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A Natural Deduction System
for First Degree Entailment

ALLARD M. TAMMINGA and KOJI TANAKA

Abstract  This paper is concerned with a natural deduction systerfifat
Degree Entailment (FDEJ-irst, we exhibit a brief history dfFDE and of com-

bined systems whose underlying idea is used in developing the natural deduc-
tion system. Then, after presenting the language and a semank&ofve
develop a natural deduction system fdDE. We then prove soundness and
completeness of the system with respect to the semantics. The system neatly
represents the four-valued semanticsRBIE.

1 Introduction

1.1 First degree entailment  After being inspired by the work of Ackermani]]
Anderson and Belnaff] started their investigation into a theory of implication: if
...then__ . They developed a number of formal calculieritailmentwhich later

came to be known aRelevant Logic$ In developing their systems, Anderson and
Belnap encountered the difficulty of dealing with nested entailments. Consequently,
they considere&DE, inwhich the antecedegtand consequent in an implicational
sentence of the forma —  are truth functional, that isy and+ themselves do not
contain implications. The purpose of the investigation IRRE is, then, to study

the truth functional relationship between antecedent and consequent of implicational
sentences.

Anderson and Belnap provide a Hilbert-style system and a Gentzen-style system
for FDE. Although they give characteristic matrices, however, Anderson and Belnap
do not provide any formal semantics f6BDE. For this, we had to wait for Routley
and Routley[IT] and DunnlF].2 Routley and Routley provide a two-valued semantics
for FDE. Although their semantics may be philosophically contentious, it serves as
abasis for the semantics for various relevant lodi¢sowever, in this paper, we are
concerned only with Dunn’s semantics, which is somewhat more intuitive. Together
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with a tableau system, Dunn presents an “intuitive” formal semantidsD&:. Clas-

sically, semantic evaluations of sentences are defined to be functions that assign to
aformula exactly one truth value. For Dunn, however, evaluations are relations be-
tween a truth value and a formula. A formula may then take (relate to) no truth value
or may take (relate to) multiple truth valués.

One feature of Dunn’s semantics fBDE that we should take notice of is that
truth and falsity are not mutually complementary. Truth and falsity are considered
separately and are independent notions in Dunn’s semantics. This feature plays an
important role in developing a natural deduction systenHoE later in this paper.

1.2 Combined systems The idea of considering true and false formulas sepa-
rately can also be found in the study of formal logics for ‘assertion’ and ‘rejection’.
tukasiewicz was, to the best of our knowledge, the first to introduce both a sign for
‘assertion’ and a sign for ‘rejection’ into formal logic. Tracing back the history of the
philosophy of logic, Lukasiewicz followed Brentano (1838-1917), who propounded
anonpropositional theory of judgment. Brentalddrgued that

As every judgement is based on an idea, the statement expressing a judgement
necessarily contains a name [of the idea]. To this, another sign must come, a
sign corresponding to the inner state which we call judging, that is, a sign com-
pleting the bare name to a sentence. And because this judging can be twofold,
viz,, asserting or rejecting, the sign indicating it must be twofold too, one for af-
firmation and one for denial. These signs themselves do not mean anything, but
in conjunction with a name, they are the expression of a judgement. Therefore,
the most general scheme of a statemenhigs’ and ‘A is not’.>

In the 1921 paper “Logika dwuwaroiowa,” later translated as “Two-valued logic,”
tukasiewicz followed Brentano in adding to Frege’s idea of assertion Brentano’s idea
of rejection. In his early works, Lukasiewicz argued that a proposition must be re-
jected if and only if it is false, parallel with Frege’s condition for the assertion of a
proposition® Later, starting withAristotle’s Syllogistic from the Standpoint of Mod-
ern Formal Logi¢ Lukasiewicz redefined the concept of rejection to cover not only
false propositions, but propositions which are false under at least one interpretation
as well. Furthermore, he introduced syntactical techniqudsrieeall rejected, that

is, nontautological, statements. By using the symbof br assertion (indicating tau-
tologyhood) and-’ for rejection (indicating nontautologyhood), what ukasiewicz
added taclassical propositional logic (CPLk the following:

Axiom - p, wherep is a fixed propositional variable.
Detachment If - ¢ — ¥ and- v, thenH ¢.
Substitution  If 4 ¢ andyr can be obtained from by substitution, theni ¢.

This system is first described in Lukasiewidd,] where tukasiewicz also pro-
pounded a system of rejection for Aristotle’s syllogistics, after some technical prob-
lems had been solved by Stupecki. tukasiewicz also tried to construe systems of
rejection for theintuitionistic propositional logic (IPL)and for his own version of
modal logic. All these systems share one characteristic: they are all “combined sys-
tems,” that is, they all include both a sign for ‘assertion’ and a sign for ‘rejection’.
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One of the advantages of combined systems over traditional ones worth men-
tioning in this paper is that metatheoretical results can be incorporated in the object
language of the system under consideration. For instance, the disjunction property of
IPL can be formulated in the object language of a proof system as follows:

- Y
dovy

Now, since in many of the combined systems, in particular the systems of
tukasiewicz,H ¢ is complemented by the failure 6f ¢,® the concept of rejection
contained in the systems is classical. Nonetheless, combined systems, prima facie,
take the idea seriously that (possibly) false formulas be considered separately from
true formulas. The idea of Dunn’s semantics seems to have another home here.

2 Language and semantics
Definition 2.1  The alphabet oFDE consists of the following.

(i) Propositional variables p1, po, ps3, . ..
(i) Logical symbols -, A,V
(i)  Auxiliary symbols ), (

O denotes an empty sequenckédenotes the set of propositional variables.

Definition 2.2  The set of all formulas of DE, denoted by¥, isthe least set satis-
fying the following conditions:

() AcCH,
(i) o.vefF = (pr) (pVi)eF,
(i) ¢ = -¢ef.

Definition 2.3 Let M = (F, v) be an interpretation for the language wheis an
evaluation such that,, is a function from4 to ({0, 1}). Thenv,, is extended to
an evaluation for all formulag andy, by the following conditions:

() Llevylpny)
(i) 0 €vgr(pAy)
(i) 1 evg(eVvy)
(iv) 0 e€vy(pvy)
(V) levy(—e)
(Vi) 0 €vy(—p)

1€ var(9) and Le vo,(¥),
0 cvg(p)or0e vgr(y),
1€ vgr(p) or Le vy (),
0 € vgr(9) and 0€ vq, (¥),
0€va(e),

1e vy (o).

RN

Definition 2.4 LetI1C # andM be an interpretation. Then

() levg(IT) := 1evg () foreverypell,
(i) Oevg(Il) := O0ecvqs(p)foreverypell.

We are now in a position to define validity. Validity defined below incorporates the
concept of Dunn’s semantics fBDE. It concerns not only truth but also falsity as in
Dunn’s semantic8.
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Definition 2.5 (FDE Validity) LetIT,I'C ¥ andgpe . Then

() ;T Eg;0 <= Forall M: if L evg (IT) and Oc vy (T), then e vy, (@),
(i) ;T E=0; ¢ <= ForallM: if 1 evq (1) and Oc vy, (T), then O vq ().

3 A natural deduction system  While providing a Hilbert-style system and a
Gentzen-style system and natural deduction systems for other relevant logics, Ander-
son and Belnap do not give any natural deduction systentsb&: The first natural
deduction system fdfFDE to be formally introduced, other than the system developed
in this paper, will be by Priedg].1°

In this section, we introduce a natural deduction systentE, NDroe. The
system is developed by amalgamating the concept of Dunn’s semantics and that of
the combined systems. Instead of taking to be an assertion af (a usual policy
in combined systems), here it is semantically interprete@ @skes ‘truth’ asa truth
value. Similarly,H ¢ is interpreted asp takes ‘falsity’ asa truth value.

The systenNDroe is defined as follows?

Definition 3.1  Derivations in the systemDroe are inductively generated as fol-
lows.

Basis: The proof tree with a single occurrence of an assumptigror 4 ¢ is a deriva-
tion.

Induction StepLet D, Dy, D, D be derivations. Then they can be extended by the
following rules:

D D D D
me —l i -l i —E. i —E,
- F—e ¢ Fo
Dy Dy D D
g _ - .
Fe Y G T L ief0, 1) — PN AE ieqo, 1)
F oAy —pone1 - @i

[Hel"  [Hy]"

Dy Do Ds
deny X X AELY, where eitheX =F x or X =
X
D Dy D D
P ey T TV L TV e o,
F @oVe1 vy — ¢
[~ ¢]" [~ y]"
Dy Do Ds
Foviy X X

VE"", where eitheX =+ x or X =
X
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where | ¢] and H ¢] are assumptions which are discharged by the application of the
rules.

Lemma3.2 De Morgan rules of the following forms are availableNiDroe (dou-
ble lines indicate that the rules work both ways):

D D
- oA -
=V -y F—epVv—y

Proof: DeM.:

DeM,:

v
[ g]" [Hvl”
T QAY F—pv—y F—pv—y AEUY
F—pv—y

[F =] B el —E

}_
e TV
F—pv—y oAy k2N VEWY
',
oAy

Definition 3.3 LetIIC ¥. Then
O FII = {Foe:eelll
@iy A0 = {He:pelll
Definition 3.4 (FDE Derivability) LetIT,'C ¥ andgpe . Then

(i) II; T+ ¢; 0 <= There is a derivation df ¢ from ITU = T" in NDroe,
(i) II; T+~ O; ¢ <= Thereis a derivation ofl ¢ from+ ITU - T" in NDroe.
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4 Soundness
Lemmad4.l LetIl;, ITC Fforie{l,2, 3} andy, ¥, x€ F. Then
i IL,TEeAQO, if pell
(i) I T EOQGEEe, if pel
(i) LT EeO = ILTEO-g
(iv) T EOe = ILT E—¢ 0
(v) ILT E-—e O = ILTEDe
(vi) LT ED - = LT Ee0
(vii) gi ;; Ezg } — My, MxT1To b pAy: O
(vii) ILTEOe = I, T EO oAy
(ix) MTEOY = ILT EO Ay
x) LT EeAy:;0 = [T EgO
(xi) ILT = gAy;O — [T =y 0
[Iy; 1 = O oAy
(xii) Tz ook x: O = I3, [, I3 M, T, M3 = x; O
[3; '3, ¥ = x; O
[My; Ty = O oAy
(xii) T T2 @ ED; x = Iy, Iy, M3 T, T, T3 =0
[I3; '3, ¢ =05
(xiv) TILT ¢ 0 = LT Eevy; O
(xv) ILTEy;0 = I Eevy; O
N T EDe
(xvi) My: Ty = O: } = 1, T, T2 ED vy
(xvii) IL;T E=0O,¢Vvy = I TEO
(xviii) I, T EO vy = ILTEOY
[M; "1 Eevy; O
(xix) T, ;2 x; 0 = I3, [, I3 M, T, '3 = x: O
I3, ¥; I's = x; O
[I; 1 E vy O
(xx) T2, ¢ T2 =05 = [y, [, M3; g, T2, T3 =05 .

I3, ¥; '3 =05

Proof: (xii) Suppose thaf\f is an interpretation such thatd,, (T4, I, [T3) and
O€vqg (1,2, T'3). Then,adls; Ty = O; ¢ A Y, wehave G vq (¢ A ¥). Therefore,
0€vg(p) or 0O vy (¥). Suppose @ vq (¢). Then, adly; 'y, ¢ = x; O, we have
levgr(x). Suppose @& vqg, (¥). Then, aslls; I's, ¥ = x; O, we have 1e vq (x).

Hence le vy, (x). ThereforeIlq, I, [13; 1, 'y, '3 = O; x.

The other cases can be proved analogously. O

Theorem 4.2 (Soundness diiDroe)  LetIT, I'C F andge F. Then

() T ¢0 = ILTEe0,
(i) MT—=0,¢ = II;T 0.
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Proof: The proof is by induction on the depth of derivation. All that needs to be
checked is that the rules preserve truth and falsity in the appropriate way. This can
be shown using Lemnta 1] O

5 Completeness We now prove the completeness theorem fiiDroe. Priest [B]
demonstrates techniques to prove completeness theorems for natural deduction sys-
tems for various relevant and paraconsistent lo¢ioslthough Priest defines valid-

ity and derivability in a standard way, his techniques provide some insights into the
structure of the proof for the theorem. Here we adapt his techniques in our proof.

Definition 5.1 LetIT,I"C #. Then(IT; T") is a theory, if(IT; "} is closed under
deducibility, that is, if both

) ThT—e;0 = gell,

(i) Mr'—>0¢ — gel.
Definition 5.2 Let (IT; I') be a theory. ThenrIT; I') is dual prime, if(IT; I') has
both the disjunction property and the conjunction property, that is, if both

(i) evyell = ¢ellor yell,

(i) oanyell’ = gel or yerl.

Lemmab.3 Letll,I'C ¥ andg, e F. Let(IT; I') be a dual prime theory. Then

() ¢Aryell < ¢elland yell,
(i) ¢Ayel <« gelor yerl,
(i) evyell < ¢pellor yell,
(iv) ¢vyel <<= g¢gelandvyerl,
(V) @ell — —gpel,

(vi) —pell — gpel.
Proof:

(i) SupposepAyelIl. ThenIl; ' — pAy; O. SOII; T ¢; OandIl; T +— y; O
by AEL. Since(IT; T} is a theoryp € TT andy € TT. Supposey € IT and € T1.
By Al, IT; T — pA; O. Since(IT; T') is a theoryp Ay e T1.

(i) SupposepAyrel’. By dual primenesspeT" or yeT'. SupposepeT or yeT.
By Alg, IT; T O; oA, Since(IT; I') is a theorypAyreT.

(i) SupposeypV € I1. By dual primenessy € IT or ¢ € IT1. Supposep € IT or
Yyell. By VIR, IT; T' — @V r; O. Since(IT; I') is a theoryp Vv ¢ e I1.

(iv) Supposepvyrel'. By VE4, IT; T+ O; ¢ andIT; ' — O; ¢. Since(IT; T') is
atheory,pel’ andy el'. Supposewel andyel’. By VI, IT; T +— O; oV ).
Since(IT; T') is a theorypvyreT.

(v) Supposep €I1. By —l, IT; T — O; —¢. Since(IT;T) is a theory—¢ eT.
Suppose-pel'. By —E, IT; I > ¢; O. Since(IT; I') is a theorygp e I1.

(vi) Suppose~gell. By —E., IT; I" — O; ¢. Since(IT; I') is a theorypeI". Sup-
posepel. By —l, IT; T' > —¢; O. Since(IT; I') is a theory~¢ e I1.

U
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Definition 5.4 LetII,I', A, XC ¥. Then

() IT; T +— A;O«=There aredy, ..., 8, € A such thafll; T" > 81V --- Vdp; O,
(i) IT; T'+— O; X< There arery, ..., on € X such thall; ' — O; 01 A - - - Ao,

Lemmab.5 Letll,I', AC #suchthafll; I"'tA A; O. Thenthere are set§I* DI,
*>T and A* 2 A such that
(i) M I A% O,
(i) (Im*; T*) is a theory,
(iiiy  (IT*; T'*) is dual prime.

Proof: Assume thatlT; T v& A; 0O for I1,I', A C F. Let xo, x2, x4, ... be an
enumeration of7. Let me {0,2,4,...}. We define by recursion the sequence
(ITp; T Ap) (n € w) as follows:

(ITg; T'o; Ag) = (IL; T; A)

(Mm, xm: Tm; Am), if
M, xm; Tm A Am; O

(Mmt1s Tmgrs Amg) =

(Mm; Cm; Am, xm), if
M, xmi Tm = Am; O.

(Mme1s Tmets xms Amyga), if
Hmi1s Pmas Xm > Amyrs O

(Mmy2; Tmy2s Amg2) =

(Mmy1s Cmets Amgz, = xm), if
Mmi1; Pmeas Xm > Amypas O

We define the following by means of the sequence defined above thus:

(H*; F*; A*> = <Unew Hn; Unew Fn; Unew An)'
(i) We show thatIT*;I'™* & A*; O by induction on the construction of
(IT*; T*; A*).

Basis: n=0. ThenIlp; I'g & Ag; O by assumption.

Induction HypothesisIly; I'n & Ap; O.

Induction Step:We must show thafl,,1; [ny1 5 Apy1; O. Thereare two
cases: §) n+1=m+1 for someme {0, 2,4, ...}, and(b) n+1=m+2 for
someme {0, 2,4, ...}.

(8) Suppose thah+1=m+1 for someme {0,2,4,...}. Then there
are two cases based on the constructiofIdf, 1; ['mi1; Ame1) from
(Mm; Tm; Am).

(@) (Mme1; Tmats Amer) = (Om, xm; Tm; Am). By the construction, it must
be thatlly, xm; T'm & Am; O. Hencelly,1; T A Amet; O. There-
fore, Mn 1; Tnya 4 Angr; O.

@") (Mme1; Tmet; Ame1) = (s Tm; Am, xm)- By the construction, it must
be that Iy, ym;T'm = Am; O Suppose that Ty g;
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Fmi1 > Amer; 0. ThenIly; T'm = Am, xm; 0. By an application of
VEL, wehave thally; I'm—~ Am; O, that is,ITy; T'n — Ap; O, contrary
to the Induction Hypothesis.

(b) Suppose thah+1 = m+ 2 for someme {0,2,4,...}. Then there
are two cases based on the constructiofIdf, 2; ['mi2; Ame2) from
(Mme1: Dmgts Amgr).

(0) (Mmy2; Tmy2; Ami2) = (Mmgas Cmy1, Xms Amg1). By the construction,
it must be thatmi1; Tmet, Xxm ¥ Amer; O. Hence Iy 2;
L2 A Amypz; O. Therefore,l'InH; Ini1 5 Apgr; O.

(0") (Mme2: Tme2s Amy2) = (Mgt Tmg1s Amet, —xm). By the construc-
tion, it must be thallm,1; Cmy1, xm — Ame1; O. Suppose thafl,,o;
FCmi2 = Ameo; 0. ThenTlmi1; Tmer = Amet, —xm; 0. By applica-
tions of =E- andVE, Miny1; Cme1 = Amer; O. Therefore Iy; Ty
An; O, contrary to the Induction Hypothesis.

By (a) and @), ITny1; Thy1 A Anyer; O. Hencelly; Ty A Ap; O for all
n by induction. ThereforelT*; T'* 14 A*; O.

(i) We show thatIT*; I'*) is a theory. Assume that*; I'* — ¢; O. Now suppose
thate £IT*. Then by the construction, for some= {0, 2, 4, ...} wherep= xm,
itis notthe case thdly, xm:; C'm %% Am: O. SOl m, xm; Tm— Am; O. Hence
@€ Amr1 C A*. ThusIT*; I'* — A*; O, contrary to (i) proved above.
Assume thall*; I'™* — O, ¢, or equivalently,IT*; I'* > —¢; O by =l_. Now
suppose thap¢T™*. Then by the construction, for somes {0, 2, 4, ...} where
@=xm, itisnot the case thdll,1; Tmi1, Xm ¥ Ame1; 0. SO ni1; Timet,
Xm P> Ame1; 0. Hence—p e A2 € A*. ThusIT*; ' — A*; O, contrary to
(i) proved above.

(i) We show that(IT*; I'*) is dual prime. Assume thatvy € IT*. ThenIT*; I'* >
¢V yr; 0. Now suppose thap ¢ IT* andy ¢ IT*. By the construction, for
someme {0,2,4,...} wherep = xm andne{0,2,4,...} wherey = yxp, it
is not the case thdli,y, xm; I'm % Am; O, nor thatIl,, xn; Tn & Ap; O. So
Mm, xm; Tm = Am; O andTly, xn; T'n = Ap; O. Hencepe Ay 1 € A* and
¥ e A1 C A*. Thereforell*; I'* + A*; O, contrary to (i) proved above.
Assume thap Ay e T*. ThenIT*; I'™ — O; gAY, Or equivalently,[T*; I'* —
—@V—y; O by DeM,. Now suppose thap £T"* andyr £I'*. By the construc-
tion, forsomeme{0, 2, 4, ...} wherep= ymandne{0, 2, 4, . ..} wherey= xn,
itis not the case thdlim, 1; Tmy1, Xmb> Amer; O, northatlly q; Tnyq, xn o
Ant1; 0. SO mys; Pmpts Xm = Ampr; O @ndInga; Cngg, xn = Angas O
Hence—p e A2 C A* and—y € A » C A*. ThereforelT*; T'* — A*; O,

contrary to (i) proved above. -

Lemmab.6 LetIl, ", ¥C ¥ suchthafll; I" A O; X. Then there are sef@* D11,
[* DI and ¥* D ¥ such that
) TII%T* s O; 2%
(i) (Im*; T*) is a theory,
(iii)y  (IT*; T'*) is dual prime.
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Proof: Assume thatll; T 4 O; X for I1,I', X € F. Let xo, x2, x4, ... be an
enumeration off. Let me {0, 2,4,...}. We define by recursion the sequence
(TIn; Th; Zh) (N € ) as follows:

(TTo; T'o; 2o) = (I I %)

(Il xm; Tm; Zmy, f
Mm, xm; Fm A 0;

(Mmt1s Tmg1s Zme1) = 9

(Mm; Tm; Zm, = xm), if
M, xm; Tm = 0; Y.

(Mmyts Cmgts Xms Zmya), i
Mmias Pty xm 2 05 Bmyga

(Mmy2; Fmy2s Emy2) =

(Mmy1s Pyt Zmets Xm), i
Myt Pmgts Xxm = 05 Emgas

Then (i), (ii), and (iii) can be proved as in Lemfazd] O

Lemmab.7 Letll,’C Fandge . Then

[ TEe0 = ILI'- @0

Proof: Suppose thdi; I' &> ¢; O for I1, '€ F andg e F. By applying Lemm&.5l
with {¢} asA, there is a dual prime theoky1*; I'*) for [T* > IT andI™ 2> T" andA* D
A, such thatlT*; ' 4 A*; O.

Let M (= (¥, v)) be aninterpretation ang € 4. We define an evaluation as:

levgy(p) < pell¥,
Ocvg(p) < pel™.

It is then asserted that the above conditions extend to all formulas:

levy(p) = ¢ell,
Ocvy(p) < ¢pel™

The assertion is proved by structural inductiongon
Basis: By assumption:

levy(p) <— @ell*,
Ocvyr(p) < ¢pel™

Induction HypothesisFor all ¢ with fewer logical operators thap

levy () <— ell*,
Oevy(¥) < vyel™

Induction StepThere are six cases based on the connectives in
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levy (Y1AY2) < levy (Y1) and le vy, (¥p) by DefinitionZ23]
— Y1eIl* andy, e IT* by Induction Hypothesis
— YAy ell” by Lemmd5.3]

0cvg (Y1AY2) <= 0evqg (Y1) Or Ocvg(¥n) by Definition2.3]

< yYheloryel™ by Induction Hypothesis
> Y1AYpel™ by Lemmd5.3]

Similarly, we have

levy (Y1Vy2) <<=  Y1Vypell’,
Ocvyr(Y1Vir) <= Y1Vviypel™,
levg (—=¥) = —yell¥,
Ocvgr (=) — ~yel™

Hence the evaluation conditions defined above hold for all formulas by induction.
Sincell*; I'™* A& A*; O, we have thatp ¢ I[T*. By the above conditions then,gl
var(@). Butlevq () and Oc vq (x) for all ¢ € IT* and x e I'™*. Hencell*; I'* &
@; O. O

Lemmab5.8 LetIl,I'C Fandge F. Then

ITEOey = ILT'—0;¢.

Proof: Suppose thall; I' 4 O; ¢ for I1, I € F andg e . By applying Lemmé&.8l
with {¢} asX, there is a dual prime theokyI*; I'*) for [T* > ITandI'™ 2T andxX* D
3, such thatlT*; I'* 4 O; =*.

Let M (= (F, v)) be aninterpretation ang € 4. We define an evaluation as:

levy(p) <= pell¥,
Ocvy(p) = pel™

It is then asserted that the above conditions extend to all formulas:

levy(p) = pell?,
Ocvy(p) < ¢pel™

This assertion is proved as in Lemfal Sincell*; I'™* i4 O; ©*, we have thatp ¢
['*. By the above conditions, thengQ 4, (¢). But1e vy, () and O vq,(x) for all
Yyell*andy e T*. Hencell*; T'* (£ O; . O
Theorem 5.9 (Completeness dfiDroe) LetII,'C F andge F. Then

() 'O < II;I'> ¢ 0,

(i) ThIEDe <«<— II;Te 0.

Proof: The result follows from Theoref.2] Lemmd5.7] and Lemmé45.8| O
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6 Rejection eliminated?  Although the systerblDroe captures the underlying idea

of Dunn’s semantics, one might argue that the introduction of rejected formulas is
theoretically redundant. The argument runs as follolNBroe takes— as a falsity
operator understood semantically. So statihg amounts to stating that is false.

But then— ¢ is just —¢. Hence ' may be replaced by —’. Once we have
adopted this convention-' can be dropped from the system, since we need not in-
dicate the status (asserted or rejected) of a formula anymore. For example, the rule

-l becomes

and/\Ej*” becomes

[—¢]" [—y]”

Dy D> Ds

—(pAY) X X
X

Moreover, if we add the De Morgan rules as primitive, there will be some rules of
inference which are redundant. For exampiey EY? in the new system will be a
special case of E%". The resulting system will then be that of Prids}, [as can
easily be checket?

These changes give rise to changes to the definitions of validity and derivability
as well. Since every (rejected) formulalirin our definition of validity, that is, Def-
inition[2.5] can be incorporated intA by placing = i n front of the formulas under
consideration, validity is defined standardly. Similarly, derivability is defined stan-
dardly. Then soundness and completeness can be establisheBJas in [

The fact thatNDroe collapses under the proposed substitution to a standard sys-
tem, such as Priest’s, however, does not imply the inferiority of the system presented
in this paper, as there are some obvious advantages of our combined system over the
standard ones. FirstiDroe visually reflects the underlying idea of Dunn’s semantics:
truth and falsity are evaluated separately. Second, because of the introduction of both
asserted and rejected formulas in our proof system, our system, contrary to Priest’s,
does not have any rules for combinations of logical operators: each operator has two
introduction rules and two elimination rules, according to the status (asserted or re-
jected) of the formula which serves as a premise in the application of a rule. Rules
which necessitate combinations of operators obscure the meanings of the operators.
In constructing a proof tree in our system, at each step only the principal operator
needs to be considered. This procedure makes the construction of proofs intuitive
and mechanical, which is the main purpose of formal logics.

Third, NDroe has conjunction elimination rules which have the same forms as
disjunction elimination rules. Standardly, the disjunction elimination rule includes
subproof trees, while the conjunction elimination rule does not. So they have dif-
ferent forms. InNDrog, the conjunction elimination rulejE-, has the same form
as the disjunction elimination rule;E-, and AE does the same asE-. Thus the
elimination rules for conjunction and disjunction are dual. This feature of the sys-
tem, therefore, provides symmetric proofs which capture the semantics in a natural
way without any technical complications.

—AE%Y
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Finally, our definition of validity may be extended to capture more general con-

sequence relations as follows.
Definition 6.1 LetII,T', X, A C Fandg € ¥. Then

(i)

(ii)

(iif)

TS AEe; 00,0 < ForallM:iflevy (IT)and Ocvg, ()
and 1¢vq,(X) and OZvq,(A), then 1e
var(9),

5 AED ;0,0 < ForallM:iflevg (IT) and Ocvgy, ()
and 1¢vq,(X) and OZvq,(A), then O
var (@),

I35 ARED; O 0,0 < ForallM:iflevg (IT) and Ocvg, ()
and 1¢vq,(X) and 0Zvg,(A), then 1¢
Var (@),

(iv) TLEDSARED;O0;0¢0 <= ForalM:iflevy (IT) and Oz vq, (T)

and IZvq,(X) and OZvg,(A), then O
Vs (@).

Proof-theoretical characterizations of the above consequence relations have yet to be

inve

stigated. However, it does not seem impossible to give a proof theory in the style

of Konikowska [f]. Moreover, these general consequence relations may be studied

in th

e context of many logics other th&DE as well.
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NOTES

Or Relevance Logics'Relevantogics’ is often preferred by Australian relevdogi-
cians. Relevancdogics’, on the other hand, is preferred by American releedagi-
cians.

. The paper is included in Anderson, Belnap, and D{#jmjich is the second volume

of Anderson and Belnaj®]
See Priest and Sylvaad].

SomeParaconsistent Logicare developed based on this idea. UnsurprisirfeBE is
often considered to be a paraconsistent logic, as well as a relevant logic.

Brentano writes: “Da jedem Urteil eine Vorstellung zugrunde liegt, so wird die Aussage
als Ausdruck des Urteils notwendig einen Namen enthalten. Dazu wird aber noch ein
anderes Zeichen kommenissen, das demjenigen inneren Zustand entspricht, den wir
eben Urteilen nennen, d.h. ein Zeichen, das den blo3en Namen zum Zaiztekgnd

da dieses Urteilen von doppelter Art sein kanamtich ein Anerkennen oder Verwer-

fen, so wird auch das Zeichen dafin doppeltes sein iissen, einedif die Bejahung

und einesifir die Verneinung. &r sich allein bedeuten diese Zeichen nichts [...], aber in
Verbindung mit einem Namen sind sie Ausdruck eines Urteils. Das allgemeinste Schema
der Aussage lautet daheiist (A +) und Aist nicht (A —).” ([£], pp. 97-98.)



10.

11

12.

13.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
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. Lukasiewicz writes: “l wish to assert truth and only truth, and to reject falsehood and

only falsehood.” (Lukasiewicf], p. 91)

. For a synopsis of the history of theories of rejection@#tL, the reader may have re-

course to Tamming4lF].

. For a discussion of this feature of combined systems[isge |

. Standardly, validity foFDE is defined as in classical logic as follows:

MEe <= ForallM: if 1evy (1), then le vy ().

After the development of Dunn’s semantics, the histofy2it is largely anecdotal. For

this reason, it is uncertain whether the system provided by Priest will be the first. How-
ever, there do not seem to be any published papers that introduce natural deduction sys-
tems forFDE. This claim was suggested in conversations with Dunn and Priest.

The notational conventions used here are a slight modification of those of Troelstra and
SchwichtenberdiH].

A completeness proof for a classical natural deduction system can be found in Ten-
nant [L4].

Smullyan[[Z] shows a similar result for a classical tableaux system.
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