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A Supersimple Nonlow Theory

ENRIQUE CASANOVAS and BYUNGHAN KIM

Abstract Thispaper presentsan example of asupersimplenonlow theory and
characterizes its independence relation.

1 Introduction Buechler introduced in[[1]lasubclass of simpletheoriescalled low.
Every stable theory is low, and every supersimple theory having a finite bound of
ranks of complete typesislow. Buechler proved in [[I] that in any low theory, Las-
car strong type is the same as strong type. In Casanovas [2] an example of asimple
nonlow theory appears. In this paper we show an example of a supersimple nonlow
theory.

Recently, in [2] Buechler, Pillay, and Wagner extended Buechler’s proof to the
full class of supersimple theories. Namely, they proved that a supersimple theory
eliminates hyperimaginaries. Thisfact implies that the notions of Lascar strong type
and strong type coincidein asupersimpletheory. But still we believe that knowing an
example of anonlow supersimple theory is useful. After Buechler’s proof appeared,
it was naturally asked, what is a nonlow (super)simple structure? The obvious can-
didates are the following.

Example1l.1 Themodel consistsof adigoint union of countable sets P, (n € o
{0}), where each P, isadisjoint union of countable sets U,,, V, such that both U, and
Vi, can beidentified as[w]" = {A C w : |A] = n}. Now thereasoisabinary relation
R(x, y) such that R(a, b) if and only if a € Uy, b € V, for somen € w ~ {0}, and
anb # @ (when each of U, and V, isidentified as [w]"). It is easy to see that, for
each 2 < k < w, thereis by such that R(x, by) divides over & with respect to k (as
defined below), but not with respect to k — 1.

The theory T of the model has the strict order property, so T is not sim-
ple: the formula R(x; y1) v R(X; y») has the strict order property. For example,
R, {1,...,n) VR {1,....,n}) € RX{L,....,n) VR, {n+1,2,....,n}) C
R {1,....nH VR {n+1,n+23,...,nH--- CRX{,...,nH) VR {n+
1L,n+2,n+3,...,n+n}). Apply compactness.
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Example1.2 The second model is the same as the first one in Example[Ll.1]up to
that each P, isadigoint union of countable setsU,, V,,. Now U, and V;, areidentified
as[w]" and w, respectively. Againthereisabinary relation R(x, y) suchthat R(a, b)
if andonly if ae Up, b € V, for somen € w . {0}, and b € a. Similarly thereisno
fixed k such that whenever R(x, ¢) divides over @, then it does with respect to k.

This time, the formula R(X1; Y) A R(Xo; y) has the strict order property:
R{L...,n,h, W AR{L,....,n},y) 2D R{L,....,n,, »» AR({L,...,n—1, n+ 1},
VY2R{L,....,n}), W AR{L, ....n=2,n+1n+2},y)--- D R(X{1,...,n}H) A
Rx, {n+1,n+2,n+3,...,n+n}). Again apply compactness.

After the previous types of constructions failed, the following was asked next: Is ev-
ery (super)simple theory low? Our example here answers the question negatively.
(Our construction is, in fact, avariation of Example[L2) This says, in the meantime,
Buechler-Pillay-Wagner's proof cannot betrivialized by simply showing a supersim-
pletheory islow.

We assume the reader is familiar with the basic facts about simple theories as
exposed inKim 4] or [[5] and Kimand Pillay [[7]. Let T beatheory inlanguage L and
let p(X, y) € L. Recall that ¢(x, a) divides over A with respect to a natural number
k> 2if thereare g, (i < w) suchthattp(a;/A) =tp(a/A) and {¢p(X, &) : i < w}is
k-inconsistent. Itissaid that ¢(Xx, a) dividesover Aif it dividesover Awith respect to
some k. Let o be an ordinal number. We say that ¢(X, y) divides « timesif there are
parameters (b; 1 i < ) suchthat {(X, b) : i < «} isconsistent and for every i < «,
@(X, by) dividesover {b; : j <i}. Asremarkedin [B], aformulahas the tree property
if and only if it divides w1 times. Henceatheory T issimpleif and only if no formula
divides wq timesin T.

Wesay that T islow if for every formulag(x, y) € L thereisanatural number n,,
suchthat ¢ (X, y) doesnot dividen, times. Thisisequivalent to theoriginal definition
in [[1] which is made in terms of some local rank. If aformuladivides w timesin T,
then T is not supersimple. In the example of asimple nonlow theory in [B] thereisa
formulawhich divides o timesfor every o < w;. Henceit is not supersimple.

In Section 2 we present the theory in our example and in Section 3 we proveits
consistency and completeness. In Section 4 we show that it is nonlow and we check
the supersimplicity of T by the method of counting types as developedin [3]. In Sec-
tion 5 we characterize the notion of independence of T. This gives a second proof of
supersimplicity according to the resultsin [[7].

2 Axioms of T  The language of our theory T has two binary relation symbols
R, E, unary predicates Q°, Q, and P, Q2, Q}, Q2 for every natural number n > 1
and, moreover, n-ary function symbols F, for n > 1. The axioms are as follows.

1. The universeisthe digoint union of Q° and Q.

Rc Qx Q.

E is an equivaence relation on the universe.

Each E-classis R-closed and has infinitely many elementsin Q% and in Q*.
Each P, isan E-equivalence class.

P, isthe digoint union of the infinite sets QY, Q, Q2.

Q< Q®and QRU QR < Q-
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vx e Q%3="u e Q} R(x, u).

If x, y € Q¥ and Yu e QJ(R(X, u) <— R(y,u)), thenx=y.

Ifug,...,une Qf thenthereexistsx € Q2 suchthat R(X, Uy) A --- A R(X, Up).
If U, ..., u, € Q}f areall different, Fy(uy, ..., Up) isthe unique x € Q2 such
that R(X, Uy) A --- A R(X, Up). Otherwise F,(uy, ..., Uy) = U;.

If A, B arefinite digjoint subsets of QP, there existsav € Q2 such that

A\ Rx.v) A A\ =R, v).

xeA xeB

Ifug, ..., unmaredifferent (assets) (n — 1)-tuples, each one consisting of n — 1
different elements of Q} and for eachi = 1,..., m, A;, B; are finite digoint
subsetsof Q2, thenthereexistsau e Q} different fromeach pointinuy, ..., Un
andsuchthat foreachi=1,..., m

/\ RFa@i, u), ) A\ =R(Fa(Ui, u), ).

veA veB;

If U isan E-equivalence class and A, B are finite digjoint subsets of U N Q*
such that |AN Q}| < nfor every n, then there existsa x € U N Q° such that

A Rx.wA A =Rx ).

ueA ueB

If U isan E-equivalence class and A, B are finite disjoint subsets of U N Q°,
then there existsau € U N Q! such that

/\ R(X, U) A /\ —R(X, U).

XeA xeB

Remark 2.1

1

Axiom 14 can be expressed in a first-order language as follows: for every
n, k: YuYug, ..., Un, vy, ..., vk € Q different and such that A\, E(u, Uj) A
/\ik:1 E(u,vi)anduy,...,un & (PLU---U Py), thereexistsax € QO such that
E(u, x) and Al ROX, U) A AK; =R(X, vp).

From axiom 12 it follows that for any A, B digoint subsets of QY there are
infinitely many v € Q2 such that

A\ Rx.v) A A\ =R, v).
xXeA xeB

Similarly for axioms 13, 14, and 15.

If Cisasetof n— 1 elementsof Q} anda e Q} \ C, thenfor any two (n — 1)-
tuplescy, ¢, enumerating C we have F,(cz1, @) = F(c,, a). Hencewemay use
the notation F,(C, a) with the obvious meaning.
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3 Consistency and completeness of T

Proposition 3.1 T isconsistent.

Proof: Let T be the theory of language R, Py, QY, Qf, Q2, F, whose axioms are
R< QY x (QLU Q3), YxP,(x) and (6) to (11). Thistheory is clearly consistent and
it is preserved under unions of chains. It describes Q2 as an arbitrary infinite set and
QP astheset [QL]" of all n-element subsetsof Q, being Rtheinverse of membership
and F, the mapping taking n different elementsay, ..., atoitsset {a, ..., a,}. Let
Ty be the extension of T2 obtained by adding axioms 12 and 13. T, is a complete
theory (this follows from the proof of completeness of T) and it is the theory of all
existentially closed models of T?. The new axioms 12 and 13 indicate that R refines
a bipartite random graph between Q¥ and Q3. But there is at the same time a more
subtle relation between elements of Q! and elementsof Q2: givenmseats A, ..., An
of n— 1 elements of Q}, each new element a € Q} determines m sets of Q2, namely,
A; U {a} determinesthe set {b € Q2 : R(F,(A;, @), b)}.

Now if we fix amodel M, of each T,, and we define M as the disjoint union of
all My, then with the obvious definition for E, Q°%, and Q!, Misamodel of T. O

Let Abeasetinamode of T. Define F;1(A) asthe set of al a € Q} such that
Fa(@g,...,an_1,a) € Aforsomeay, ..., a,_1 € Q} pairwise different and different
from a and define clr (A) as the closure of A under each F,, and F;L. Thisisinde-
pendent of the choice of the model containing A since clg(A) C acl(A). Clearly,

ce(A) = AU Ry (A) U Fy(AU FHA))

n>1

and cl=(A) isfiniteif Aisfinite. Wewill seethat clg(A) = acl(A).

Proposition 3.2 T iscomplete.

Proof: Call aset (inamodel of thistheory) F-closed if it is closed under clg. Let
us work in w-saturated models and let us consider all finite F-closed partia iso-
morphisms, that is, all finite partial isomorphisms which have F-closed domain and
range. We show how to extend a given finite F-closed partial isomorphism f by
adding anew element a to the domain A of f. This proves completeness. There are
different cases to be considered.

Casel: ac Qi Sinceag Aand Ais F-closed, clearly —R(d, a) for al d € A.
Let Aq, ..., Anbedl subsetsof AN Qﬁ havingn — 1 elementsandfori=1,..., m
seta = Fy(A,a). Thenay, ..., ane Q0 Fori:l,...,mletbil,...,bLi beall the
dements b in AN Q2 such that R(a;, b) and let ¢, ...,c‘hi be all the elements c in
AN QZ such that —R(a;, ¢). By axiom 13, the theory proves Ix¢(x) where ¢(X) is
the formula

m ki -
Qe A A\ x# fd) A AN\ RECEA), %), FBD)IA

deA i=1 j=1
Al =RFa(f (A), %), F(E))).
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We take as f(a) arealization of ¢(x). Tomake f U {(a, f(a))} F-closed we have
to add now F,(Aj,a), (i =1,...,m). Obviously we can do it taking as values
F(f(A), f(@), (i=1,...,m).

Case2: a e Q) Let ay,...,a, be the different elements in QF such that
a= Fy(a,...,a,). We know how to add ay, ..., a, to the domain of f. Hence
we can get an F-closed f’ O f such that a;,...,a, € domf’. But this implies
aecdomf’.

Case3: aec Q2. Lethy,..., by beadl theelementsin AN QQ such that R(b;, a)
and let cq, ..., ¢ bedl the elementsin AN Qﬂ such that —R(cj, a). By axiom 12
the theory proves Axp(x) for

m k
p(x) 1= QR A A\ x# fd) A A R(F(B), % A /\ =R(f(c), %)
deA i=1 i=1

Now wedefine f (a) asarealization of ¢(x). Inthiscase f U{(a, f(a))}is F-closed.

Case4: a¢|/J,Prand E(a &) forsomea € A. Assumea e QC. Lethy,...,bn
be all the elementsin A such that E(a, bj) and R(a, bj) and let ¢y, ..., ¢ be al the
elementsin Asuchthat E(a, ¢;) and —R(a, ¢;). Sincebs, ..., bm &, Pn, by axiom
14 the theory proves Ixg(x) for

m

90 1= Q) A E(x, f@) A A x# f(d) A AR Fbi)A

deA i=1
AL =R, f(c)).

Wetake as f(a) aredization of ¢(x). Again f U {(a, f(a))}is F-closed. The case
a e Q! isanalogous, by axiom 15.

Case5: a¢|J,Pnand—E(a &) forevery a’ € A. Assumea e Q. Since E has
infinitely many classes and every E-class hasinfinitely many elementsin Q°, thefol-
lowing is consistent:

p(X) = {QP(X)} U {=Pa(X) : n> 1} U (=E(x, f(d)):d e A}.

Wetake as f(a) arealization of p(x). Thecasea € Q! isanalogous. O

4 T issupersmple and nonlow
Lemma4.l
1. acl(A) =dg(A)
2. Any partial isomor phism between algebraically closed setsis elementary.
3. Assume A=acl(A)anda, b ¢, Q?. If a, b have the same atomic type over

A, then they have the same type over A.
4. If Aisfinite, acl (A) isfinite.
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Proof:  (4) followsfrom (1) and (2) followsfrom (1) and the proof of Proposition[3.2]
since we may assume that the algebraically closed sets are finite and then the partial
isomorphism belongs to the family which we use to prove completeness. By |ook-
ing at the proof of Proposition[3.2Jone can also seethat if A = clg(A) isfinite and
abéeU, Q? have the same atomic type over A, then the mapping which isthe iden-
tity on A and takes a to b can be extended to afinite F-closed partia isomorphism.
Therefore, it belongs to the collection considered in the proof of Proposition[2.2Jand
it is elementary. Hence (3) follows from (1) too. To conclude the proof of (1) we
have to show that acl(A) C clg(A). Wemay assume Aisfinite. Leta & clg(A). In
casea ¢ | J, Q2 looking at the axioms, we easily see that there are infinitely many
objects with the same (atomic) type over clg(A) asa. Hencea ¢ acl(A). Now as-
sumea € Q2. Chooseb € Q} . clg(A) such that R(a, b). By what we have proven
we know that b ¢ acl(A). Let b' (i < w) be different conjugates of b over A. Let
b1, ..., by with b = by the different elements in QF with Fy(by, ..., by) = a and
choose b, ..., bl such that b' = bl and tp(by, ..., bn/A) = tp(b}, ..., b,/ A). Ob-
viously if & = Fn(bl, ..., bl), then {a : i € w} isinfiniteand tp(a;/A) = tp(a/A).
Thisshowsthat a & acl(A). O

We can take as a definition of supersimplicity the nonexistence of a sequence of for-
mulas ¢i (X, ¥;) € L, (i < w) and parametersby, (i < w) suchthat {;j(x, b)) ;i < w}
isconsistent and for every i < w, ¢j(x, bj) dividesover {b; : j < i}. Asshownin[H4],
Remark 11.2.18, if T is not supersimple there exists such sequence with the addi-
tional condition that x isasingle variable. By the same arguments, if X = X4, ..., Xn
and for some fixed formula 6(X), @i(X, ¥i) F 8(X1) A --- A 6(X,), We can obtain
the sequence v (Xj, z) (i < w) in one variable x; with the additional property that
Vi(Xj, z) F 0(x;j). Thiswill be used in what follows.

In [B] it is shown how to decide if atheory is supersimple by counting types.
For «, A infinite cardinal numbers, define NT («, A) asthe supremum of the cardinali-
ties| P| of families P which consist of pairwiseincompatible partial typesof size < «
over a set of cardinality A. As shown in [3], atheory T is supersimple if and only
if NT(k, ) < 2T« 4 5 for al «, A with « < A. Asremarked in [B], by the same
reason as above we may restrict ourselves to typesin one variable. In fact if thereis
abig family P (afamily of cardindity > 2!/T** 4+ X ) of incompatible partial types
p= p(Xi, ..., Xn) Of Sizex over afixed set of cardinality A andfor each p € Pitholds
P(X1, ..., %n) FO(X) A--- AB(Xn), thenthereisaso abig family Q of incompati-
ble partial types of size « in one variable g = q(y) with parameters in afixed set of
cardinality A and such that for each g € Q, q(y) - 6(y). We apply this procedure of
counting typesto our theory T.

Proposition 42 T issupersimple.

Proof: Letx < A. We show that for any set A of cardinality < A there are at most
2 + ) pairwise incompatible partial 1-types of size x over A. Without loss of gener-
dity, Aisalgebraicaly closed. By LemmalZ4.1lin many cases we have only to look at
the atomic part of the types. Let P be afamily of incompatible partial 1-types over
A of size < k. We may assume that for each p € P, p € S(Ap) for an algebraically
closed set Ap € A of cardinality «. Since there are only countably many types over
theempty set, we may assumethat all typesin P havethe samerestriction totheempty
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set and since there are only A many algebraic types over A, we may also assume that
notypein Pisagebraic. Write A={g :i < A}.

Assume first p - QL(x) for each p € P. Each p € P is axiomatized by
{(QL(x)}U{—R(a,x):ae Ap} and aset of formulas of the form R(F,(C, x), a) and
—R(Fn(D, x), b) wherea, b e Ap and C, D are subsetsof n — 1 elementsof A,. We
enumerate the set of all subsets of A of cardindity n — 1, [A]"! = {Cj ] <Al
Let fo:{(i,)) erx1:C € Apandaj € Ap} — 2 be the mapping defined by:
f(i, j) = 0if and only if R(F(Ci, X), aj) € p. Each f, belongs to the collection
Fn(x x A, 2, k™) of al partial mappings from a subset of A x A of power < «* into
2=1{0,1}. If p,q e P areincompatible, the mappings f,, fq areincompatible too,
that is, fp U fqisnot afunction. Since Fn(x x A, 2, x*) has the (2¢)*-chain con-
dition (cf. [B], Lemma V1.6.10) and {fp: p € P} isan antichain, we conclude that
there are at most 2¢ such typesin P.

Consider now the case p - QY(x) for each p e P. Observethat thereisanatural
bijection between types p(x) such that p(x) - Q3(x) and sets { p1(X1), ..., Pn(Xn)}
of types pi(xi) such that p;(x) - Q%(x), namely, given p choose a = p, choose
differenta;...,an € Q% suchthat a= Fn(a, ..., as) and define p; asthetype of a;.
Thetypesin QQ areincompatibleif and only if the corresponding sets of typesin Q}
areincompatible. By the remarks above, the bound for families of incompatibletypes
with p - Q}(x) isalso abound for families of incompatible typeswith p - Q2(x).

Inthe third possible case we have p - Q2(x) for each p € P. Each such pisax-
iomatized by {Q3(x)} U {x# a: a e Ap} and by aset of formulas of theform R(a, )
and —R(b, x) wherea, b € Q%N Ap. Again by achain condition argument we see
that there are at most A many such types.

Now assume p + —P,(x) for each p € P andfor eachn > 1. Supposethat for all
pe P, pF Q%x). Thecasewhere p+ Q*(x) issimilar, sowewill not consider it. If
p and g do not have E-representatives, that is, if for all a € Ap, p=—E(a, x) and for
dlae Ag, g —E(a, x), then piscompatiblewith . Hence we may assume that for
each p € Pthereisanap € Ap suchthat p+- E(ap, X). Since there are only A many
E-classes with representatives in A, it is enough to show that for each a € A there
are at most 2 many types p € P suchthat p+ E(a, x). Observethat Risabipartite
random graph between Q° and Q! in the E-class of a. This means that again a chain
condition argument gives the result. O

Proposition 4.3 T isnonlow.

Proof: We show that the formula R(x, y) divides n times for any n € w. Choose
differentay, ..., an € Q%. Clearly {R(x, &) :i=1,...,n}isconsistent. We claim
thet for every i, R(x, &) dividesover A :={a; : j < i} withrespectton+ 1. To
witness it we take different bj (j < w) in QL A Each b; has the same type over
A asa and {R(x, b)) : j < w} is (n+ 1)-inconsistent. O

5 Forkingandindependencein T  Inthislast section we characterize theindepen-
dencerelation of T, that is, nonforking in T. We define directly the relation A\|/C B
between sets A, B, C and we show that it satisfies all the required properties of inde-
pendencein asimpletheory. Infact the existence of such relation gives another proof
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of thesimplicity of T. Itisshownin [[Z] that any theory with an independencerelation
satisfying some basic properties must be simple and, moreover, thisindependencere-
lation must be just nonforking. Sincein our caseit is clear that for each tuple a and
each set B there exists afinite C C B such that al.B this gives also a proof of su-
persimplicity. We will see that our independence relation satisfies the Independence
Theorem over algebraically closed sets and not only over models. By the resultsin
Kim [6] thisimpliesthat in our theory, Lascar strong type is the same as strong type.

The initial definition of A |

5 C is useful to check the basic properties. We

will see that it is equivalent to acl®™(AC) N acl®™(BC) € acl®™(C). We start defin-
ingcle(A) =acl(A)U{[alg :ae AN |, Pn} and

A| B < deg(A)Nclg(BC) C cg(C).

Cc

Remark 5.1

1. Al Bifandonlyif A | .
2. Al Bifandonlyif acl(A) |

BC.

() acl(B).

3. Incase A C |, Pn, we have clg(A) = acl (A) and, therefore, A\LC Bif and
only if acl (A) Nnacl(BC) C acl(C).
4. If AN, Ph= o, thenclg(A) = AU (A/E) and, moreover, Al.B if and
onlyif ANBC c Cand (A/E) N (BC/E) € C/E.

The following properties are easy to check:

invariance under automor phisms:;

local character:

finite character:

monotonicity:
transitivity:

if A\LC B, then f(A) | f(B) for any

automorphism f;

f(C)

for every tuple a and every set B there is a
countable subset C € B (even finite in our
case) suchthat a | . B;

if aisatupleandfor al tuplesbin B, a¢c b,
then a\|/C B;

ifAcBcCandD | ,C,thenD | C;
fAcBcC DJ,BandD|_C, then
Dl,C

It remains only to provethat | has the three following properties:

symmetry:
extension:

the Independence Theorem over
algebraically closed sets:

if A\Lc B, then B\LC A;

for all sets B C C, for every tuple a there is
atuple a' such that tp(a/B) = tp(a’/B) and
a ] gC

for dl tuples a, b and sets A, B, C such that
Cc ANB,A.B,C=al(C),tp(a/C) =
tp(b/C), a . A and b | . B, there exists
a tuple c such that tp(c/A) = tp(a/A),
tp(c/B) =tp(b/B) andc | . AB.
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We will prove that thisis the case in the next lemmas.

Lemmabs.2
1. Ifa¢g|JQPanda e acl(A), then a € acl(b) for someb € A.
2. Iface Qﬂ and a € acl(A), then there are a1, ...,a, € A such that a €
acl(ag, ..., an).
3. LetB =acl(B)foranyi=1,...,k Ifae Qlnacl(B;U---U By), then
thereareay,...,ane QLN (ByU---UBy) suchthata= Fy(ay, ..., an).

4. Let Bi=acl(B) foranyi=1,...,k Ifacacl(BU---UBy) |, QP then
aeBiU---UBx.

Proof: (1) is clear and (4) follows from (1). To prove (2) and (3) we choose
ai,...,ah € Qtsuchthata= Fn(ay, ..., an). Incaseac acl(A), thenay, ..., a, €
acl(A) and by (1) there are by, ..., b, € A such that a € acl(b;). Hence a €
acl(by,...,bp). Assume now a € acl(By U --- U By). By (1) again, there are
by,...,bh e BfU--- U By such that & € acl(bj). Since every B; is agebraicaly
closed, @ € By U --- U By. O

Lemmab.3 The symmetry property holds.

Proof: Assume A | . B. We want to show B | . A. Without loss of generality,
the sets A, B, C are all algebraicaly closed. Suppose that for some a € clg(B) N
cle(AC), a & clg(C). Suppose first a is not an E-equivalence class. In case a ¢
Up Q° by Lemmal5.2]it is clear that a € acl(AC) ~. C impliesa € A, so we ob-
tain acontradiction. Assumea € Qﬂ. By LemmaE.Zthere are different ay, ..., a, €
(AUC)N QL suchthat Fr(ay, ..., an) =a,sayay, ..., a € Aandajq,...,a, € C.
Sinceae B, ay,...,a € acl(B) = B. By theinitia hypothesis Anacl(CB) C C
and weseethat a4, ..., a € C. It followsthat a € C, acontradiction. Now assume
a=[b]g forsomeb e (AUC) \ |, Pn. Sincea ¢ clg(C), b ¢ C. Henceb € Aand
ae clg(A). Sincea e clg(BC), by theinitial hypothesisa € clg(C), acontradiction
again. O

Observe that once we know that independenceis symmetric, we can also characterize
it asfollows:
A | B < dg(AC)NCclg(BC) C clg(C).
c

Observe also that clg(A) € acl®™(A) and that if a is an E-equivalence class of an
element outside | J,, P, and a € acl®™l(A), then a = [b] e for someb € A. Thismeans
that acl®*¥(AC) N acl®¥(BC) < acl®™(C) implies clg(AC) N clg(BC) < clg(C) and
hence AL:B.On the other hand theindependence rel ation coming from nonforking
in asimple theory has always the property that A | . B implies acl®(AC) \Lacleq(C)
acl®(BC) and hence acl®(AC) N acl®¥(BC) < acl®(C). Therefore, after proving
that | satisfies the extension property and the Independence Theorem we will have
that

A | B <= acl®(AC) N adl®(BC) C acl®(C).
C

Lemmas54 IfA ] B, thenA | ., BD.
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Proof: Againwe may assumethat A, B, C, D areagebraically closed. We assume
cle(A) Nclg(BC) C clg(C) and show clg(A) Nclg(BCD) C clg(CD). Leta e
cle(A) Nclg(BCD). Supposefirst aisnot an equivalenceclass. Incasea ¢ | J,, Q?
it is clear by LemmalE.2]that a € B U C U D and therefore that a € acl(CD). Let
us consider the case a € QY. By Lemmal.2lthereare ay, ..., a, € (BUCUD)N
Qﬁ different and such that Fr(ay,...,an) = a sy a;,...,a € B, aj;1,...,8 €
Candaji1,...,ap € D. Sinceay,...,a, € A, weseethat ay, ..., aj € C. Hence
ai,...,an € CD and therefore a € acl (CD). Assume now a = [b]g for some b €
(BUCUD) N~ JyPn Incaseb € D wearedone. Andincaseb € BUC we get
a e clg(BC) and we may apply the hypothesisto obtain a € clg(C). O

Lemmab.5 Theextension property holds.

Proof: With Lemmal[5.4] an easy induction on the length of the tuples shows that
it is enough to check the extension property for elements, that is, for tuples of length
1. Assume a, B, C are given. We find an element @’ such that tp(a/C) = tp(a’/C)
and & LB Without loss of generality, the sets B, C are algebraically closed and
a¢C. Inthecasea € |, P, it is enough to find tp(a’/C) = tp(a/C) such that
acl(@) Nacl(BC) € C and asit iswell known thisis always possible in any theory.
Now assume a ¢ | J, Pn. If [a]lg € clg(C) we need to find & ¢ BC with the same
(atomic) type over C as a and thisis possible since the types

P (%) = {Q (X} U{E(x, @)} U{x#b:be BC}

fori =0, 1areconsistent. In case[a]g & clg(C) wetake for &’ arealization of one
of the types

pi(X) ;= {Q ()} U{=E(x,b) :be BC}U{=Pn(x) : n> 1}.

Lemmab.6 The Independence Theorem over algebraically closed sets holds.

Proof: Itisenoughto proveitfor elements, that is, for tuplesof length one. Therea-
sonisthat starting from this case we can easily prove by induction on thelength that it
holdsfor any closed tuple a4, ..., an, thatis, atuplesuch that for everyi=1,...,n,
acl(a) € {aj : j < i}, and in our theory every tuple a can be extended to a such
closed tuple a* with clg(a) = clg(a*). Assume C = acl(C), C € AN B, AL:B
alcA b\|,C B and tp(a/C) = tp(b/C). We have to find ¢ such that cl.AB,
tp(c/A) = tp(a/A) and tp(c/B) = tp(b/B). Without loss of generdity, A, B are
algebraically closed and a,b ¢ C. It followsthat a ¢ Aand b ¢ B. Moreover,
C = AN B. There are different cases.

Casel: ae Q. Thenbe Q! Observethat for any (n— 1)-tupled € CN Q} and
any c e CN Q2 we havethat R(Fn(d, a), ¢) if and only if R(Fn(d, b), c). Let 1 be
the set of al pairs (d, ¢) whered isan (n— 1)-tuplein A, c € Aand R(F,(d, a), ¢)
and let Ja be the set of al pairs (d, ¢) in A such that =R(F,(d, a), ¢). Define sim-
ilarly Ig and Jg with b instead of a and B instead of A. It sufficesto takeasc a
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realization of the type

p(u) .= {Qﬁ(u)} Ufu£d:de AUB}U{R(Fy(d,u),c): (d,c) e laU Ig}U
{=R(Fy(d,u),c): (d,c) € JaU JIg}.

Case2: ae Q. Thenbe Q2. Since AN B = C andtp(a/C) = tp(b/C), the
following is consistent:

p(u) := {Qﬁ(u)} U{R(d,u):de A, R(d,a)}U{—R(d,u):de A,—R(d, a)}u
{R(d,u):d e B, R(d,b)} U{—=R(d,u):d e B,-R(d,b)}U{u£d:de AU B}.

We define c as arealization of thistype.

Case3: ae Q) Thenbe QC. Letay, ..., a, € Q-besuchthata= Fy(ay, ..., an)
andletbq, ..., b, besuchthat tp(a, aq, .. ., an/C) =tp(b, by, ..., b,/C). Thenb=
Fa(by, ..., bn). Byiteration of Case 1wefindcy,.. ., ¢y suchthat tp(cy,. .., Ch/A) =
tp(ay, ..., an/A), tp(cy, ..., cn/B) =tp(by, ..., b,/B)andcy,..., cn - AB. We
definec = Fy(cq, ..., Cn).

Case4d: adl|J,Prand[a]g € clg(C). Thenb & |, P, and E(a, b). Without loss
of generality, a, b € Q. Fix ¢’ € Csuchthat [¢']g = [a]e. Thefollowingisconsistent

p(x) ;= {Q°JU{E(x,¢)JU{R(x,d) :d € A, R(a, d)}U
{(=R(x,d):d e A, =R(a,d)} U{R(x,d) : d € B, R(b, d)} U
{=R(x,d):de B,—-R(b,d)}U{x#d:de AU B}.
We define c as arealization of thistype.

Case5: a ¢ |J,P)and[a]le & clg(C). Thenb & |, P, and since al.Aand
b\LC B, we see that [a]g & clg(A) and [b]g & clg(B). We may assume a, b € Q°.
We take as c aredlization of

p(x) == {Q°(X)} U {=Pnr(X) : n> 1} U{—E(x,d) :d e AU B}.

O
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