we start the intended construction
of 7 by an elemenk; € J which is mapped tain G, g(x;) = a (it exists by surjec-
tivity.) We analyze the cade(x;) = a (for the other elements iH the argument is
similar, note the symmetry off.) Using the relatiorR; in frame G and the condi-
tions ong andh there exist elements andxz in J such thatR; x;xo and Ry Xox3 and
furthermore g(x2) = b, h(x2) = b, g(x3) = ¢, andh(xz) = ¢’. Then transitivity of
the union would forceR;x; X3 for somei, but the homomorphism condition makes
this impossible.
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x2 [g->b, h->b']

_ o - - __y»R1
7/ N\
/ \ ....» Ri
J \ g
I I
\ X I
L >< ‘4 ¥
o )
x1[g->a, h->a’] x3 [g->c, h->C']

For the cases where the union of the relations is either symmetric or Euclidean, we
only give the frames and leave it to the reader to check that the counterexample works.
In both cases the relatiori® for i & {1, 2} are empty and the zigzag morphismsn

map all elements ta.

G PN
C./a bA.i:/
~—__~ \\

G _ _ _,RL

- ~

H
g Sa g Sa
PN ,~
W _® g h® — R2 ® o b'®
- \,\m‘ n C D
w
F °.

!

H PN
///W// Cée w20
n !

__,R1

__LR2
F »."
\ I}

~

O

Corollary 411  Wejust obtained four different reasons why SIP fails in the union
logic of an equivalence relation, whence four reasons for failure of SIP in HIL.

The next corollary is the counterpart of Coroll&ngl(for products) which shows that
transfer of interpolation fails for these unions of modal logics.

Corollary 412 Consider the modal theory of the class of frands R);c; where
Uic| R satisfies some (nonempty) subset of the axioms from Higufé¢! | = 1, all
types of interpolation hold. Ifl| > 1 and finite, the relevance version of all types of
interpolation fails.

5 Conclusion and further directions We have seen that interaction of an existen-
tial or disjunctive kind between modalities often blocks transfer of interpolation in
combinations of modal logics. If interpolation or the Robinson consistency property
is important for the intended application of the combined modal logic, then further
work in the logic-design phase is needed to fix the failure. Interpolation can show
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complex behavior when we consider reducts and expansions. For instance, monadic
first-order logic with just one variable (i.e., modal lo@6) has interpolation, it fails

in all other finite variable fragments, but it holds again in full first-order logic. If
the counterexample is based on a “limited counting argument,” then one often has to
consider infinite similarity types to regain interpolation (e.g., interpolation fails for
the difference operator, but is obtained when expanding the logic with all counting
modalities). The four different reasons we provided for failure of interpolation in HIL
each suggest an expansion of the language in which it might be recovered. For ex-
ample, the symmetry-example leads one to consider modalities with the following
truth-definition.

wlk (i, e iff  Ju': wRw & wRjw& w' - ¢.

Using them, we can eliminate the indeterminacy arising from the symmetry condition
over the union. We think that the recipe provided by Leniin&is useful for a sys-
tematic search for expansions which lead to regaining interpolation. We finish with
the following open problem concerning the logic of inaccessibility.

Problem 5.1  Find an expansion of HIL which enjoys interpolation and keeps the
HIL-properties of decidability and finite (schema) axiomatizability. In the optimal
case not even the complexity of the validity problem should go up.
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