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A Kripkean Approach
to Unknowability and Truth

LEON HORSTEN

Abstract We consider alanguage containing partial predicatesfor subjective
knowability and truth. For thislanguage, inductive hierarchy rulesare proposed
which build up the extension and anti-extension of these partial predicatesin
stages. Thelogical interaction between the extension of the truth predicate and
the anti-extension of the knowability predicateis investigated.

1 Introduction Kripke[Q] develops acontext-insensitive approach to the seman-
tic paradoxes, in which the truth predicate is treated as a partial predicate. Toward
the end of his paper he briefly considers extending his approach to notions other than
truth, such as necessity ([[10], pp. 78-79). He considers treating necessity as a predi-
cate and giving its semanticsin terms of the necessity operator and thetruth predicate.
Furthermore, he says:

We can even “kick away the ladder,” and take Nec(x) [i.e., the necessity predi-
cate] as a primitive, treating it in a possible-world scheme asiifit were defined
by an operator plus atruth predicate. Like remarks apply to the propositional
attitudes, if we are willing to treat them, using possible worlds, like modal op-
erators. (I myself [sic] think that such atreatment involves considerable philo-
sophical difficulties.) It is possible that the present approach can be applied
to the supposed predicates of sentences in question without using either inten-
sional operators or possible worlds, but at present | have no idea how to do so.

([a], p. 75)

Until today, there have been no published attempts to work out the suggestion that
Kripke makes in the (first part of the) last sentence of this quotation. In the present
paper it will be attempted to do thisfor knowl edge predicatesrather than for necessity
predicates.! Toward the end of the paper some remarks are made on extending the
approach of this paper to languages containing necessity predicates.
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In the present paper, formal languages are considered which have a predicate
(B) expressing the intuitive notion of subjective knowability, or knowability in prin-
ciple (by afixed knowing agent).? Theories of subjective knowability are generated
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by building up the extension and the anti-extension of B in stages that are indexed
by ordinals. Theoriesof knowahility in principle will be collections of sentences that
are made true by models in which the partial interpretation of B is a fixed point of
this inductive procedure: thisis what makes the approach thoroughly Kripkean. In
thefirst of our constructions, atruth predicate (T) isused as an auxiliary tool. It pro-
vides a convenient way to show that an inductive rule for building up the extension
of B has a consistent fixed point. Later it is shown that the truth predicate can also
be given a more substantial role, namely, when an investigation is made of the logi-
cal interaction of the concept of knowability and the concept of truth in a Kripkean
context.

The structure of this paper isasfollows. In Section 2, two simple Kripkean hier-
archy rulesfor knowability and truth are described, and some properties of theserules
are established. It is shown that it is hard to see how the extension of the knowabil-
ity predicate can be significantly enriched as the inductive rule goes through succes-
sor and limit stages. Nevertheless, the stronger hierarchy rules that are proposed in
Section 3 describe ways of nontrivially enriching the anti-extension of the knowa-
bility predicate, which in turn leads to anontrivial enrichment of the truth predicate.
This makes the theory that is proposed here more about un knowability than about
knowability (as onereferee aptly put it). Thefinal section comparesthe theory that is
advanced here with some of the context-sensitive approaches to the epistemic para-
doxes.

2 Simple Kripkean hierarchies of knowability and truth Let us look at some
knowability hierarchies in the context of a three-valued valuation scheme. We will
use, besides a knowability predicate, a Kripkean truth predicate as an auxiliary no-
tion. So let Lpame be the language of first-order arithmetic extended with T (“truth’)
and B (‘knowability’) as our only partial predicates. In other words, some sentences
are taken to be definitely knowable and some sentences are definitely unknowable.
About other sentencesit isindeterminate whether they are knowable or not.

In order to simplify notation, we will in the sequel write T A (BA) instead of
T (g (A)) (B (g (A))), where g (A) is an expression denoting the Godel number of
A. Strictly speaking our notation is of course not even well formed, but it will do for
our purposes. Let CLpare (S) betheclosureof aset Sunder Peano Arithmetic (where
T and B are allowed in instances of the induction scheme) and first-order logic. Let
| =t A abbreviate that the interpretation | Tarski-satisfies the set A of sentences.
And let | =g, A abbreviate that the interpretation | superval uation-satisfies the set
A of sentences.

2.1 The nave hierarchy rule® o

Definition 2.1 (1, (B),, In (T),) denotes the partial structure, with the standard
model IN as the underlying arithmetical structure, defined by stage « of the inductive

rule R .

Definition 2.2 1,(B); denotesthe extension of B at stage« of therule R ; 1n(B),,
denotes the anti-extension of B at stage « of therule R n; 1,(T); denotes the exten-
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sionof T at stage « of therule R ; 1n(T), denotesthe anti-extension of T at stage «
of therule R .

Thenthefollowingisanaiveway of defining ahierarchy rule X o for truth and knowa-
bility:

1 1o(B)y = lo(B)g =1lo(M)§ =1o(T)y =2;
2. lo(B)f,, =
Clpare [lo(B)f U{TC|Ce lg(B)F}U{=TC|—=Ce lo(B)}}];
3 loMi, = {Al(lo(B)y, lo (M) s Al
4 lo(Myr1= {Al{lo(B)y, lo(T)y) Fsv ~A};
5. lo(B)yyr= lo(Myyqs
6. IO(T);r = UIO(T)iV for y alimit ordinal;
7. lo(T), = U lo (T)Z, for y alimit ordinal;
8 loB)}F = (Ul®t)u
{VxA(x)| forall n, A(n) IO(B)Zfor somep < y} for y alimit ordinal;
9. lo(B), = Ulo(T)Z, foryalimitordinal.

The clauses of R g deserve some comment. We come to know facts about the natural
numbers (and about the knowability and truth-value of such facts) by proving them.
In the present approach, we take these proofs to be carried out in a classical, two-
valued language. Then it is natural to work with a supervaluation scheme, asis done
in R (clauses 3 and 4). It is aso possible to work with a Kleene scheme. But then
the clauses for defining the extension of B would have to be different: wewould have
to take the knower to prove things in partial Peano Arithmetic.3

The successor clause for 1, (B)™ says that what the idealized knower knows at
the successor stage is the closure of:

1. all sentences which she already knew at the previous stage;
2. that what she knew at the previous stage is true;
3. that the negations of these sentences are not true.

This seems to embody reasonable reflection properties for knowability. At limit
stages, theknower reflectson thefact that shehasproved A (Q) for all natural numbers
n and correctly concludesfrom thisthat VXA (x). Inthe hierarchy determined by R o,
theknower “learns’ about arithmetic and the notion of truth. We could strengthen R
abit so that the knower also learns about knowledge. For this purpose, we would add
to the extension of B at successor stageso + 1 alsothe sets {BA| A€ |1 (B)} } and
{-BA|—=A€11(B)}}. Analogues of the propositions that we will prove for % o
also hold for the resulting rule.

2.2 Theinductiverule®; Theinductiverule R isin certain respectstoo strong.
The limit-clause for the extension of B implies that the extension of B at the least
fixed point is closed under the infinitary w-rule. But systems that are closed under
the w-rule prove dl first-order arithmetical truths (see e.g., Hinman [, pp. 121-22).
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So the least fixed point model of R o takes all arithmetical truths to be subjectively
knowable. Even though great mindslike Godel and Hilbert have expressed sympathy
for this consequence, many philosophers and mathematicians have taken issue with
it. So philosophical caution seems to demand that at limit stages we let the extension
of B be simply the union of the extensions of B at earlier stages.* But if we weaken
R o inthisway, then the extension of B at theleast fixed point becomes uninteresting.
Itiseasy to seethat it becomesthetheory that is obtained by closing Peano Arithmetic
under the inference rules:

From A, infer T A.
From —A, infer =T A.

Considerations such asthese point to thefact that it isvery difficult to see how induc-
tive hierarchy rules can give an interesting account of how the extension of B “grows”
in stages. Because of this, we will let the extension of B be constant throughout the
stages of the hierarchy rulesthat will be formulated in the sequel.

The extension of B should then be identified with a sufficiently strong axiomatic
theory of truth and knowability. Reinhardt [12] arguesin the context of aKleeneval-
uation scheme that the collection of all sentences A suchthat T(A) is provablein the
Kripke-Feferman system constitutes a rich theory of truth.> But we are working in
the context of a supervaluation scheme. Therefore it is more suitable to concentrate
on Cantini’s axiomatic theory VF.6 Let VFT be the theory that consists of all sen-
tences A such that T(A) isprovablein VF. Thenwewill set the extension of B equal
to VF'T at al stages of the inductive rules that will henceforth be considered.

We have seen that the knower also ought to be capable of proving nontrivial
propositions about knowability (and its relation to truth). This should lead one to
consider extensionsof VF by plausible axioms governing the notion of knowability.”
The resulting proof systems would be interesting in their own right.8 Nevertheless,
such a proof-theoretic investigation would detract from the model-theoretic investi-
gation that we are currently engaged in. Therefore, this line will not be pursued fur-
ther here.

Since we have decided to let the extension of B coincide with VE'T' already at
stage 0, we haveto ensurethat VF T isasoincludedintheextensionof T at stage O of
our inductive rules.® This can be done in the following way. Consider the classical
supervaluation rule §. ldentify the extension (anti-extension) of T at stage 0 with
the extension (anti-extension) of T at the least fixed point F of § (where B istreated
as a partial predicate of which the extension and anti-extension remain empty at all
stages). It iseasy to seethat theleast fixed point F of § makesall axiomsof VF true
(51, p. 250).

Here then isa simple but intuitively sound hierarchy rule R 1:

1 LB} = VFT,

2. 11.(B)y = g,

3 (M = {AlFEs A,

4 11(M)yg = {AlFE«s—A}L

5 My, = (Al{11(B)y, 11(T)y) Esv A},
6. 11(Myyr = {Al{1(B)y, 11(T)y) Esv —A}
7. 1B, = 1B,
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8 11(B)yr1 = (M1 UIlL(B)g,

9. I1(M) = Ul (MZ, for yalimitordinal,
10. 11(B); = Ul (B)ZL, for y alimit ordinal,
11 12(T), = UMz, foryalimit ordinal,
12. 11.(B), = Ul (®B)Z, foryalimitordinal.

Note that at successor stages, X ; includes I1 (B), in the anti-extension of B. This
inclusion is doing no work in X 1, since |1 (B); = @. But in Section 3, inductive
rules will be defined in which R 1 is used as an auxiliary rule. In these situations,
11 (B)g will not usually be set equal to @, and I1 (B), will have to be included in
l1 (B),.1 inorder to ensure monotonicity.

We go on to prove some simple propositions about & ; which will be shared by
the stronger hierarchy rulesthat will be proposed in subsequent sections.

2.3 Simple properties of 1
Proposition 2.3 X, ismonotoneinBand T.

Proof: It sufficesto note that =g, iS monotone. O

Proposition 2.4 For all Aanda: if Ac 11 (B)],then Ae Iy (T)}.

Proof: By transfiniteinduction. Since I1 (B)* is constant, the only nontrivial case
iswhen « = 0. But thisfollows from the fact that F makes all theorems of VF true.
O

Proposition 25 For all o, 11 (T)I N 11(T), = @.

Proof: By areductio. If thereisat least 8 for which the property fails, then it must
be a successor ordinal. Let 8 = a + 1 be the least such ordinal. This means that
wehavean A e 11 (T) ;N 11(T) 4, anditisgiven that |1 (T)F N 11(T); = 2.
Since Iy (B)F € 11.(T)},and 11 (B), = 11 (T),, weadsohave I (B)] N1y (B), =
@. But then for al A, if (1;(B),,11(T),) Es A, it cannot be the case that
(11 (B)y, 11 (T)y) Esy —A. Contradiction. O

Given the previous propositions it follows that X ; reaches a consistent least fixed
point in both T and B. We now show that the extension of B at the least fixed point
of R, issound, in the following sense.

Proposition 2.6 Consider theleast fixed point (11 (B) g, , 11 (T)g,) of R 1. For all
Al Bk (11 B, 11 (M) A
Proof: Suppose A€ I, (B)j{l. Then Aec Iy (T);El, whereby

(11B)g,. 1 (Mg,) Es A

So by closing off (which we can by the previous proposition), we see that

11 (B)g, - 11 (Mg, ) Ft A
( )
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2.4 Some easy fixed point calculationsFirst we consider the absolute Godel sen-
tence, which says of itself that it is unknowable in principle.

Proposition 2.7  Let Gbesuchthattpars G «— =B (G). ThenG, =G ¢ I (B);‘h.

Proof:
Casel: —Ge l1(B)z, = B(G) e h(B)g, = B(G) € h(T)z, = G e
l1 (B)}“il. Contradiction.

Cae2: Gely (B)}l = -B(G) el (B);;1 = =B (G) el (T)}'(l = B(G) e
li(Mg, = Gely Bg,- Contradiction. O

In other words, according to R 1, the absolute Godel sentenceis absolutely undecid-
able by the knowing agent. Note that the reasoning of the above proposition holdsfor
any consistent fixed point of R ;.

Proposition 2.8 Let G beasin the previous proposition. Then G, =G ¢ |, (T);%.ll

Proof:

Case 1: _ _ﬁG € I1(T)}‘{1 = B(G)ely (T)jh = Gely (B)j(l = Gely (T);h.
Contradiction.

Cae2. Ge |1(T);'il = -B(G) e |1(T);‘il = B(G) e I1(T)z, = G ¢
i (B)g, = Gelp (Dg,- Contradiction. O

Only thelast step of thislast proof will not go through for the stronger inductiverules
that will be considered in the next section. And intuitively itisnot clear that it should
go through: there may be sentences which are definitely unprovable but which are
nevertheless definitely true. Actually, thereis afamiliar Godelian argument to show
that G should really bein the extension of thetruth predicate. For supposethat the ab-
solute Godel sentenceisknowablein principle. If itisknowable, thenitistrue. Butit
saysof itself that it isunknowable! So we reach acontradiction. Therefore G must be
unknowable. But since thisis exactly what it says of itself, it must be true.’® On the
other hand, thisargument certainly hastheflavor of strengthened liar-type reasoning.
And at least in the case of truth, we know that strengthened liar arguments lead to se-
rious trouble. In the Godelian argument under consideration, the suspicious step is
the move from the inconsistency of the assumption that G is knowable to the conclu-
sionthat G is (definitely!?) unknowable. One might seriously wonder whether such
a principle will not, in the present setting, necessarily lead to contradictions. This
question will be taken up in Section 3.

Next we consider the knower sentence,** which says of its own negation that it
is subjectively knowable.

Proposition 29 Let K be such that Fpare K <— B (—=K). Then K,—-K ¢
+

11 (B)%. -

Proof:

Cael. —-Ke |1(B);i1 = —B (—K) ¢ |1(B);i1 = —B (—K) ¢ |1(T);'il —
B(—K)el (T);{1 — —Ke Il(B)il' Contradiction.
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Case2: Kely (B);_h = B(—K)el; (B);‘{1 = B(—K)el; (T);r{1 — =K e
|1(B)£l- Contradiction. O

So according to R ;1 the knower sentence is aso absolutely undecidable by the know-
ing agent.
Proposition 2.10 Let K beasinthepreviousproposition. Then K, =K ¢ I (T);,El.

Proof:

Casel: Kely(Tk = B(=K) e li(T)f = ~Ke l1(B)f = ~K e
|1(T)}‘(l- Contradiction.

Case2: —Ke li(My = -B(=K) e li(My = B(=K) e i(Myz, =
-Kel (B)Eh = —-K e Il(T);h. Contradiction. O

Here again only the last step of the last proof will not go through for the stronger
inductive rules that will be considered in the next section. And by a paralel argu-
ment to that for the truth of G, one might ask whether K should not really be in the
anti-extension of the truth predicate. For suppose that the negation of K is know-
able. Then the negation of K must betrue. But since K says of itself that its negation
is knowable, we obtain that its negation must be unknowable. But this contradicts
the assumption. So the negation of K isunknowable. But since K says of itself that
its negation is knowable, it must be false.’> By arguments similar to those for G and
K one can convince oneself that neither the liar sentence (L) nor its negation belong
to the extension or the anti-extension of B or T (thisis |eft to the reader). Also, the
guestion can be raised whether L and —L should not really be in the anti-extension
of B. For the familiar liar argument shows that from the assumption that L istrue, a
contradiction can easily be derived: if L istrue, then —L, whereby it is not the case
that L istrue. Since it is therefore inconsistent to assume that L is true, L must be
determinately unknowable. Here the suspicious principleisthe movethat allows one
to conclude from the inconsistency of assuming that a sentence is true to the conclu-
sion that it is definitely unknowable. But note that this principle is weaker than the
suspicious principle involved in the Godelian argument for the truth of G.

In sum, the previous propositions show that the knower sentence and the abso-
lute Godel sentence behave as one would at first blush expect on a Kripkean picture,
but one wonders whether it is possible to construct arguably sound inductive rules
for which the least fixed point verifies G, falsifies K, and takes both L and —L to be
definitely unknowable.

3 More Kripkean hierarchies

3.1 Therule®> Wewill now introduce a new inductive rule R », which is just
like R 1, except for the successor clause for | (B),, ;. To describe this rule we first
introduce some terminol ogy.

Definition 3.1 If U,V are partial structures, then we say that U is a substructure
of V (abbreviated: U C V) if and only if UB+ c VBT UB- c VB~ UT+ c vT+,
andUT- cVvT-.
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Definition 3.2 A partial structure U = (UB*+, UB~, U™+ UT~)issaid to beinclu-
siveif and only if

UT+ C {A | (UB+’ UBf’ UT+’ UT7> ':Sv A}

and
UT— C {A| <UB+, UB_, UT+, UT—> ':Sv _'A}

Definition 3.3  For every partia structureU = (UB*+, UB~, U™+ UT~), wesay that

Uisnormal if andonly if UB* NUB- =UT*NUT- = &, U isinclusive, and UB+ C
uT+,

The idea behind this definition is that in order to be a putative candidate for being
asuitable partial interpretation for Lpars, a structure must at least be inclusive and
have the property that whatever it takes to be knowableistrue.

For partial structures U extending the initial stage (11 (B)o. I1 (T)o) of therule
R 1, we denote as |; (B, U); the extension of B at stage « of the rule which is just
like R; except that the initial partial structure is U. Similar conventions hold for
I (B.U)y, I (T.U)F, 1 (T, U);.

We also introduce notation to refer to the structure that has been defined by the
ath stage of arule R ;.

Definition 3.4 5, = (I (B)}, I (B); . li (M), i (T)y)

When it is clear from the context which rule we are referring to, we will sometimes
omit the superscript from ..

Now we define R » to be theinductive rulewhichisjust like & 1, except for the
fact that the successor clausefor | (B),,; now reads:

2 (B)(;—Fl =12 (T);H U
A | for al normal structuresU 2 S: if U =g, A,
then thereisa g such that 14 (T, U); is inconsistent

In other words, at successor stages « + 1 we add to the anti-extension of B those sen-
tences ¢ which are such that if ¢ were assumed to be true and the hierarchy were
continued in accordance with the rule & ; from stage o onward, then | (T);,lr would
become inconsistent for some 8. The underlying ideaisthat if assuming ¢ to betrue
would lead, according to some correct rule, to an inconsistency at some stage, then
that sentence ¢ is definitely unknowable. Or, shorter till, if it is inconsistent for a
given sentence to betrue, then it is definitely unknowable.

As with R 4, it will be shown that %, has a consistent least fixed point. In
addition it will be shown that the least fixed point of &, makes certain sentences
which R ; classifies as neither determinately knowable nor determinately unknow-
able, come out definitely unknowable. As we will see, one such sentence is the
knower sentence of Section 2.4.

All thiswould be of little value if we did not have strong reason to believe that
R, intuitively is a sound rule, that is, that it classifies intuitively true sentences as
true, intuitively false ones as false, intuitively knowable sentences as knowable, and
intuitively unknowable sentences as unknowable. Here is a philosophica argument
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for the soundness of R ,. We already know that the basis of &, (stage 0) is sound.
Since R ,’s clause for limit stages is unobjectionable, it only remains to be verified
that successor stages preserve soundness. And here, evidently, we haveto takeaclose
look at the clause for the anti-extension of B: if it isinconsistent to assume that a sen-
tence is made true, then this sentence is definitely unknowable. Now suppose that for
agiven sentence A it isinconsistent that it is made true. Then there are two possi-
bilities. Either A is determinately false or A has no determinate truth-value. In the
former case Ais, asamatter of course, definitely unknowable. But evenin the latter
case, the only reasonable thing to say is that A is definitely unknowable, for a sen-
tence that has no determinate truth-value can never be known. Soin either case Ais
definitely unknowable. This appears to be a compelling argument for the soundness

of Ro.

3.2 Properties off , The extension of B remains constant at all stages of the rule
R ,. Therefore we easily obtain a generalization of Proposition[24]

Proposition 35  For all normal U extending S}, and for all g: Il(B,U);r -
11(T, V)5, and 12 (B, U)y € 12(T, U)y.

Proof: The proof isthe same as for Proposition[2.4] O

Note that we retrieve Proposition[2.4lfrom this more general proposition by taking
U = (11 (B)g, l1(T)y).

Proposition 3.6 R, ismonotonein T and B.

Proof: By transfinite induction: first we notethat X ; always preserves monotonic-
ity when it is used as an auxiliary rule. For this we are using the fact that for all «,
l1 (B)g S I11(B),4. It then sufficesto check that I, (B), < 12 (B),,, foral a.

Casel: o = 0. Obvious.

Case2: a=pB+1 LetAcly(B),. Theneither Ac I, (T), orforall normal U 2
S/%: if U =g, A, thenthereisay suchthat I, (T, U)j,r isinconsistent. In the former
digunct, we have A € 12(B)_, 4, since 12(T), < 12(T) ;1 € 12(B),,,. Butthe
|latter disjunct isalso acceptable. For takeany normal U* © Sz 1 suchthat U* =, A.
Since Sg11 2 S, we have U* D S;. So, by theinductive hypothesis, 14 (T, U*);f is
inconsistent for some y. So A< 1> (B), ;.

Case3:. c«isalimitordina y. Thenthereisasmallest & < y suchthat A Iz(B)lg
for al g > 6. Then either A € 12(T),, whereby A € 12(T), < l2(T),41 C
12(B), 44, OF foral normal U D S: if U =g, A, then |4 (T, U);r isinconsistent for
some y. Now takeany normal U* © S, suchthat U* =g, A. Since S, © S, we have
U* D S. So by theinductive hypothesis, 11 (T, U*)j must be inconsistent for some
y. So for either digunct we have A 12(B)) 41 O

Proposition 3.7  For all «:
@ L(MINlM, =1B)iNIB), =2.
(b) Forall g: 11 (T, ), isconsistent.
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Proof: By adoubleinduction. Supposethat thereisaleast « for which the property
fails. Then it must be a successor ordinal. Let 8 = o + 1 be the least such ordinal.

Casel: Suppose that part (a) of this property fails. Then either thereisan A €
(M), N 12(M)y g oran Ae 12(B)),, N12(B),, . Thefirst of these possibil-
ities can be dismissed by the inductive hypothesis. So takeany A € 1, (B) and
suppose, for areductio, that A € 1> (B),,,. There are two possihilities.

Subcasel: A€ I(T),, . Butsince Ae I, (B):H, we have A € 12 (T)7, ; (by

Proposition3.5). So we are contradicting the fact that I (T)F,; N 12(T),,, = @.

Subcase2:  We have for al normal U 2 S,: if U |=s, A, then 11 (T, U)y isincon-
sistent for some 8. But since A € 12(B)};, we have A € I>(T)f,. That means
that (12 (B),, 12(T),) Esv A that is, S, Es A. So there must be a 8 such that
I, (T, Sa)‘ﬁF isinconsistent, contradicting part (b) of the inductive hypothesis.

+
a+1’

Case2: Suppose that part (b) of this property fails. We show that

11 (T, Sw)j N1 (T, Spa), = 11 (B, Sa+1)j NI (B, S1), =@

for al y. We proceed by an induction on y (so this is the induction inside the main
induction). It sufficesto look at successor ordinals, so supposethereisaleast ordinal
y = § + 1 for which this property fails. By the inductive hypothesis we cannot have

an Ac Iy (T, S1), N1 (T, Sn1),, 0
Subcasel: Supposethereisan

Acl1(B. Si1)y 1N 11 (B. S q

If Ac11(B, Sur1);,qr then Ae 11 (T, Sipa);, ;- SOif A€ 11(B, Sipa)y, 4, thenif
Ae Iy (T, Sy41);, 4, wewould contradict thefact that | (T, Sa+1):f N1g (T, See1)
a.

y =

Subcase2: It only remains to consider the possibility that A € 11 (B, S,41), - But
this possibility is easily dismissed, since 14 (B, 3x+1)0+ N 11 (B, Sy41), = @, and
11 (B, Sut1)g =11 (B, Sura); forall g. O

It followsfrom these propositionsthat X » hasaconsistent least fixed point which has
amodel in the natural numbers.

Notethat in &, thereisreal logical interaction between the knowability pred-
icate and the truth predicate: the anti-extension of B at o depends on putative later
extensions of T, and the anti-extension of B at «, of course, codetermines the exten-
sionof T at stage « + 1. The extension of the truth predicate is thereby enriched by
the anti-extension of the knowahility predicate in away that cannot be obtained in a
similar way in alanguage which has only one partial predicate (for truth). All thisis
made possible by the conceptual relation between knowability and truth: knowabil-
ity entails truth, so not being definitely true entails being definitely unprovable (but
does not in general entail being definitely false!). Since this conceptual relation also
holds between necessity and truth, something similar can be done for alanguage with
partia predicates for truth and necessity.
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Proposition3.8 L,—-L e l2(B)g, where 12(B)g, is the anti-extension of B at
the least fixed point of & ».

Proof: Takeany (norma) U O & such that U =g, L. Extend U according to X 1
until you reach aleast fixed point Us. By monotonicity, Us =g, L. But we also have
Ut sy L <— =T (L). Sowe have Us =5, —T (L). Since U isafixed point, we
have U; =5, —L, which givesusacontradiction. So L € 1, (B)7, whence by mono-
tonicity wehave L € I, Bg, A similar argument yieldsthat —L € I, B)g,. U

Note that we did not make use of the normality of U in this proof.
Proposition 3.9 —-Ge I2(B);i2, Ke IZ(B);Q.
Proof: Thisissimilar to the proof of the previous proposition. O
The absolute Godel sentence does not belong to the anti-extension of B at the least
fixed point of R ».
Proposition3.10 G¢4 I, Bg,-
Proof: Wemust show that for each S,, thereisanorma U O S, suchthat U =g, G
and 1, (T, U)? is consistent for each B. Consider an arbitrary S,. We form a par-
tial structure U by adding G to the anti-extension of B of S,. Then U =g, =B (G),
whereby U =g, G. Moreover, U isnormal.

UBtNUB~ =UT*NUT~ = &. For otherwise G would belong to the extension
of B of S,, whereby G would belongtotheanti-extensionof T of S,, contradicting the
normality of S,. Moreover, it is easy to see that the extension and the anti-extension

of B and T cannot become overlapping after an application of the successor clause of
R1. Thus I (T, U)‘ér is consistent for each B. O

This, of course, impliesthat G does not come out true at the least fixed point of R ».
In order to make the absolute Godel sentence come out true at the least fixed point we
need to consider an inductive rule that is stronger than X .

3.3 TheruleR3 Therule R 3isdefined exactly like R » except that the successor
clausefor | (B) 1 now reads:

I3(B)yyq = 13(T)7 41U
A | for al normal structuresU 2 S3: if U =g, B (A),
then thereisa g such that 1 (T, U)E isinconsistent

The motivating ideabehind R 3 isthat if it isinconsistent to assume that a sentence ¢
is knowable, then ¢ is definitely unknowable. This rule will alow usto classify the
absolute Godel sentence as definitely true.

3.4 Properties ofR 3

Proposition 3.11 X3 ismonctonein T and B.

Proof: The proof isthe same as for Proposition[3.6] O

Proposition 3.12  If U isnormal, then for all B: 13 (B, U);r C 13 (T, U)g.
Proof:  The proof is the same as for Proposition[3.5] O



UNKNOWABILITY AND TRUTH 401

Proposition 3.13  For all a:

@ 13(T)y N13(M), =13(B); NIz (B), =2.

(b) Forall g: 11 (T, Sﬁ);r is consistent.
Proof: Aswith R » (Proposition[3.7), except for case 1, subcase 2, which now goes
asfollows. We have for all normal U 2 S,: if U =g, B (A), then thereisa 8 such
that 14 (T, U)/‘;r isinconsistent. We have A € I3(B)/ ;. But since the extension of
B does not grow at successor stages of R 3, we have A € 13 (B). Thisimplies that

S =(13(B)y, 13(T),) E B (A). Thereforetheremust bea g suchthat I, (T, Sﬁ);
isinconsistent, contradicting part (b) of the inductive hypothesis. O

Itiseasy to seethat R 3 isat least asstrong as R .
Proposition 3.14 For all A,if Ae I2(T)+2,then Ac I3(T);‘is.

Proof: It sufficesto notethat, by normality, if for all normal U © Ssuchthat U g,
Athereisa g suchthat 14 (T, U)g isinconsistent, thenif SC S, it must be the case
that for all U* D S* such that U* =, B (A) thereisa g such that 14 (T, U*);,lr isin-
consistent. The result then follows by monotonicity. O

Infact, R 3 isstronger: it classifies the absolute Godel sentence astrue.
Proposition3.15 Ge I3 (T)j{s'

Proof: Take any norma U 2 & such that U =g, B (G). Extend U according to
R 1 until you reach aleast fixed point Us. By monotonicity we have Us =g, B (G).
And since U isnormal, Us isalso normal. So G € Uf”. And since U; is afixed
point, we have U; =g, G. But we also have Us 5, G <— —B (G). So we have
Ut =5 —B (G), which leaves us with a contradiction.

So G e 13(B)7 . If weextend the processto aleast fixed point, we still have G €
13(B)g, that is, (I3(B)g, . 13(T)g,) Esy =B (G). Butsince (I3(B)g,, I3(T)x,)
Es G «— —B(G), we have (I3 (B)g, . I3(T)g,) Esy G. Andsincewe are at a
fixed point, we have G < I3 (T)}‘h. O

G isan example of a sentence whichisin I3 (B); but notin I1 (B), for any «. By
using suitable coding techniques, for each successor stage o + 1 whichissmaller than
the closure ordinal of X3, a new sentence can be found which isin I3(B),,, but
which does not belong to the anti-extension of B at any stage of the inductive rule
whichisjust like R 5 until stage « and like & ; afterward.!® So thereisastrong sense
inwhich R 3 isan extension of R 1. For instance, take the sentence G’ such that

Fpars G’ «— (—B(G) > —-B(G)).

It is not hard to see that G’ first enters the anti-extension of B of X 3 at stage 2. G’
never entersthe anti-extension of B of therulewhichislike & 5 until stage 1 and like
R, afterward.

Proposition 3.16 —K ¢ IZ(T);ta'

Proof: Take any normal U 2 S such that U =g, B(—K). Extend U according to
R 1 until you reach aleast fixed point Us. By monotonicity, Us =g, B(—=K). SinceU
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isnormal, U isalso hormal. So —K e Uf”. And since Us isafixed point, we have
Ut s —K. But since Us =5, B(—K) and since we have

Ur Esv K <— B(=K),

we also have Us =g, K. Contradiction.
So —K € 13(B)7, whereby —K must be an element of I3(B);(3. So

(I13(B) &, 13(T)%,) Esy =B(=K).

Since aso
(13(B) g5, 13(T) g,) Esv K <— B(=K),

wehave (13(B) g, 13(T) %) F=s» ~K. Andsince(l3(B) ¢, 13(T)g,) isafixed point,
we have =K ¢ I3(T);‘{3. O

So the least fixed point of & 3 makes the absolute knower sentence come out false,
which isin line with our intuitions about this sentence.

Sentences involving iterated knowability predicates behave in essentially the
same way. For instance, take a sentence K’ such that it is provable in PATE that
K" «— BB(—K"). An argument much like the previous one shows that =K’ isalso
in the extension of the truth predicate at the least fixed point of X 3. Again, thisisin
line with our intuitions about such sentences.

3.5 On the philosophical motivation o 3  The philosophical argument that was
given in Section 3.1 for the intuitive soundness of &, does not carry over to the
stronger rule R 3. Prima facie the fact that it is inconsistent for a sentence A to be
knowable does not by itself ensure that it is definitely unknowable. For how can we
be sure that in such casesthere alwaysis afact of the matter whether A isknowable?

| will argue against this that & 3's successor clause for the extension of B does
have a considerable degree of plausibility. Nevertheless, the support that | am able
to givefor R 5 is admittedly significantly weaker than the philosophical support that
was adduced for R 5.

R 3 can be motivated by means of a comparison with the kind of reasoning that
isinvolved in our evaluation of the liar sentence:

L Sentence L is not true.

Using the left-to-right direction (T (L) — L) of the naive Tarskian truth scheme, we
seethat it isinconsistent to assumethat L istrue. In normal circumstancesthiswould
be taken as ample reason to conclude that L isfalse. After al, thiswould just be a
simple instance of areduction ad absurdum inference. But in the present case there
areoverriding reasons against drawing thisinference. For we can usetheright-to-left
direction (L — T (L)) of the Tarskian truth scheme to show that it is equally incon-
sistent to hold that L isfalse. Hence, we conclude in a Kripkean spirit that L has no
determinate truth value.
Compare this with an evaluation of the absolute Godel sentence:

G Sentence G is subjectively unknowable.
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We have seen in Section 2.4 how an instance of the reflexivity principle B (A) — A
can be used to show that it isinconsistent to assumethat G is subjectively knowable.
Thus we are again strongly tempted to conclude from our reductio that G should be
classified as subjectively unknowable. And thistime thereis no overriding reason to
resist thistemptation. For to argue, by analogy with our argument concerning the liar
sentence, that it is also inconsistent to hold that G is unknowable, one would need to
appeal to the converse A — B (A) of the reflection principle for subjective knowa-
bility. But thisis aprinciple that has very little intuitive appeal.

In this way one obtains the impression that there can be no overriding reasons
against concluding from the inconsistency of the knowability of a sentence to its de-
terminate unknowability (unlike the parallel situation for the notion of truth). And
in the absence of such overriding considerations, one ought not to resist the intuitive
pull of reductio ad absurdum-type of inference patterns. In sum, since we have evi-
dencefor it (itsintuitive plausibility) and no threat of overriding evidence against it
(inconsistencies), we have good reasons to believe the clause for the anti-extension
of B to be intuitively sound.

So we have good reasons for believing that X 3 isindeed a coherent inductive
rule and that it classifies certain paradoxical sentences in what appears to be the
“right” way. Of course, it does not follow from this that, perhaps in the context of
some additional justifiable constraints, X 3 does not classify some other paradoxical
sentences in the “wrong” way (although | have been unable to come up with such
examples). Aswas said before, thereis no getting away from the fact that X » is sub-
stantially more secure than R 3.

3.6 Further issues and open problems It would seem that the rules R, and X 3
giveriseto ahierarchy of inductiverules. In R », for instance, R ; is used as an aux-
iliary rule. But since we now know 2 » to be an unobjectionable inductive rule, the
rule X o, which isjust like X » except that its auxiliary ruleis X » instead of X 4, is
also unobjectionable, and so on. It is clear that the resulting hierarchy of inductive
rules must have a least fixed point. But | am at present unable to see whether there
are sentences in the extension of the truth predicate according to X » which are not
also in the extension of the truth predicate according to X ». In other words, for al |
know this hierarchy of inductive rules may reach a fixed point very quickly.

Of coursethere are complexity questionsevenfor & , and & 3. Onthe one hand,
their extensions are at least as complex asthe extension of T in the least fixed model
of the classical Kripkean construction with supervaluations, so they are at least 1‘[%
(see Burgess [4]). But they are also at most IT}, because any inductively defined set
(over the standard mode! of arithmetic) isI1%, evenif inductive definitions areiterated
(seeeg., [, pp. 89-90). So their complexity is exactly I17.24

In the inductive rules that we have considered, the extension of B was kept con-
stant at all stages. If wewould concentrate on necessity instead of knowability, things
would be somewhat different. First, it would seem to be more natural to work with a
Kleene scheme than with supervaluations. But second, we could let the extension of
the necessity predicate coincide with the extension of the truth predicate at all stages.
For if asentence ¢ of Lpars is definitely true, then it is so in virtue of facts about
the natural numbers and facts about the logical properties of truth and necessity. But
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since these facts are all necessary, ¢ must be necessary also. So the extension of the
necessity predicate would be as complex as the extension of the truth predicate.

4 Comparison with context-sensitive approachesContext-sensitive theories of
the paradoxes have been proposed in order to validate certain types of intuitively
correct strengthened-liar-type reasoning concerning semantic and epistemic notions.
Theway inwhich they are ableto deal with the epistemic paradoxesisgenerally con-
sidered one of the strengths of these approaches.®® Within the context-sensitive tradi-
tion there are several proposals asto how the epistemic paradoxes should be handl ed.
In Burge’'sand in Gaifman’s versions of the theory, truth and fal sehood accruesto to-
kens of sentences. On such an account the sentence token,

G Sentence G is subjectively unknowable.

has no truth-value, but by that very fact a distinct token of the sentence type will be
true ([9], p. 125). On Barwise and Etchemendy’s Austinian account, truth and fal-
sity accrues to propositions which have an implicit situation index built in. On this
account, the proposition expressed by G asserts that its own knowability is not con-
tained in the situation sto which G isrestricted. This proposition is considered true,
but the proof witnessing that it istrue does not belong to situation s ([@, p. 128). The
fact witnessing the truth of G does, however, belong to a more comprehensive situa-
tions. A similar analysisisgiven of other intuitively paradoxical epistemic sentences
such as the knower sentence.

It would appear at first sight that—short of moving up to the metalanguage—
the context-insensitive theories would find it difficult to recognize a sense in which
sentences such as the absolute Godel sentence and the knower sentence have a def-
inite truth-value. For instance in [[L1], which purports to give a Kripkean, context-
insensitive theory of knowledge, the absolute Godel sentence and the knower sen-
tence are left without a truth-value.

Neverthel ess, the context-insensitive theory that was sketched in the present pa-
per yields evaluations that are more in consonance with the strengthened-liar-type
evaluations of the context-sensitive approaches. On this account the absolute Godel
sentence is definitely true and the knower sentence is definitely false. But the proofs
of these facts are inaccessible to the knowing agent: the truth of the absolute Godel
sentence and the falsity of the knower sentence cannot be established “from the in-
side”
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NOTES
1. Morgenstern [11] also explores a Kripkean approach to knowability. However, her ap-
proach differs substaintially from the theory that is developed here (cf. Section 4).
2. For adiscussion of the notion of subjective knowability, see Koons [[9], p. 46 ff.
3. Thanksto Albert Visser for pointing this out.
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A referee pointed out that dueto the transfinite character of & o itisnotimmediately clear
that even the successor clause of R o for B isnot too strong. This becomes obvious only
when we see that at transfinite stages no new sentences are added to the extension of B.

He calls the resulting theory KFT'.

VF stands for a‘van Fraassen’. For adetailed description and a proof-theoretic inves-
tigation of VF, see Cantini [5].

K oons [[9] explores an extension of the K ripke-Feferman system with axiomsthat govern
the notion of subjective knowability ([€], pp. 124-26).

For instance, one question concerning such systems that would arise is the following:
what is the proof-theoretic strength of the intuitionistic theory that is entailed by such a
system under Godel’s modal translation from intuitionistic to (epistemic) classical the-
ories?

Otherwise our inductive ruleswould be badly synchronized, in the sensethat therewould
be stages of the rules at which not everything that is definitely knowable would also be
definitely true.

Notethe similarity between this argument and the standard argument that establishesthe
truth of the Gddel sentence for, say, Peano Arithmetic.

Kaplan and Montague [[8] have used this sentence to generate an epistemic paradox: the
so-called Paradox of the Knower.

Note the similarity between this argument and the standard argument that establishesthe
falsity of the so-called Jeroslow sentence for, say, Peano Arithmetic.

This holds also with R » substituted for R .
Thanks to an anonymous referee for pointing this out.

See Anderson [[1], Burge [[3], and Gaifman [[6]. Koons [[9] is an excellent survey of ap-
plications of context-sensitive approaches to epistemic and doxastic paradoxes.
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