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Uncompactness of Stit Logics Containing
Generalized Refref Conditionals

MING XU

Abstract  In this paper we prove the uncompactness of every stit logic that
contains a generalized refref conditional and is a sublogic of the stit logic with
refref equivalence, a syntactical condition of uncompactness that covers in-
finitely many stit logics. Thisresult is established through the uncompactness
of every it logic whose semantic structures contain no chain of busy choice se-
guenceswith cardinality n, wherenisany natural number > 0. Thebasicideain
the proof is to apply the notion of companionsto stit sentences in finding busy
choice sequences in structures, and to make use of a relation between chains
of busy choice sequences and generalized refref conditionalsin connecting the
two conditions of uncompactness mentioned above.

1 Introduction Modal logic of agency has along tradition which has been repre-
sented by many philosophers and logiciansin this century.® Following this tradition,
several theories of agency have been proposed by von Kutschera, Horty, Belnap, and
Perloff in a series of articles such as [26], [[13], [16], [E], [E], and [. These theo-
ries are now often referred to as “ stit theories.” They start with “stit sentences’ such
as[a dtit: A] (read “« seesto it that A" where « is an agent term and A is any sen-
tence) whose semantic interpretation, based on the branching time theory proposed
by Prior and Thomason ,isroughly that A isguaranteed true dueto achoice
made by «. If, in this context, the moment at which [« stit: A] is evaluated is the
same moment at which o makes the choice, the result theory is called the delibera-
tive dtit, or dstit. If the moment at which [« stit: A] isevaluated is properly later than
the moment at which « makes the choice, the result theory is called the achievement
stit, or astit. Two closerelatives of these theories are sometimes called bstit and cstit,
where b refers to Brown [[9] and ¢ to Chellas ([[10] and [11]).2 Conceptual or techni-
cal discussions on astit, bstit, cstit, or dstit (including combinations of stit with other
branches of philosophical logic) can be found, in addition to those mentioned above,
in Bartha [[1], Belnap and Bartha [4], Horty ([14] and [[5]), von Kutschera [27], and
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Xu [B1 and [[34] (dstit), and Belnap (2] and [[3]) and Perloff ([19] and [20]) (astit).

The present paper focuses on astit theory. From now on, we use tit for astit.
The main purpose of this paper isto prove that for each stit logic L,

(1) L isuncompact if L contains a “generalized refref conditional” and is a

sublogic of the stit logic with “refref equivalence” (presented in Xu [29));
(2) L isuncompact if the class of al L-structures includes al finite structures

and, for some n > 0, includes no structure containing a chain C of “busy
choice sequences’ with|C| > n, where |C| isthe cardinality of C.

Some explanations of the terms used in (1) and (2) seem necessary. “ Generalized re-
fref conditionals’ are those sentences that indicate, say, doing implies (or isimplied
by) refraining from refraining, refraining implies (or isimplied by) refraining from
refraining fromrefraining, and so on, each of which amounts to a postul ate concern-
ing a certain relation between modes of actions/inactions. A “busy choice sequence’
islike a“super task” that indicates a situation in which an agent has infinitely many
choice points within afinite time. This notion of busy choice sequences, introduced
in Belnap [2] and discussed in Belnap and Perloff [[6] and Xu ([29], [30], and [B3]),
iscentral to astudy of distinct modes of actiong/inactionsin stit theory. For instance,
that thereisno busy choice sequenceisequivaent to that doing implies (or isimplied
by, or iseguivalent to) refraining fromrefraining fromdoing, and hencethereareonly
eight distinct modes of actiong/inactionswhen thereisno busy choice sequence.® Our
study of compactness of the stit theories amountsto astudy that answersthefollowing
questions (and incidentally, the answers are all negative).

(&) When doing istaken to imply (or to be implied by, or to be equivalent to)
refraining from refraining, does a sentencefollowing from aset of premises
follow from finitely many of them?

(b) When we postulate that there is no busy choice sequence, does a sentence
following from a set of premises follow from finitely many of them?

(c) When refraining istaken to imply (or to be implied by, or to be equivalent
to) refraining from refraining from refraining, does a sentence following
from a set of premises follow from finitely many of them?

(d) When we postulate that there isno chain C of busy choice sequences with
|C| > 1, does a sentence following from a set of premises follow from
finitely many of them?

()

Note that there are infinitely many stit logics satisfying the antecedent of (1) aswell
asthat of (2). Notealsothat to establish (1), (2) aloneisnot enough. We need to show
that

(3) each it logic satisfying the antecedent of (1) satisfies that of (2).

Note, finally, that (1) provides asufficient syntactical condition, whereas (2) provides
a sufficient semantic condition, of uncompactness. We establish (1) through (2), and
establish (2) through the use of “companions to stit sentences” applied in Xu ([29],
[32], [B4], and [[35]), though the reader’s familiarity with that notion is not presup-
posed. The notion of companions to stit sentences is a basic technical notion intro-
duced to abtain syntactical characterizationsof astit and dstit logics. Inthis paper, for
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thefirst time, we apply this notion in the context of chains of busy choice sequences
to obtain the uncompactness results.

Uncompactness results in nonclassical logic are familiar phenomena. In modal
logic, for example, KM, KW, and KW.3 are known to be uncompact (see Wang [[28]
and Hughesand Cresswell [[18]* and [[17]); and intenselogic, the U,S-tenselogic over
integer time is an example of uncompact logics (see Reynolds [22]). There are, nev-
ertheless, many modal logics and tense logics that are known to be compact, much
more than those that are known to be uncompact. In contrast to this, only two astit
logics are known to be compact—one is the minimal logic Lyin, with asingle agent,
characterized by the class of all semantic structures, and the other is the largest con-
sistent stit logic Linax, With asingle agent, characterized by the class of al structures
containing no choice points (see [B5] for details).® This suggests that in the area of
adtit, unlike the area of modal logic or tense logic, or even that of dstit (see [B1]),
compactness might not be a common phenomenon.

Section[2]presents basic stit syntactical as well as semantic notions and defines
other preliminary notions such as generalized refref conditionals and busy choice se-
quences. Section[Zlproves (3), and Section[4]establishes both (1) and (2) above. And
finally, Section [Elpresents some remarks on our uncompactness results,

2 Preliminaries  Although our results concerning “ generalized refref conditionals’
and uncompactness hold for stit theories with multiple agents, the formal language
used in this paper contains only a single non-truth-functional operator
[a gtit: ] in addition to denumerably many propositional variables and the truth-
functional operators ~ and A . Formulas are defined as usual, except that [astit: A]
is a formula whenever A is. We will use A, B, C, and so on, to range over for-
mulas, and use ®, ¥, and so on, to range over sets of formulas. Ordinary truth-
functional operatorssuchas v, — , and «<— , and propositional constants T
and 1 areintroduced as abbreviations. We will use [«] A as an abbreviation of
[a stit: A], and use A as an abbreviation of AA ~[a] A.

Let A be any formula. A-refraining formulas (with respect to «) is defined as
follows:

(i) [e]Aisan A-refraining formula (with respect to «);
(if) if Bisan A-refraining formula (with respect to «), so is[«]~B.

For each A-refraining formula B, the A-refraining degree of B, written Rdg”(B), is
defined in aparalel way:

(i) Rdg*([e]A) =0;
(i) if Bisan A-refraining formulaand Rdg”(B) = n, Rdg”([«]~B) = n+ 1.

Let us fix a propositional variable q. The g-refref equivalence (refref equivalence
for short) isthe formula[«]q <— [a]~[a]~[«]q. A (g-)refref conditional is either
[a]g — [a]~[a]~[a]q or [a]~[a]~[a]q — [«]g. A generalized (g-)refref condi-
tional is any formula of the form A — [a]~[«a]~A or [a]~[a]~A — A, where A
isag-refraining formula. In this context, if Rdg9(A) = n, wecal A — [a]~[a]~A
and [a]~[a]~A — Ageneraized refref conditionalswith degreen. Clearly, arefref
conditional is ageneralized refref conditional with degree 0.
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Based on branching time theory proposed by Prior and Thomason (see [21],
[24], and [25]), a semantic structure for astit (briefly, a structure) is any quintu-
ple § = (T, <, Instant, Agent, Choice) satisfying the following postulates: (T, <)
is atree-like frame, that is, T is a nonempty set, whose elements w, m, and so on,
are called moments, and < is a partial order on T subject to historical connection,
ymvm3Iaw(w < mA w < m'), and no downward branching, Vmvuwvw’'(w < mAa
w<m—-w<wvew <w). Weusew < mforw < mand w # m. A maximal
chain h of momentsin T (or a branch of the tree) is called a history, representing a
possible course of history. We use H, H’ and so on, to range over sets of histories,
and for each w € T, let H(,), = {h: w € h}. Two histories h and h" are undivided
atw, writtenh =, ', if and only if 3w’ (w < w’ A w’ € hN h). Instant, whose ele-
mentsi, i’, and so on, are called instants, isapartition of T satisfying uniqueinter sec-
tion, Vivhalm({m} =iNh), and order preservation, Vivi'Vhvh'(m ny < M ) <—
M.y < Mrpyy) Where {mny} = i N h, and so on. We define i to be the in-
stant to which m belongs, and w < i if and only if Im(m e i A w < m). Provided
w < i,weuseils, for ImmeiAw < m}. Agent is anonempty set whose ele-
ments a, b, and so on, are called agents. Choiceisafunction on Agent x T such that
for each a € Agent and each w € T, Choice(a, w) isapartition of H,,). Elements of
Choice(a, w) arecalled possible choicesfor aat w. hand h' are choice equivalent for
aat w, writtenh =2 h', if and only if 3H (H € Choice(a, w) A h, h’ € H). Provided
m, m’ € i|-,,, mand N are choice equivalent for aat w, writtenm=2 m, if and only
if 3h3h' (h=2 h A{m} =iNnhA{m} =inNh"). Thefunction Choiceissubject to the
conditions no choice between undivided histories, vhvh'vavw(h=,, h" — h=2 h'),
and independence of agents: for each w € T, and for each function s,, on Agent such
that s,,(a) € Choice(a, w) for al a € Agent, (Nac 4gens Sw(@) # 2. An agent a has
vacuous choice at w if and only if Choice(a, w) = {H)}.

Thefollowing fact, which is a consequence of no choice between undivided his-
tories, is established as §1.2 in Xu [30].

Fact 21 Let § beany structureinwhichw’ < w <meiandm €i|.,. Then for
every agent a, m' =2, m. And in particular, if w’ < wand m' =§ m, thenm’ =8, m.

A model M onFisapar (T, V), whereg = (T, <, Instant, Agent, Choice) isastruc-
ture, and V isaval uation assigning to each agent term « an agent V (o) = & € Agent,®
and to each propositional variable a subset of {{m, h): m € h}. That aformula A is
truein 9t at amoment/history pair (m, h) withm e h, written 9t |=n,n A, isdefined
recursively asfollows, wherei = iy, and g is any propositional variable:

M Emnd iff (m, h) e V(O);

M Emn ~A iff 9 m/n A (MOt M =myn A);

M E=mn AA B iff 9 =pyn Aand 9 =y B;

M E=nyn [@] A iff  thereisaw < mandanm” €., such that

(i) YMVYH (M =2 mAam eh’ — M =y /p A),

w

(i) IV (M € W AM s A).

With reference to the clause defining 9t =, [o] A above, we call (i) the positive
condition, (ii) the negative condition, w awitnessto [«] A at m, and m” acounter. A
is settled true at min 9T, written M =, A, if and only if M =q/n Aforal hindn
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with m e h. For each set ® of formulas, and for each model 90t, M =p/n @ if and
only if 9 l=m/n Aforal Ae &, and M =y @ if and only if M =m/n O for every
hindM withme h. A (or ®) hasa model M if M =y/n A (N =myn ) for some
m, hin 9T withm € h. Fisastructureof A, or ssimply an A-structure (a structure of
@, or ad-structure), written § = A (F = @), if and only if M =n A (I = ©) for
every model 9t on § and every min 9. If § = A, weaso say that Aisvalidin §.

Thefollowing are easily provable consequences of our semantic definitions and
are useful for our upcoming discussions.

Fact 2.2 Let9t = (T, <,Instant, Agent, Choice, V) beany model. Then thefollow-
ing hold:

L if O ey [o] A, D o [0 A;

2. if M E=m [«] A andif w isawitnessto [«] A at m, then w isthe unique witness
to [«] Aat m;’

3. if M =m [o] Awith witness w, Choice(a, w) # {Hqy) )

It has been shownin and [3Z] that each of thefollowing A1 —A8 isvalidin every
structure, where A, B, C are any formulas.

Al ~[a] T

A2 [a]A— A

A3 [a] A — [a][a] A

A4 [c]AA[a] B — [a] (AA B)

A5 [@](Je]AA B) — [a](AA B)

A6 [¢](AA B) A~[a]B— [a] (AA B*)

A7 [a](~[a] (AA B) A BY) < [a] (~[a]AA B%)
A8 [€] A <—> [a] (AA B*) Vv [a](AA~[a] (AA B*))

A stit logic with a single agent (stit logic for short) is aset L of formulas that con-
tains al instances of truth-functional tautologies and al instances of A1—A8, and
is closed under substitution, modus ponens, and RE (i.e., A «<— B e L only if
[@]A <— [«@]B € L). For each tit logic L, let us use €(L) for the class of all L-
structures, that is, €(L) = {§: § = L}. For the smallest tit logic Ly, = (){L: L is
astit logic}, €(Lmin) isthe class of all structures (see [B5]).2 The smallest stit logic
L eirer cONtaining refref equivalence isreferred to as the stit logic with refref equiva
lence, and is shown in [[29] and [[30] to be characterized by the class of all structures
containing no “busy choice sequences’ (to be defined below) and €(Liefrer) = {S: §
contains no busy choice sequences}.® The largest consistent stit logic Lmax = (J{L: L
is a consistent stit logic} is characterized by the class of al frames containing no
choice points, that is, frames containing no moments at which an agent has nonva-
cuous choice (see [[35]).

Let € be any class of structures. A formula A follows from a set ® of formulas
with respect to €, written ® =, A, if and only if for every § € €, every 9t on §,
and every m, hin Mt withme h, M =m/n @ only if M =m/n A Forany €, =¢ is
compact if and only if whenever ® =¢ A, ¥ =¢ A for somefinite subset ¥ of @, or
equivalently, for every set ® of formulas, ® hasamodel 9t onan § € € if eachfinite
subset W of ® hasamodel 9t onan §’ € €. Let L beany stit logic. We say that L is
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compact if =g, is compact. The compactness of Ly, and Lmax are shown in [35].
We show in this paper that the following holds for every stit logic L.

(4) Lisuncompactif L C Lerer @nd L contains ageneralized refref conditional.

In particular, Lgyrer iS Uncompact since Lygier CONtains [a]q — [o] ~[a]~[x]g and
[a]~[a]~[e]q — [a]a.

Asindicated at the beginning of this paper, we also want to establish a sufficient
semantic condition of uncompactness. To that end, we need the notion of busy choice
sequences. Let § = (T, <, Agent, Instant, Choice) be any structure with a € Agent.
A busy a-choice sequencein § (or in 9t on §) isan upper- and lower-bounded infinite
chain of “a-choicepoints’ (moments at which a hasnonvacuous choice), asdiscussed
in [2] and [[6]. For our purpose, we define a busy a-choice sequencein § (or in 9t on
%) as an upper- and lower-bounded chain of a-choice points that does not terminate
in the upward direction, that is, a nonempty chain BC of moments such that

() JIwImvw'(w’ € BC - w < w’ < m),
(i) Yw(w € BC — Choice(a, w) # {Hwuw)}),
(i) Yw(w € BC — Jw'(w’ € BCAw < w')).

We will fix a single agent for our discussion, and therefore we will speak of “busy
choice sequences’ rather than “busy a-choice sequences.” Wewill use BC, BC', and
S0 on, to range over busy choice sequences. Let BC < BC' if and only if YwvYw'(w €
BCAw € BC' - w < w’). A chain of busy choice sequencesin § (or in 9) is
defined in an obviousway. Let ususe C, C’, and so on, to range over chains of busy
choice sequences. Weuse w < BCforVuw'(w’ € BC - w < w'),BC <iforVw(w €
BC— w<i), w<CforVBC(BCe C— w<BC),C<iforVBC(BCeC— BC<
i), and BC < C for YVBC'(BC' e C - BC < BC). w <BC,w < C,BC < w, and
C < w, and so on, are defined in an obviousway. A past in astructure (or amodel) is
anonempty set p of moments that is upper-bounded and closed downward. Let p be
any past. p<wifandonlyif Vw'(w' € p— w <w), p<iifandonlyif p<m
forsomeme i. Weuseil.p for {m:mei A p < mj (provided p < i), and use, for
each BC, pgc for the smallest past including BC, that is, pgc = {w: 3w’ (w’ € BC A
w < w)}. Foreachn > 0, |F|| = nif and only if thereisachain C of busy choice
sequencesin § such that |C| = nand thereisno chain C’ of busy choice sequencesin
 suchthat |C'| > n.1°

It hasbeen shownin 2], [[29], and [B]] that the following hold for every structure
§, where g is any propositiona variable.

®G) ISI=0 iff §FEaq<«— [a]~[e]~[a]q

iff  §Elelg— [a]~[a]~[a]q

iff  § = [e]~[a]~[e]g — [«]q.
Let § = (T, <, Instant, Agent, Choice) be any structure. We say that § is a finite
structure if T isfinite. A model 99t on § is a finite model if § is a finite structure.
Let ¢; bethe classof all finite structures, and for eachn > 0, let €, = {F: |FIl < n}.
Obvioudly, €; C €. In addition to establishing (4) above, we will establish the fol-
lowing for every stit logic L.

(6) Lisuncompactif €; C €(L) C €, forsomen > 0.



STIT LOGICS 491

Although (6) may not be equivalent to (4) above,'* (6) does guarantee (4) if we can
show that the following hold for every stit logic L.

(7) foreachn>0,¢(L) C &, if L containsarefref generalized conditional with
degreen;

and

(8) € S &(L)ifL < Lygfrer.

But (8) istrivia, for by (5), €t C €g = €(Lyefref). Wethus only need to show (6) and
(7) inorder to establish (4). In SectionBlve provethat ageneralized refref conditional
with degree n > Oisvalid in astructure § only if ||§|| < n, from which (7) follows.
Then in Section@lwe prove (6) (Theorem[4.6) and then (4) (Theorem[4.7].

3 Busy choice sequences and generalized refref conditionals In this section, we
prove that each chain C of busy choice sequences with [C| > n+ 1 will suffice to
invalidate all generalized refref conditionals[a]~[a]~A — Aand A — [a]~[a]~A
with g-refraining formulas A such that Rdg®(A) < n, from which (7) above follows.
The main lemmain this section is LemmaP.7] Since we have only one agent term
o, wewill usem’ =, mfor m' =% m. The fact below has been shown in [30] and is
useful later.

Fact 3.1 Let 9 be any model in which p < i and let A be any formula. Suppose
that 901 |=;_, A, and that for every w € p, thereisa w’ € p suchthat w < w" and
m b&i|>w/ A. Then I '=i|>p ’\'[Ol] A.

The following has been established as §2.3 in which constitutes the base step of
the induction in our proof of LemmaB.Z]

Fact 3.2 Supposethat § isany structure in which thereis a busy choice sequence
BC < m* €i. Thenthereisamodel Mt on F suchthat M |=; ~[a] ~[]qg, and M |~ B
and M~ ~ B for every subformula B of [«¢]q.

Our proof of the main result in this section depends on a certain relation between
structures and their substructures and between models and their submodels. A sub-
structure of a structure § = (T, <, Instant, Agent, Choice) is any structure §' =
(T, <, Instant’, Agent’, Choice) satisfying the conditions T’ C T, VwYw'(w € T’ A
weTAw<w - w eT),<=<N((T' xT),Instant’ = {i": Ji(i € Instant A i’ =
iNT # @)}, Agent’ = Agent, and for every a € Agent’ and w € T',

Choicg/(a,w) = ({f(H): H e Choice(a, w)}
where f(H) {h:3h(he HAR =hnNnT)}.

Notethat if § isasubstructure of F, thenfor any a € Agent’ = Agent and any moment
w e T, m =2 mif and only if m' ='% mfor al m,m € T, wherem’ ='2 mmeans
that in §’, m" and m are choice equivalent for a at w.

A model M’ = (§F', V') is asubmodel of amodel M = (F, V) with respect to
aninstant i’ in M if §’ is a substructure of § and for each agent term «, V/(«) =
V(a); and for each m € i/, each h in § with m € h, and each propositional variable
g, (m, 'y € V'(q) if and only if (m, h) € V(q), where h’ isthe history in §’ such that
h = hN T’. Thefollowing has been obtained as §2.5 in [[20].
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Fact 33 Let M =(T', <, Instant’, Agent’, Choice’) be a submodel of Mt with re-
specttoaninstanti’ in M, and let I' be any set of formulas closed under subformulas.
Suppose that for each agent term « and each formula A, [e] A € T only if 9 (& A.
Thenfor everyformula Ac I', everyme i, andevery hin M withme h, M =/ n A
ifand only if 9 =/ A, whereh'isin 9 withhy =hN T'.

Let § be any structure, and let T' be asubset of T and <'= <N (T’ x T’) such
that historical connection and closed-upwardness are satisfied. Then T’ determines
a unique substructure §’ of §. Suppose that ¢ is a nonempty chainin T. We use T
for {w: w e T AJw' (w € cAw’ < w). Itiseasy to seethat T, determines a unique
substructure §’ of § suchthat T' = Te. Inthiscase, weuse §. for §’. Similarly, given
aninstanti in §, we useic for i N T, and use MNi. for the submodel M’ = (Fe, Vo)
of 991 with respect to i (ignoring the values of formulas at any m/h withm ¢ i). It
is easy to see by no downward branching that if p < c(i.e,, Vw(w € ¢ = p < w)),
ic=1il>pNTc Cilsp.

In theinduction step of our proof of the main lemma, there are three respectswe
need to consider. Giventhat |C| > n,BC < C <m* €iand p= pgc. Itiseasy tosee
thati =i|.pUsUs andthatil. p, sand s’ are mutually digoint, wheres = {m: me
i—ilspAYw(we pAw<m—m=, m)}ands ={mmei—il.pAw(we
pPAw < mMA M=, m*)}. Inorder towork out the desired valuesthat formulas should
have at momentsin i, we will consider the desired values they have at momentsin
i|~p, s, and s separately. LemmaR.4lhandles the first, Lemmal3.Slthe second, and
Fact[Z6lthe third.

Lemma3.4 Let Abeanyformulainwhich the only agent termoccurring is «, let
M be any model inwhich p < w* <i,andletc={w: p<w < w*},ic=iNT;
ands={mmeil.p—icAYmMYw(mM eicAwe p— m =, m)}. Suppose that
(a) M i, B for every subformula B of A, and (b) 90t =5 g or M =5 ~q for each
propositional variable g occurring in A. Then the following hold:

(i) 9 =5 B or 91 =5 ~B for every subformula B of A;
(i) 9 =5 ~[«] B for every subformula B of A2

Proof: By induction ontheconstruction of B: thebase casefor (i) isprovided by (b).
The induction steps for ~ and A are straightforward. It is thus sufficient to suppose
that (i) holdsfor B and show that (ii) holdsfor B. Notefirstthatic C i|. p. Supposefor
reductio that 9t =n, [«] B for somem e swithwitnessw. Sincew < mandmeii|. p,
we have by no downward branching that either w € por p < w.

Casel(w € p): By definition of s, M =, mfor al n' € i¢, and hence Mt =i, B
since M =m [«] B, contrary to (a).

Case?2 (p < w): Consider any counter m* to [w] B a m. Then
(9 M PE B

We show asfollowsthat m* € s. First, since p < w < m*, m* € i|. p. Next, suppose
for reductio that m* € ic. Since p < w < m* and since wy, < m* for some w; € ¢,
either w € c or ¢ < w by no downward branching. Hence in either case, w € Te. It
followsthatme ic sincew < mei|.pandic =i|- pN T, contrary to our assumption
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that m e s. Hence m* ¢ ic. Finaly, consider any m' € ic and any w’ € p. Since
m=,, m* by FactZ-Tlnd thefact that w’ € p < w < m¥, itisthenclear that if m* #£,,
m', we would have m #,,, m', contrary to our assumption that m € s. It follows that
vmvyw' (m eicAw’ € p— m =, m*) holds, and hencem* € s. But weknow, by (i)
and the assumption that 9t =, [«] Bwith m € s, that 90t = B, and hence 90t = B,

contrary to (9).
Since we have contradictions in both cases, it follows that our first assumption,
that is, 9t =n [«] B for m e s, must be false. Hence, (ii) must hold for B. O

Lemma3.5 Let Abeanyformulainwhich the only agent termoccurringisea, let
2t beany model inwhichp < m* ei,andlets={mmei—il.pAYw(we pAw <
m— m=, m*)}. Suppose that for every propositional variable g occurring in A,
either M =5 qor M =5 ~q, and

(10) for eachw € p, thereisaw’ € psuchthat w < w" and M &, Bfor
every subformula B of A.

Then the following hold:

(i) for every subformula B of A, either 9t =5 B or M =5 ~B;
(i) for every subformula B of A, 9 =5 ~[«] B.

Proof:  Similar to our proof in Lemmal3.4]we supposethat (i) holdsfor B and prove
that (ii) holdsfor B. Suppose for reductio that 9t =n, [«] B for some m € s with wit-
ness w. There are two cases.

Casel(w e p): Sincem ¢ i|.p, it is then clear that there isa w’ € p such that
w’ £ m. It follows from our case assumption that w < w’, and hence by (10), there
isanm’ €i|.psuchthat w’ < m and 901 &y B. But FactZ1limpliesthat m' =, m
and then, sincem=,, m* by definition of s, M =,, m, and hence M =y B, acontra-
diction.

Case2 (w ¢ p): Consider any counter m” to [«] B at m. Then
(11) M v B.

We show asfollowsthat m’ € s. First, sincew < m” and w ¢ p, we have the follow-
ing by no downward branching:

(12) forevery w” € pwithw” <m’, w” < w.

Then by Fact 2.1] for every w” € pwithw” < m’, m” =,» msince w < m and
w < m’, and hence, m” =,,» m* sincem=,,, m* (m € s). Next, if m” € i|.,, we
would have p < m”, and hence by (12), p < w, whichimpliesm € i|.., contrary to
our assumption that m € s. Hence, m” ¢ i|.. . It follows that m” e s. But we know,
by (i) and the fact that 9t =, [«] B with m € s, that 971 =5 B, and hence 9t = B,
contrary to (11). From this reductio we conclude that 9t =5 ~[«]B. O

The following has been shown as 84.4 in Xu [33].

Fact 3.6 Let D be any formula, let A be any D-refraining formula, and let 9t be
any model inwhichp<m*eiands={m:mei—il.pAdw(we pAw <mA
m #,, m*}. Suppose that M p&_, C and 90 |~ ~C for each subformula C of
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A. Then, if M =5 D and RdgP (A) isodd, M s [a]~A; and if M s ~D and
RdgP (A) iseven, M = [a] ~A.

Now we are ready for the main lemma.

Lemma3.7 Let § be any structure in which there is a chain C of busy choice
sequences such that |C| > n+ 1 and let A be a g-refraining formula such that
Rdg?(A) = n. Then there is a model 99t on § such that for somei in M, M =i
~[a]~A, and 90 (= B and 90t (= ~B for every subformula B of A.

Proof: Assume that |C| = n+ 1 (or else select a subchain of C with cardinality
n+ 1). By definitions of busy choice sequences and instants, thereisan i in § such
that C < i. Our proof is by induction on n. Fact B2lhas provided the base step
for n = 0. We assume that n > 1 and the lemma holds for n — 1 and show that
it holdsfor n. Since |C| = n+1and C < i, there are w*, m*, BC, and C; such
that BC < w* < Ci <m*ei, {BCQUCy =C, and |[C4] =n. Let p= pgc and
c={w: p<w < w*}. Thencisanonempty chain and §. isasubstructureof §. Itis
easy to seethat C; isachain of busy choicesequencesingcandC; < m* €ic=inNT,.
Setting A = [a]~ B with B to be a g-refraining formula such that Rdg9(B) =n — 1,
we know by |C4| = n and the induction hypothesis that there is a model 91 on ¢
such that M =i, ~[a]~B, and M B, C and M. i, ~C for every subformula C
of B, and hence

(13) M =i, ~[a]~B, and Mi¢ k=i, C and Mi¢ =i, ~C for every subformula C
of ~B.

We can define a model 9t on § in such away that for each m e i and each hin §
withme h,if meic, (m, h) € V(q) if and only if (m, h') € Vc(q), where = hN Tg;
ifmeil.p—ic (Mh) e V(Q); andif me i —il|.p, (M h) € V(q) if and only if
Rdg9(A) iseven. Then by (13) and FactB3]we have M =i, ~[a]~B, and 91 |~ C
and 9 &, ~C for every subformulaC of ~B. Let sp =i|. p —i¢c. Consider any me
S (Cilsp),anym eic(Sil.p)andany w € p. Since p= pgc, thereisaw’ € psuch
that w < w’, and hence, sincew’ < mand w’ < m, m' =,, mby Fact[2.1] It follows
that sg={mmeil.p—icAYMYw(MmeicAwe p— m =, m)}. By definition
of V and Lemma[3.4](substituting ~ B here for A there), we have M =g, ~[a]~B.
It followsfromi|. p, =ic U sp that

(14 M, ~[e]~B, and M B, Cand M 4 ~C for every subformula

Cof ~B.
Letes={mmei—il-pAdw(we pAw<mAamz, m)}ands = (i —i|-p) —
S={mmei—i.pAVYw(we pAw <mM— m=, m)}. Itiseasy to see that

i =il-pUsUs. SinceRdg¥(A) isevenif and only if Rdg%(B) isodd, it isthen clear
by definition of V, (14), and Fact[3:-6lthat

(15 M E=s[a]~Band M s ~[a]~[a]~B (by truth definition).

Since p = pgc, it then follows, from (14), (15), and definition of busy choice se-
quences, that for each w € p, thereisaw’ € psuchthat w < w’ and 9 &, C for
every subformulaC of ~[a]~B. Then by Lemmal3.5]wehaveMt =g ~[a]~[«]~B;
and by (14) and Fact B1] M Fil., ~[a]~[a]~B, and hence, M =i ~[a]~[a]~B
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sincei =il-pUsUS. Itiseasy to verify that I = C and I = ~C for every
subformula C of [«]~B. O

The following is our main result in this section.

Theorem 3.8 Let § beany structurewith ||| > n+ 1andlet Abeany g-refraining
formula with Rdg(A) < n. Then

(i) § &= B— [a]~[a]~Aand § &= ~B — [a]~[«] A for every subformula B of
A,

(i) § ¥ [e]~[a]~A— Band M b [e] ~[e] A— ~B for every subformula B of
A.

Proof: Since ||F|| = n+ 1, thereisachain C of busy choice sequencesin § such
that |C| > n+ 1. (i) By Lemma[3.7] there is a model 9t on § with an instant i in
F such that, on the one hand, for each subformula B of A, thereare somem, m' < i
with 9 &m B and 91 4y ~B; and on the other hand, 91 =i ~[a]~ A, and hence
M = ~[a]~[a]~A. It followsthat (i) holds.

(ii) We may assume that C = {BC} U C’ and BC < C’ and BC = {wg, w1, ...}.
Let BC'=BC — {wg}, (" ={BCYUC, andc = {w: wg < w < wy}. Itiseasy to see
that C’ is achain of busy choice sequencesin ¢ and |C”| > n+ 1. By Lemmal3.7]
thereisamodel Mi. on §c such that for somei¢ in 3,

(16) M =i, ~[e]~A, and M. (i, B and M. (i, ~B for each subformula B

of A.
Leti betheinstant in § such that ic =i N T.. We define amodel 9t on § in such a
way that for eachme i andeach hin g withme h, if me ic, (m, h) € V(q) if and
only if (m, ') € V/'(q), whereh’ = hn T¢; and if m¢ i, (m, h) € V(q) if and only if
Rdg9(A) isodd. Then by (16) and Fact 23]

a7) M i, ~[a]~A, and M p&, B and M B4, ~B for each subformula B of

A.
Let us fix an m* € ic. Consider any m € i¢ C i]-y,. We know, by no downward
branching and definitions of ¢ and T, that thereisa w € ¢ such that wg < w < m
and w < m*, and hence by FactZ1]m =,,, m*. It follows that

(18) icSs={m: mei|sy, A M=y, M}

Lets =s—ic={mmeil.y, —ic Am=,, m}. Considerany me s, any m' €
ic, and any w’ < wo. By (18), m" =,,, m*, and hence, since m=,,, m*, m' =,,, m.
Fact21]and w’ < wq imply that m' =, m. It followsthat S = {m: m € i|-,, —
ic AVYMYw' (M €ic A w < wg— m =, m}, and hence by (17) and Lemma@
(substituting {w’”: w" < wo} for p there), M =g ~[a]~A, and henceby (17) and s =
icus,

(19) M s ~[a]~A.

Let s = (M m e i|>y, A M#E,, m*}. We show asfollows that 9t =g, [a]~A. Our
definition of 9t impliesthat 91 =5, qif and only if Rdg9(A) isodd, and M =, ~q
if and only if Rdg9(A) iseven. Assumethat Rdg“(A) isodd. Then by (17) and truth
definition, 901 =, [«]q. Itissufficient to show by induction on Rdg9(B) that for each
g-refraining subformula B of [a]~A, 9 =, B if Rdg9(B) iseven. The base step
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hasjust been shown. Let B = [«]~C for some g-refraining formula C. Suppose that
Rdg®(B) is even. Then Rdg9(C) is odd, and hence by induction hypothesis, 9 =,
~C. Since C isasubformulaof A, we know by (17) that 9t il ~C. It follows
that M =, B. Suppose that Rdg9(B) is odd. Then Rdg%(C) is even, and then by
induction hypothesis, M =5, C. It follows from truth definition that 90T =5, ~B. A
similar induction handles the case that Rdg%(A) is even, which starts with the base
casethat M =g ~[]q.

By definition of busy choice sequences, Choice(a, wo) # {H,)}. Then s, #
@, and hence, since M k=g, [a] ~A, M il g ~[a]~A. It follows from (19) that
M = [a]~[a] ~A. Itiseasy to seeby (17) and (18) that 90t (£ B and 9 (£ ~B for
every subformula B of A. O

TheoremB8limpliesthat if ||F|| > n+ 1, and if A isag-refraining formulawith de-
gree n, then § P~ [o]~[a]~A — Aand § = A — [a]~[a]~A. That isto say, ho
generalized refref conditional with degree nisvalidinany § € €,,1. Thuswe have
the following.

Corollary 3.9 Let L be any stit logic containing a generalized refref conditional
with degreen > 0. Then &€(L) C ¢,,.

4 Uncompactness of somestitlogics  In this section we prove two sufficient condi-
tionsof uncompactness. Themainideaof our proof isto use afeature of “companions
to stit formulas.” Let us briefly describe what a companion to a stit formulais. Let
M E=m [a] A with witness w, and let s= {m: M € ijmy AM =, m}. Itiseasy to
seethat 901 =5 [«] A. Consider any formula C. Since stit formulas are either settled
true or settled false at every moment, we know that either 9t =m [a] (A A C¥) or
M Em ~[e] (AACY). Infact,

(20) if M Em[a] (AACY), M =s[a] (AACY); and if M =y ~[a] (AA CY),
M s ~[a] (AACY).

In the former case, we call [¢] (A A C¥) a pos-companion to [¢]Aat m, and C a
pos-companion root of [a] A at m; and in the latter case, we cal ~[a](A A CY¥) a
neg-companion to [«] A at m, and C a neg-companion root of [«] A at m. Both pos-
companions and heg-companionsto [«] A at mare companionsto [«] Aat m. Because
(20) holds for every formula C, we know that [«] A must be true together with all its
companionsat every m' € iy, choice equivalent to mfor « at w. One feature of com-
panionsto [«] A isthat they arein general not consegquences (semantic or deductive)
of [«] A but are nevertheless true together with [a] A. Thus when we study syntac-
tical characterizations of stit theories, we should not only consider consequences of
stit formulas, but rather, we should also take these companionsinto consideration, as
can be seen in [29], [32], [[34], and [[35]. Another feature of companions to stit for-
mulas is the following, which we will use in this section. Although in our language
there is no explicit tense operator, companions to stit formulas provide a sufficient
condition for determining the temporal order between witnessesto stit formulas. To
be more precise, let 9t =m [o] Awith witnessw, and let m' € i|.,, (possibly m=m')
and MM =y [«] B with witness w’. Then, if any formula C is a pos-companion root
of [a] A at m but a neg-companion root of [«] B at m', then we must have w’ < w.
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In this section, we use the second feature of companions mentioned above to
construct aset ® of formulasin such away that al formulasin ® are companionsto
some stit formulas, which will, when joined together, force each model of & to con-
tain achain C of busy choice sequences with |C| > n for every n > 0 (Lemmal4.2].
After showing that each finite subset of ® has afinite model (Lemmal4.5), we arrive
at a sufficient semantic condition of uncompactness (Theorem[4.6), and combining
the result presented in the previous section, a sufficient syntactical condition of un-
compactness (Theorem[4.7).

The following is useful and has been established in [29], where Fact[4.1{iv) is
called the Companion Theorem in [[29]], and Fact[ZT{v) presents the feature of com-
panions we will usein this section.

Fact 4.1 Let Mt = (T, <,Instant, Agent, Choice, V) be any model in whichw < m
and i = i¢m). Then the following hold, wheres= {m": m' e i A M =, m}:

(i) if M =¢ Band M =m [«] A with withess w, MM E=m [o] (AA B);

(i) if M =5 Aand M Fs [] A, M =iy, A% andthus, if 9T =m [a] (A A B) with
witness w and M s [«] B, M =, B* and M k=5[] (AA B%);

(iii) if 90 =m [@] (AA B*) withwitness w, 9t E=m [«] A with the same witness; and
if M Emla](AA~[a](AA B*)) withwitness w, MM =n, [o] A with the same
withess;

(iv) if M =m[o] Awithwitness w, then for each B, either M =m [o] (A A B*) with
witness w or M E=m [a] (AA ~[a] (A A BY)) with witness w;

(V) if M =m [oe] (A A CY) with withess w, and if M € i|.,, and M =y [@] (B A
~[a] (B A C*)) with witness w’, then w’ < w13

Let us arrange all propositional variables into two digjoint sets ¥ = {p;: 0 < & <
oxolandIl ={0: 0<E <wxow) Forevery Ewith0< & < w x o, let A; =
[Ol](pg/\qg), and let B; = ’\‘[(X](pg/\qurl). Let &g ={A:0< k< w}U{B: 0K
k < w},andforeachn > 0, let

D1 = PpUA:: ox (N+1) <& <wx (N+2)}
U{B:: ox (N+1) <& <wx (N+2)}
U{N[O‘](p{/\qu(mrl)) r0< <o x (n+ D)}

Finaly, let usfix ® = (Jocp,, n-

Lemma4.2 Letn >0, and let 9t be any model in which 9t =, ®,. Then there
isachainwy < wy < -+ < wg < wgqg < --- <mMWhere0< & < wx (n+1)) of
moments in 9t such that for each § With0 < & < w x (N+ 1), M =m [a] (P A o)
with witness w.

Proof:  Our proof is by induction on n.

Casel(n=0): Since M = o, we have by hypothesis and the definition of &g
that thereisawo such that M =n [a] (po A gF) With witness wo. Supposethat k > 0,
and that we have

(21) wo < -+ < wy such that for each j with 0 < j <k, 9 =m [e] (Pj A 0f)
with witness wj.
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We show below how to select wy 1 in such away that (21) holds with k replaced by
k+ 1. It follows from (21) and Fact[4-1{iii) that

(22) MM E=m [o] px with witness wy.

By hypothesis and the definition of &g, we know that

(23) M =m ~[a] (Px A Ui, p)

and

(24) thereisawy,q suchthat M =m [ (Prr1 A Of ) With witness wy, ;.
Applying Fact[4.1{iv) to (22) and (23), we have

(25) M =m (@] (px A ~[e] (Px A Og,1)) With witness wy,

and applying Fact[4.1{v) to (24) and (25), we have wy < wy, 1. It followsthat thereis
achainwg < w1 < --- < msuchthat for eachkwithO <k < w, M =m [] (Px A OF)
with witness wy.

Case2(n+1): Assumethat M =y py1. Since &, € Py 1, We know by induc-
tion hypothesis that thereisachain wg < w1 < -+ < wg < wgy1 < -+ < msuch
that for each £ With0 <& < w x (N+ 1), M =m [a] (P A qg) with witness we. In
particular, we know by Fact [Z.T{iii) that for each ¢ withw x N < ¢ < w x (N4 1),
M =m [a] p; withwitnessw,. SinceM =m Pny1, We have by the definition of dpq
that 9 =m ~[a] (Pr A % (nr 1)) foreach ¢ with0 < ¢ < w x (n+1). Itfollowsfrom
Fact[41{iv) that

(26) foreach ¢ with0 < ¢ < w x (N4 1), M E=m [a](p: A ~[a] (P A
U (ni1))) With withess w,.

Applying the definition of &1, we havethat M =m [o] (Pwx (n+1) A Ao (nt1)) with
SOmMe Witness w,,» (n+1y, and hence by (26) and Fact E1{v), w; < wexm+1) for al ¢
with0 < ¢ < w x (n+ 1). The same argument in Case n = 0 will handle the rest of
our proof, except that we need to replace 0, j, k, andsoon, by w x (n+1), w x (n+
1+ j,ox (n+1)+k, and soon. O

Corollary 4.3 Let n > 0 and let M = (T, <,Instant, Agent,Choice,V) be any
model in which 9t =, ®,. Then thereisa chain C of busy choice sequencesin 97t
suchthat |[C| =n+ 1.

Proof: By LemmaliZlthereisachain wg < wq < -+ < wg < Wgyq < -+~ <M
of moments in M1 such that for each £ with0 < & < w x (N4 1), M =m [a] (P A
0 ) with witness wg. It follows from Fact [2.2{iii) that Choice(a, wg) # {Hw,)} for
each £ with0 < & < w x (n+ 1). For each k with 0 < k < n, let us define BCy =
{Wwxks Woxksil, ---}- By definition, each BCy is clearly a busy choice sequence and
for each kwith0 < k < n, BCy < BCy, 1. Setting C = {BC,, . .., BCy}, we have that
ICl=n+ 1 O

Applying this corollary and our definitions of @, ||F||, and €, we obtain the follow-
ing.



STIT LOGICS 499

Corollary 44 For each model 9t = (§, V), M isamodel for ® only if ||F|| > n
for everyn > 0, that is, only if § ¢ &, for everyn > 0.

Our next step is to show that every finite subset of ® has a finite model (LemmaldE]
below). To that end, we use the following easily verifiable fact: for each finite subset
@' of @, thereare&y, ..., Enwithn> 1suchthat 0 < &) < -+ <&y < w X w, and,
setting ¥ = {[a] (pg, A Q). - [e] (Pg, A G )} U {~[a] (g, A G )10 | <k<n),
W isafinite extension of ®’.

Lemma4.5 Eachfinite subset of @ = | Jo_,, Pn hasafinite model.

Proof: By thefact mentioned above, itissufficienttolet0< & < <én<wxw
and show that thereis amodel 1 with a moment m* in it such that

(27) M E=ne [a] (Pg, A 0z, foreachkwith1l < k < n,

and

(28) M E=me Nigjak~[ed(pg; A 0z.,,) foreachkwith1 <k <n.

For convenience, let ususe py for pg,, gk for g, , and so on, in the following discus-
sion. Let § = (T, <, Instant, Agent, Choice) be defined as follows, where m*, xs,
YkS, wiS, Uk jS, and vy jsareall different.

T = {m}u{wel<k<n}

Uy 1<k<njU{x:1<k<n}
U{uk,j:l<k<jgn}u{vk,j:1<k<j<n}.

< = {(wwrweTU{{wwj)1<k<j<n}

U {{w, M) 1< k< n)
U{(uk,,uk,)1<k<1<1 n}
U{(vkj,vk1>1<k<1<1<n}
Uf(wi U j) 1< k<K < j<n}
(w vk,-)1<k<k’<j<n}
U {{wk, X): 1<k<k <n}
U{{wk, Yir): 1< k<K <n}
U{(uk,,xk>1<k<1<n}
Uflokj, i) 1< k< j<n}

Instant = {{wk}U{Uj’kZlgj<k}U{Uj’k11<j<k}:1<k<n}
U{{m* U {x¢: 1<k<nfU{ye: 1<k n}}.

Agent = {a}.

Leti ={m* }U{X:1<k<nU{ye:l<kn} Itiseasy tocheck thati isthelast
instant in Instant. For each m € i, let us use hy, for the unique history passing through

m. Thus hp = {w1, ..., wn, M}, and for each k with 1 <k < n, hy = {w: w €
TAw <X} ={w1, ..., Wk, Ukt ---» Ugn, X, andhy, ={wweTAw <y} =
{wi, ..., Wk, Vk kst - - -» Vkons Yk} We define Choice as follows:

Choice(a, m) = {{hm}} foreachmeii;

Choice(a, ux ;) = {{hy}}foreachk, jwithl<k<j<n

Choice(a, vxj) = {{hy}}foreachk, jwithl<k<j<m

Choice(a, wx) = {{hy}, Huwo — {hy}} foreach kwith1 <k < n.



500 MING XU

It is easy to see that for each k with 1 < k < n, He,,) — {hy} = {hy,, hy.,,
Pyeis -5 Nxs Dy, b Finally, we define 90t by letting V be an assignment such
that V() = a, andfor eachkwith1 < k< n, V(px) = {{m, h): me hni Am=# x},
V(qy) ={{(m, h):meiAnmeh},andforeachkwithl < k< n,V(qg) = {{m, h):me
hNiAm=#y_1}. Inthefollowing diagram illustrating 9Jt, we only indicate at which
moment py or gy is (settled) false. That isto say, at each moment m € i, if px or gk
with 1 < k < nisnot indicated to be (settled) false at m, it should be understood that
itis (settled) true at m.

N!”_” ‘e N{jl,_»l N}J:; N(‘f:; N})z m.‘jz N;}I
m* Yn Tp - Y3 3 Y2 T2 Y1
- 4 » p J
'”.'i_.nl [ Uz n U2 n 9 U2n Vin [ ty,n
W, i 3 ‘ : H .
U233 23 V1,3 | RG]
Wwa
—~ (']IQ L] f{.|,2
o

w

It is easy to see from our definition of 91 that for each k with 1 < k < n, i #,, m*,
M =i—(xg Pk, and M By, P It followsthat

(29) foreachkwithl <k < n, M = [« pk With witness wy.
It isalso easy to see from the definition of 9t that
(30) foreachkwithl<k<n, 9 Fil-u, Ok

Consider any kwith1 < k < n. If k=1, weknow by thedefinition of 9t that 90t |=; gk
and hence M = ~[a]gk. Assumethat k > 1. We know by the definition of § that
Yk—1 =y, M*and M =y, | gx, and hence M F=s g wheres={m:meiAam=,, ,
m*}. It follows from (30), Fact [2.1] and our definition above that for each w < m*,
either M =i, gk or M [~y ok wheres' = {m: me i Am=,, m*}, and hence M =
~[a] k. We thus have

(31 foreachkwithl<k<n, M Em ~[a]0k.

To show that (27) holds, consider any k with 1 < k < n. Clearly, (m:meiAm=,,
m*} C i|~y,. We then know by (30), (31), and Fact[4.I{ii) that 9 Fil-u, Gk and
hence by (29) and Fact [A1{i), 9 =ny [o] (px A gy). It follows that (27) holds. To
show that (28) holds, let 1 < k < n. We show that D =me A1 jci ~[e] (Pj A GR, 1)
Suppose for reductio that thereisa j suchthat 1 < j < kand 9 = [o] (Pj A O, 1)
with witness w. Then by Fact [A.4Liii), 9 = [o] p; with witness w. It follows
from (29) and Fact22]ji) that w = w;. The hypothesis of this reductio implies that
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M [=s; Grs A ~[e]0ks1, Where'sj = {m:me i Am=,, m*}. Hence by FactE.1{ii),
m |=i\>m,- Ok+1- Since j <K, Yk € ilsu, S il>w;. Itfollowsthat 9 =y, Qkya. But by
our definition of 9, M F~=y, Ok1, acontradiction. It follows from this reductio that
M e Ascjak ~[d(Pj A G, 1) Hence (28) holds. O

Now we establish our two sufficient conditions of uncompactness.

Theorem 4.6 Let L beany stit logic. Then, L isuncompact if ¢ C €(L) C &, for
somen > 0.

Proof: Supposethat ¢ C €(L) C ¢, for somen > 0. Consider the set ® of formu-
las. By LemmalSlwe know that each finite subset W of & hasamodel M = (F, V)
with § € ¢(L), but by Corollary [Z.41® has no model Mt = (F, V) with § € ¢(L). It
followsthat =¢ . is uncompact, that is, L is uncompact. O

Theorem 4.7 Let L be any stit logic. Then, L is uncompact if L C Lyerer and L
contains a generalized refref conditional.

Proof: If L C Lyefrers € (Lresrer)  €(L). We know that € (Lierer) = € (see29] and
[20]), anditistrivially truethat ¢+ C €. It followsthat if L C Lyeres then€s € €(L).
If in addition L contains a generalized refref conditional, we know by Corollary B.9]
that ¢(L) C ¢, for somen > 0. It thenfollowsfrom Theorem[4.6kthat L isuncompact.
U

5 Remark We first show that there are infinitely many stit logics that satisfy the
antecedent of Theorem[4.7]and hence are uncompact. Let Ay be the conjunction of
[@]lq = [a]~[a]~[a]q and [a]~[a]~[a]qg — [«@]g. For eachn > O, let Ay, 1 =
An(~[x]a/q), that is, the result of substituting ~[«]q for qin A,, and let L, be the
smallest stit logic containing An. Clearly, each A, isthe conjunction of two general-
ized refref conditionals with degree n and each L, 1 isasublogic of L,,. SincelLgis
Lefref, it follows from Theorem[4.7lthat each L, is uncompact. But are they all differ-
ent? By 83.7in Xu , on the one hand, for each structure § such that Cdg(F) < n
(Where Cdg(3) isthe complexity degree of § defined in [B3]), § = Anforal m> n.
By 84.8 in [[23], on the other hand, for each n > 0, there is a structure §,, such that
Cdg(§n) = n+1and § = An. Consequently, for each n > 0, there is a structure §
suchthat § = A, but § = Anforal m> n. Itfollowsthat foreachn > 0, L, # Ly, 1,
and hencel; isaproper sublogic of L,,. Thiscompletesthe verification of our claim
that infinitely many stit logics satisfy the antecedent of Theorem[4.7]

Consider again our Theorem[4.6khat provides a sufficient semantic condition of
uncompactness, that is,

(32) Lisuncompactif €; C €(L) C ¢, for somen > 0.

We can actually generalize (32) in two directions—one isto find some ¢’ C ¢; and
the other isto find some € such that ¢,, C ¢ for all n > 0—and thus obtain some more
general conditions of uncompactness:

(33) Lisuncompactif ¢’ C €(L) C €.
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For instance, it is easy to see that our proof in Lemmal4.5lactually shows that every
finite subset of ® has a finite model whose background structure is at-most-binary,
whereastructure§ = (T, <, Instant, Agent, Choice) isat-most-binary if for eacha e
Agent and each w € T, |Choice(a, w)| < 2. We can thus use ¢’ to be the class of
all finite at-most-binary structures. Some other suitable proper subclass of € can
be found as well. The other direction in generalizing (32) seems less trivial. So far
we have only considered €, for some n > 0, that is, the class of structures § with
151l < n. Sinceitiseasy to seethat Uo<n<w ¢, istheclassof al structurescontaining
no infinite chain of busy choice sequences, Corollary[4.4Jenables usto obtain at most
that

(34 Lisuncompactif € € &€(L) € Upcnoy En-

There are, nevertheless, two waysto generalize (34) without extending our language.
Thefirst isto use “ ordinal-isomorphism” to distinguish structures containing infinite
chains of busy choice sequences. Let & be any ordinal such that |&§] = w and let C
be any chain of busy choice sequences. C ~ £ if and only if thereis an isomorphism
between C and & with respect to the <-relation on C and the ordinary <-relation (or C-
relation) on & (i.e., the busy choice sequences contained in C arearranged according to
the order type specified by ). [[F]] = & if and only if thereisachain C of busy choice
sequencesin § such that C ~ &, and thereisno chain C’ of busy choice sequencesin
§ suchthat C' ~ & + 1. Finally, let & = {3: [] < &}. Clearly, Upcn-,, €n C € for
every & with |¢] = w. We can obtain that

(35 Lisuncompactif €t C &€(L) C &, for some £ with [£] = w

by adjusting our definition of ® in the following way: given & with |&] = w. Wefirst
arrange all propositional variablesinto two digoint sets X = {p;:0< ¢ < w x (§+
Dyand I ={0;:0< ¢ <wx (§+1)}. Thenforevery (with0< ¢ < w x (§+1),
let A; = [e](p; A ) and By = ~[a] (P A q‘Z_‘H). Let g = {Ac 0< k< w}U
{Bi: 0< k< w};andforeachcwith0< ¢ < w x (64 1), let

i1 = P U{Aox(C+D <n<wx(+2)
UBjrrox (+1) <n<wx(+2)}
U{N[O‘](pn /\qu({+1)): O<n<wox(E+D}

and for each limit ordinal ¢ withw < ¢ < w x (E+ 1), let

o, = (UnqCDn)U{An:a)x{gn <wx (C+1)}
UBjoxi<n<wx (+1))
U{'\’[a](pn /\qz;xg): 0< n<wxZl

It is easy to see that an argument similar to that in our proof of Lemmal4.2] with an
exception of the case concerning limit ordinals, will show that 9t = (§, V) isamodel
for &z onlyif [F] > £+ 1. Thenweobtain (35) above by applying the same argument
asthat in the proof of LemmalZ.5]

The second way to generalize (34), without extending our language, is to use
“reversed ordinal-isomorphism” to distinguish structures containing i nfinite chains of
busy choice sequences. Let & be any ordinal such that |£] = @ and let C be any chain
of busy choice sequences. C = ¢ if and only if there is an isomorphism between C
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and & with respect to the reverse of <-relation among busy choice sequences con-
tained in C and the ordinary <-relationon &. [§]]" = & if and only if thereisachain
C of busy choice sequences in § such that C = & and there is no chain C" of busy
choice sequencesin § suchthat C' = & + 1. Finally, let &, = {§: [3]" < &}. Clearly,
Unso€n C € for every & with [§] = w. In order to establish that

(36) Lisuncompactif €; C €(L) C Qg for some & with |§| = o,

we need to define a W in a way similar to the way we defined o, above. More
precisely, we use the same strategy but arrange the pos-companion roots and neg-
companion roots in such afashion that forces every mode! for W to contain an infi-
nite chain of busy choice sequences that does not terminate toward the direction of
past rather than future. Let X¢, I, A;, B, be as specified above, and let Vg = &,
ForeachswithO< ¢ <w x (§+1), let

Ve = Y U[Aox C+1) <n<ox(+2)
UByox ((+1)<n<wx (+2)}
Ulle](py A02):0<n <o x (+1)
Nox(E+1) <g<wox(+2)}

and for each limit ordinal ¢ withw < ¢ < w x (64 1), let

v, = (Uneg\bg)U{An:wxggn<a)><(§+1)}
UBjoxi<n<wx (+1)}
Ullal(pp A0 0<n <o xiAoxi<s<ox (+D)

It can be shown that every model for W, containsachain C of busy choice sequences
suchthat C = £ 4 1, and it can also be shown that each finite subset of W, hasafinite
model, and hence (36) holds. Details are omitted.

Our method applied in this paper has alimit. Asthe reader may have realized,
although we can handle the situations in which chains of busy choice sequences are
countable, there is no way to apply our strategy here to deal with situationsin which
there are chains of busy choice sequences that are uncountable, unless we extend the
language. If we take order types into considerations, the following are among the
farthest we can reach by applying the strategy here:

if [PV| =, then L isuncompact if €+ C €(L) C & for some & with |¢] = «,

if [IPV| = «, then L isuncompact if €; C €(L) C Cg for some &€ with |&] = «;

where PV is the set of propositional variables in the object language, and « is any
cardina, and ¢; and ¢g arejust like what we defined above, but replacing w by «.
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12.

MING XU

NOTES

See 2] or [23] for a historical review.

The names bstit and cstit are found in [[L6], [[14], and [[15], etc. Note that Horty and Bel-
nap used bstit and cstit as approximations of the operators that Chellas and Brown pro-
posed.

This corresponds to the result that over the class of stit structures containing no busy
choice sequences, there are only ten distinct stit modalities, where a stit modality is a
sequence of [«] and ~, and two such modalities o and t are distinct over a class ¢ of
stit structuresif op «<— tpisnot vaidin al stit structuresin €. These stit modalities,
when we write [«] as [, are exactly the same modalities as those in modal logic $4.2
(see [[2]), though the two structures of modalities are different.

| am not sure who is the first person who proved that KW is uncompact. One can find
such a proof in [[18], while in both [18] and [[L7], Hughes and Cresswell noted that the
idea of the proof there was suggested by Fine.

For axioms and rules of inference in Lyn, See Section 1. Ly can be axiomatized by
taking ~[«] p as the only (modal) axiom and taking modus ponens and substitution as
rules of inference. It has been shown in [[35] that every consistent stit logic is a sublogic
of Limax, Which makes Lia the only stit logic that is post complete.

That isto say, we use & for V(«), where V(a) € Agent.

The uniqueness of witness follows immediately from the Witness Identity Lemma in
[2]. 1t also follows from our Fact 2. Tlabove, as has been shown in [B3].

In [B2], this logic is axiomatized as taking all A1—A8 as axiom schemata and taking
modus ponens, RE and another rule RS as rules of inference. eliminates the rule
RS. Thereisagap in the proof presented in [B2]. A modified proof can be found in [E].

In 291, L iS shown to be decidable and is axiomatized with an extra axiom
[@](~[@] (AA [@] (B A ~[a](BAC*))) AC*) — [«] B. Because it is easy to verify
that this formulais a theorem of L, we conclude that Ly, plus refref equivalenceis
deductively equivalent to the logic given in [29].

For adiscussion of busy choice sequences and ameasure of complexity of chains of busy
choice sequences, the reader is referred to 82 in [R3].

For all we know, a stit logic L satisfying the antecedent of (6) may not satisfy that of
(4)—there may be, e.g., an L containing [«]q — [&]~[«]~[«]g and some formula not
contained in Lgfrer SUCh that each finite structure is an L-structure, and thus €(L) < &
(see(5)onp. 6) and €; € €(L). Itisnot clear now whether the two refref conditionals
are “deductively equivalent” or whether each proper extension L of L, g does not take
all finite structures as L-structures.

Regarding its application in the main lemma, Lemma[3.4Imight have been formulated in
such away that wereplace“s={m:meil.p, —icAYMYw(M eicAw e p—m =,
m)}” by “s=i|.,, —ic and p has no greatest element”. We formulate Lemma[3.4lthe
way it is now because we need to apply it to Theorem under a situation different
from that in the main lemma.
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See §2.3, 82.4, 8§2.6, §2.8, and §2.9in [[29].
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