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The Principles of Interpretability

MLADEN VUKOVI Ć

Abstract A generalized Veltman semantics developed by de Jongh is used
to investigate correspondences between several extensions of intepretability
logic IL. In this paper we present some new results on independences.

1 Introduction In 1976 Solovay [3] proved arithmetical completeness of modal
systemL, that is, provability logic. After this some logicians considered modal rep-
resentations of other arithmetical properties, for example, interpretability,�n-con-
servativity, interpolability, and so on. Modal logics for interpretability were first stud-
ied by H́ajek [2] andŠvejdar [4]. Visser [6] introduced the binary modal logicIL (in-
terpretability logic). The interpretability logicIL results from the provability logicL
by adding the binary modal operator�.

The arithmetical semantics of interpretability logic is based on the fact that each
sufficiently strong theoryS contains arithmetical formulasPr(x) andInt(x, y). For-
mula Pr(x) expresses that “x is provable inS ” (i.e., a formula with G̈odel number
x is provable inS). FormulaInt(x, y) expresses that “S + x interpretsS + y.” An
arithmetical interpretation is a function� from modal formulas into arithmetical sen-
tences preserving Boolean connectives and satisfying

(�A)� = Pr(�A��), (A � B)� = Int(�A��,�B��).

(�A�� denotes G̈odel number the formulaA�). A modal formulaA is valid in S if
S � A� for each arithmetical interpretation� . A modal theoryT is sound with re-
spect toS if all its theorems are valid inS. A modal theoryT is sound if theoryT is
sound with respect to all reasonable arithmetical theoriesS. The theoryT is complete
with respect toS if it proves exactly those formulas that are valid inS. The theoryT
is complete if it proves exactly those formulas that are valid in any reasonable arith-
metical theoryS. The soundness ofIL was already known and amounts to noticing
that all the axioms are valid and the rules of inference preserve validity.
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Švejdar in [5] investigated independence between principles of interpretability.
Švejdar did not consider the principlesP, M0, KM2, andW∗. Heused Veltman mod-
els. Some principles have the same characteristic class of Veltman frames. For exam-
ple, the principlesM andKM1have the same characteristic classes, but characteristic
classes of generalzed Veltman frames of these principles are different. The proofs of
independence between these principles are relatively complicated by using Veltman
semantics.

Weproved in [9] that the principlesM, P, F, W, W∗, KM1, KM2, KW1, KW1◦

are not provable in systemILM0. Weused the generalized Veltman semantics as de-
fined by de Jongh. Here we consider all correspondences between the principles.

2 The interpretability logic The languageL(�,�) of the interpretability logic
contains the propositional lettersp0, p1, . . . , the logical connectives¬,∧,∨,→,

←→, the unary modal operator�, and the binary modal operator�. Weuse⊥ for
false and	 for true. The axioms of the interpretability logicIL are:

(L0) all tautologies of the propositional calculus

(L1) �(A → B) → (�A → �B)

(L2) �A → ��A

(L3) �(�A → A) → �A

(J1) �(A → B) → (A � B)

(J2) ((A � B) ∧ (B � C)) → (A � C)

(J3) ((A � C) ∧ (B � C)) → ((A ∨ B) � C)

(J4) (A � B) → (�A → �B)

(J5) �A � A

where� stands for¬�¬ and � has the same priority as→. The deduction rules
of IL are modus ponens and necessitation.

Axiom (L1) is a formalization of the deduction theorem. Axiom (L2) is an ex-
pression of the provable�0

1-completeness of arithmetical theory. Axiom (L3) is a
formalization of L̈ob’s theorem. Axioms (J1) – (J3) are clear. Axiom (J4) says that
relative interpretability yields relative consistency results. Axiom (J5) is the arithme-
tized completeness theorem: arithmetical theory plus the assertion that a given the-
ory is consistent interprets the given theory. The systemIL is natural from the modal
point of view, but arithmetically incomplete. For example,IL does not prove the for-
mulaW; that is,(A � B) → (A � (B ∧ �(−A))), which is valid in every adequate
theory. Various extensions ofIL are obtained by adding some new axioms. These
new axioms are called the principles of interpretability. From Visser [6] and [7], and
Švejdar [5], we have the following principles:

M A � B → (A ∧ �C) � (B ∧ �C) Montagna’s Principle

P A � B → �(A � B) Principle of Persistence

M0 (A � B) → ((�A ∧ �C) � (B ∧ �C))

F (A � �A) → �(¬A) Feferman’s Principle
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W (A � B) → (A � (B ∧ �(¬A)))

W∗ (A � B) → ((B ∧ �C) � (B ∧ �C ∧ �(¬A)))

KM1 (A � �B) → �(A → �B)

KM2 (A � B) → (�(B → �C) → �(A → �C))

KW1 (A � �	) → (	 � (¬A)) Transposition Principle

KW1◦ ((A ∧ B) � �A) → (A � (A ∧ (¬B)))

One can naturally pose the question of independence among the quoted principles.
Using Veltman models,̌Svejdar proved the following theorem in [5].

Theorem 2.1 (Švejdar) No other implications among combinations of the formu-
las M, KM1, W, KW1◦, KW1, F except M → W ∧ KM1, W → KW1◦, KM1 →
KW1◦, and KW1◦ → F ∧ KW1 are provable over IL.

In the following theorem we quote Visser’s results (see [6] and [7]) about correspon-
dences between the interpretability principles.

Theorem 2.2 (Visser) We have: IL(KM1) � KM2, ILM � W ∧ KM1, ILP �
W, ILW∗ = ILW M0, ILW 
� M0, ILM � M0, ILP � M0.

Švejdar in [5] did not investigate the principlesP, M0, KM2, andW∗. In this pa-
per we present some new results on independences, that is, we determine all corre-
spondences between the mentioned principles. De Jongh defined generalized Velt-
man models. Using generalized Veltman models we can show our main result. More
precisely, the aim of this paper is to prove the following theorem.

Theorem 2.3 There is no other implication among combinations of the formu-
las M, M0, KM1, KM2, P, W, W∗, KW1◦, KW1, F except M → W∗ ∧ KM1, P →
W∗, W∗ → W ∧ M0, W → KW1◦, KM1←→ KM2, KM1→ KW1◦, and KW1◦ →
F ∧ KW1.

By picturing we get
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Our theorem follows in a series of propositions and corollaries in Sections 5 and 6.

3 The generalized Veltman semantics Now we define the generalized Veltman se-
mantics for the interpretability logic.

Definition 3.1 (de Jongh) An ordered triple(W, R, {Sw : w ∈ W}) is called an
ILset-frame and denoted byW if we have

1. (W, R) is an L-frame; that is,W is a nonempty set, andR is a transitive and
reverse well-founded relation onW;

2. Everyw ∈ W satisfies

Sw ⊆ W[w] × P (W[w])\{∅},
whereW[w] denotes the set{x : wRx};

3. The relationSw is quasi-reflexive for everyw ∈ W; that is, wRx implies
xSw{x};

4. The relationSw is quasi-transitive for everyw ∈ W; that is, if xSwY and
(∀y ∈ Y )(ySw Zy) thenxSw(∪y∈Y Zy);

5. If wRuRv, thenuSw{v};
6. If xSwY and Y ⊆ Z ⊆ W[w], thenxSw Z.

When presenting anILset-frame by picture, solid arrows indicateR while dotted ones
indicateSw. The relations between nodes (transitivity of the relationR; wRvRu =⇒
vSw{u}; quasi reflexivity and quasi transitivity ofSw; condition (6) in the definition
of ILset-frame) will not be indicated by arrows.

Definition 3.2 (de Jongh) An ordered quadruple(W, R, {Sw : w ∈ W},�) is called
the ILset-model (generalized Veltman model) and denoted byW if we have

1. (W, R, {Sw : w ∈ W}) is an ILset-frame;
2. � is the forcing relation between elements ofW and formulas ofIL, which

satisfies the following:

(a) w � 	 and w 
� ⊥ are valid for everyw ∈ W;
(b) � commutes with the Boolean connectives;
(c) w � �A if and only if ∀x(wRx =⇒ x � A);
(d) w � A � B if and only if

∀v((wRv & v � A) =⇒ ∃V(vSwV & (∀x ∈ V )(x � B))).

As usual we shall use the same letterW for a model and a frame. IfW is an
ILset-frame andA is a formula ofIL, we write W |= A if and only if w � A for
all forcing relations� on W and all nodesw of W. For a modal schemeA and an
ILset-frameW, W |= A denotes the fact thatW |= B for an arbitrary instanceB of A.
Analogously, we defineW |= A, if W is anILset-model . IfW is anILset-model, V ⊆
W and A a formula, the notationV � A means thatv � A for anyv ∈ V .

It is easy to check the adequacy of the systemIL with respect toILset-models.
In [9] we proved the completeness of the systemIL with respect to generalized Velt-
man models. We will not define here regular Veltman models (for examples, see [8]).
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4 The characteristic classes Let � be a set of modal formulas. We will say that an
ILset-frameW = (W, R, {Sw : w ∈ W}) is in the characteristic class of generalized
Veltman frames of� if we haveW |= �. By Charset(�) we denote the characteristic
class of�. Analogously, we denote byChar(�) the characteristic class of regular
Veltman frames of the set�. The characteristic class of a principle of interpretability
is the characteristic class of the set of all instances of the principle.

Verbrugge determined in an unpublished paper the characteristic classes of the
principlesP, M, andKM1. Denote by(P) the following property of anILset-frame:

x3Sx1Y & x1Rx2Rx3 =⇒ (∃Y ′ ⊆ Y )(x3Sx2Y ′).

Then we haveCharset(P) = {W : ILset-frameW possesses the property(P)}. By
(KM1) we denote the condition

x2Sx1Y =⇒ (∃y ∈ Y )(∀z)(yRz =⇒ x2Rz).

Then we haveCharset(KM1) = {W : ILset-frameW possesses the property(KM1)}.
By (M) we denote the following condition:

x2Sx1Y =⇒ (∃Y ′ ⊆ Y )(x2Sx1Y ′ & (∀y ∈ Y ′)(∀z)(yRz =⇒ x2Rz)).

Then we haveCharset(M) = {W : ILset-frameW possesses the property(M)}.
Let (M0) be the following condition of a generalized Veltman frame:

x1Rx2Rx3 & x3Sx1Y =⇒ ∃Y ′ ⊆ Y(x2Sx1Y ′ & (∀y ∈ Y ′)(∀z)(yRz =⇒ x2Rz)).

In [9] we proved thatCharset(M0) = {W : ILset-frame W possesses the property
(M0)}.

It is easy to see thatILW � F. Švejdar provedILF 
� W. But Švejdar proved
in [5] thatChar(F) = Char(W ). So regular Veltman frames do not distinguish prin-
ciples F andW. We determined in [10] the characteristic class of generalized Velt-
man frames of principleF. First, we define some special relations. Let(W, R, {Sw :
w ∈ W}) be anILset-frame and letw be its element. WithSw andRw we denote the
following relations:

1. for ∅ 
= A ⊆ W[w] and B ⊆ P (W[w])\{∅} is valid

ASwB iff (∀a ∈ A)(∃B ∈ B )(aSw B);

2. for C ⊆ P (W[w])\{∅} and ∅ 
= D ⊆ W[w] is valid

C Rw D iff (∀C ∈ C )(∀c ∈ C)(∃d ∈ D)(cRd).

WehaveCharset(F) = {W: relationSw ◦ Rw is reverse well-founded for allw ∈ W}.
In [11] we proved thatCharset(F) 
= Charset(W ). We have already mentioned that
Char(M) = Char(KM1) andCharset(M) 
= Charset(KM1). So we think the gen-
eralized Veltman semantics better distinguishes the principles of interpretability with
respect to the characteristic classes.
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5 The theories ILP, ILM0, ILW∗, and IL(KM2) In a series of propositions and
corollaries we determine the correspondences of the theoriesILP, ILM0, ILW∗, and
IL(KM2) by the principlesM, KM1, W, KW1◦, KW1, andF.

Proposition 5.1 We have IL(KM2) � KM1.

Proof: Let A and B be arbitrary formulas of the languageL(�,�). We write an
instance of schemeKM2. We substitute the letterB in the schemeKM2 by thefor-
mula�B and the letterC by the formulaB. Then we haveIL(KM2) � (A ��B) →
(�(�B → �B) → �(A → �B)). This impliesIL(KM2) � (A ��B) → �(A →
�B). �
Proposition5.1 and Visser’s theorem imply that the principlesKM1 and KM2 are
equivalent overIL. In the rest of the paper we do not investigate the principleKM2.
Especially, when we deal with principles of the second group we mean on the princi-
plesP, W∗, andM0.

Proposition 5.2 We have ILP 
� KM1.

Proof: We define theILset-frame W which satisfies the condition(P) and at the
same time it does not possess the property(KM1). Let

c◦
�

◦b
�
�

�
�

V

Sw �a ◦
�

◦w

First we prove thatW satisfies the condition(P). Because(P) contains the condition
x1Rx2Rx3 we consider only the case whenwRbRc andcSwY, whereY is a nonempty
subset ofW[w]. Then the setY contains the nodec. So we havecSbY ′ for the set
Y ′ = {c}.

It remains to prove that theILset-frameW does not satisfy the conditon(KM1).
WehaveaSwV andbRc, butaRc is false. So there is noty ∈ V such thatyRz implies
aRz, for all z ∈ W. �
Visser’s theorem and Proposition5.2 imply ILP 
� M. Also by Visser’s theorem we
have ILP � W∗. Švejdar’s theorem impliesILP � KW1◦ ∧ KW1 ∧ F. In [9] we
proved the following theorem. By this theorem, the correspondences of the system
ILM0 with all other principles is completely described.

Theorem 5.3 The principles M, P, F, W, W∗, KM1, KM2, KW1, KW1◦ are not
provable in ILM0.

Many correspondences between the systemILW∗ and principles of interpretability
follow by means of Visser’s resultILW∗ = ILWM0 andŠvejdar’s theorem; that is,

ILW∗ � W ∧ M0 ∧ KW1◦ ∧ KW1∧ F.

In the following propositions and the corollary we prove the independence between
the systemILW∗ and the principlesKM1, M, andP. Weuse regular Veltman seman-
tics in proofs.
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Proposition 5.4 The principle KM1 is not provable in the system ILW∗.

Proof: We haveChar(KM1) = {W : ∀x(Sx ◦ R ⊆ R)} and Char(W∗) = {W :
∀x(R ◦ Sx ◦ R ⊆ R)} (see [8]). Let W = {w, a, b, c}, W[w] = {a, b, c}, W[b] = {c},
andW[a] = W[c] = ∅. We define the relationSw by aSwb. It is easy to check that
we have(W, R, S) ∈ Char(W∗)\Char(KM1). �

Corollary 5.5 We have ILW∗ 
� M.

Proof: Visser’s theorem and Proposition5.4 imply the assertion of the corollary.
�

Proposition 5.6 The principle P is not provable in the system ILW∗.

Proof: We have Char(P) = {W : ∀w∀x∀y∀z(xSw y and wRzRx imply xSz y)}
(see [8]). Let W = {w, a, b, c}, W[w] = {a, b, c}, W[a] = {b}, andW[b] = W[c] =
∅. We define the relationSw by bSwc. It is easy to check that we have(W, R, S) ∈
Char(W∗)\Char(P). �

6 The theories ILM, IL(KM1), ILW, IL(KW1◦), IL(KW1), and ILF De Jongh
and Veltman in [1] provedILM 
� P. Visser’s theorem impliesILM � W∗.

Corollary 6.1 We have ILW 
� P, ILW 
� M0, and ILW 
� W∗.

Proof: By Proposition5.6 and Visser’s theorem we getILW 
� P. The remaining
claims follow from Visser’s theorem. �

Corollary 6.2 Let ILS denote the system IL + S, where S is some of principle
KW1◦, KW1, and F. Then we have ILS 
� P, ILS 
� M0, and ILS 
� W∗.

Proof: In Švejdar’s theorem we haveILW � KW1◦ ∧ KW1 ∧ F. Hence, using
Corollary6.1the assertion of corollary follows. �

Proposition 6.3 The principle M0 is not provable in the system IL(KM1).

Proof: Wedefine theILset-frame which possesses the property(KM1) and does not
possess the property(M0). As usual we define thisILset-frame by a picture:

◦
c

e ◦
�

◦
d

�
�

�
�

V

Sw �◦b
�

◦a
�

◦w
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First we prove that the definedILset-frame does not possess the property(M0).
WehavewRaRb, bSwV, andaSwV, but there is no proper subsetY ′ of the setV such
thataSwY ′. Also aSwV andd Re, but aRe is false.

Now we prove that ourILset-frame possesses the property(KM1). For all x ∈
W\{w} the setW[x] is empty or has only one element. Also we consider only the
casex1 = w.

Now we consider all the cases with respect to nodex2. Let x2 = a. If the set
Y contains the nodea then the condition(KM1) is true. If the setY contains some
R-terminal node (b, c, or e) the condition(KM1) is true again. We emphasize that
aSw{d} is not true. Now letx2 = b. Then the setY contains the nodeb or it contains
c, but the nodesb andc are R-terminal. If x2 = c then it has to bec ∈ Y . If x2 = d
then the setY contains the noded or it containse. If x2 = e then it has to bed ∈ Y .
So in all the cases the condition(KM1) is true. �

Corollary 6.4 We have IL(KM1) 
� P and IL(KM1) 
� W∗.

Proof: Visser’s theorem and Proposition6.3 imply IL(KM1) 
� P. Using Visser’s
theorem and Proposition6.3again, we haveIL(KM1) 
� W∗. �
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