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Powers of 2

KYRIAKOS KEREMEDIS and HORST HERRLICH

Abstract It is shown that inZF Martin’s ℵ0-axiom together with the axiom
of countable choice for finite sets imply that arbitrary powers2X of a 2-point
discrete space are Baire; and that the latter property implies the following: (a)
the axiom of countable choice for finite sets, (b) power sets of infinite sets are
Dedekind-infinite, (c) there are no amorphous sets, and (d) weak forms of the
Kinna-Wagner principle.

1 Introduction As is well known, inZF (i.e., Zermelo-Fraenkel set theory without
the axiom of choice) products of compact Hausdorff spaces may fail to be compact
or Baire. In fact the following hold.

Theorem 1.1 (Rubin and Scott [8], Łos and Ryll-Nardzewski [6]) Products of com-
pact Hausdorff spaces are compact if and only if the Boolean prime ideal theorem
holds.

Theorem 1.2 (Herrlich and Keremedis [4]) Products of compact Hausdorff
spaces are Baire if and only if the axiom of dependent choice holds.

It is further known that Theorem1.1remains valid if attention is restricted to powers
of the discrete space2 whose underlying set is 2= {0,1}.
Theorem 1.3 (Mycielski [7]) Powers 2X are compact if and only if the Boolean
prime ideal theorem holds.

The natural question whether Theorem1.2remains valid, too, if attention is restricted
to powers2X has been left unanswered. In this paper we will show that the axiom of
countable choice for finite sets together with Martin’sℵ0-axiom suffice to prove

Baire 2∗: All powers 2X are Baire.

We will further present several set theoretic conditions that are necessary to deduce
Baire(2∗); in particular, the axiom of countable choice for finite sets. However, we
are not able to present a set theoretic condition that is equivalent toBaire (2∗).
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2 Terminology Let 2 be the discrete topological space with underlying set 2=
{0,1}. For any setX let 2X be the topological product ofX copies of2. Let Y be
a subset ofX: For f ∈ 2X let fY be the restriction off to Y and letπY : 2X → 2Y

be theY th projection, defined byπY ( f ) = fY . Let |Y | be the cardinality ofY , if Y
is finite, and∞ otherwise. LetP(2X ) be the set of all partial mapsf : X → 2. For
f ∈ P(2X ) let dom( f ) be the domain off andB( f ) = π−1

dom( f )( f ). Let Pfin(2X ) be

the set of all f ∈ P(2X ) with finite domain. LetB = {B( f ) | f ∈ Pfin(2X )} be the
canonical base for2X .

Definition 2.1 Consider the following axioms inZF (form numbers refer to
Howard and Rubin [5]).

Baire(2∗) All powers2X are Baire.

BPI Boolean prime ideal theorem [Form 14]; that is, every Boolean al-
gebra with 0�= 1 has a prime ideal.

DC Axiom of dependent choice [Form 43]; that is, for each relation�

on a nonempty setX that satisfies the condition

∀x ∈ X ∃y ∈ X x�y

there exists a sequence(xn) in X with xn�xn+1 for eachn.

DMC Axiom of dependent multiple choice [Form 106]; that is, for each
relation� on a nonempty setX that satisfies the condition

∀x ∈ X ∃y ∈ X x�y

there exists a sequence(Fn) of nonempty finite subsets ofX satis-
fying the condition

∀n ∈ ω ∀x ∈ Fn ∃y ∈ Fn+1 x�y.

AC(ℵ0) Axiom of countable choice [Form 8]; that is, products
∏

n∈N

Xn of

sequences(Xn) of nonempty sets are nonempty.

CMC Axiom of countable multiple choice [Form 126]; that is, for each
sequence(Xn) of nonempty setsXn there exists a sequence(Fn)

of nonempty finite subsetsFn of Xn.

AC(ℵ0,< ℵ0) Axiom of countable choice for finite sets [Form 10]; that is,
products

∏
n∈N

Fn of sequences(Fn) of nonempty finite sets are

nonempty.

MA (ℵ0) Martin’s ℵ0-axiom: for every nonempty partially ordered set
(P,≤) with the property that any subset in which any 2 different
elements have no common lower bound is at most countable, and
for any sequence(Dn) of subsets ofP such that∀n ∀x ∈ P ∃y ∈
Dn y ≤ x holds there exists a filter onP that meets everyDn [Form
8F; cf. Remark3.2below].

Ded(2∗) If X is infinite then 2X is Dedekind infinite [Form 82].
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KW(ℵ0,∞) For every sequence(Xn) of infinite sets there exists a sequence
(Yn) of nonempty proper subsetsYn of Xn [cf. Form 357].

PKW Partial Kinna-Wagner Selection Principle [Form 379]; that is, for
each infinite family(Xi)i∈I of setsXi with |Xi| ≥ 2 there exist an
infinite subsetK of I and a family(Yk)k∈K of nonempty proper
subsetsYk of Xk.

A There are no amorphous sets [Form 64]; that is, each infinite set is
the disjoint union of two infinite sets.

Definition 2.2 A topological spaceX is calledBaire provided thatX is either
empty or inX countable intersections of dense, open sets are nonempty.

3 Results

Theorem 3.1 The conjunction of AC(ℵ0,< ℵ0) and MA(ℵ0) implies Baire(2∗).

Proof: AssumeAC(ℵ0,< ℵ0) andMA(ℵ0), let X be a set, and let(Dn) be a se-
quence of dense, open subsets of2X . Call elementsf andg of P(2X ) compatible
provided that they have a common extension: that is, if and only iffdomf ∩domg =
gdomf ∩domg. Weclaim

(∗) Any set A of pairwise incompatible elements ofPfin(2X ) is at most count-
able.

In fact, if the sequence(kn) of natural numbers is defined byk0 = 1 andkn+1 = 1+
(n + 1) · kn, then for any setA of pairwise incompatible elements ofPfin(2X ) and for
any natural numbern the setAn = { f ∈ A | |dom( f )| = n} has at mostkn elements.
This follows via induction, since forf ∈ An+1, and eachx ∈ dom( f ) the set{g ∈
An+1 | g(x) �= f (x)} has at mostkn elements, henceAn+1 at most 1+ (n + 1) · kn

elements. Thus, byAC(ℵ0,< ℵ0), the setA is—as a countable union of finite sets
An—at most countable. Thus (*) holds.

For eachn ∈ N, defineEn = { f ∈ Pfin(2X ) | B( f ) ⊂ Dn}. Then for eachn ∈ N

and for eachf ∈ Pfin(2X ) there exists an extension off in En. This fact, together with
(∗) implies viaMA(ℵ0) that there exists a subsetF of Pfin(2X ) with the following
properties:

(1) Any two elements ofF are compatible.
(2) F meets eachEn.

In view of (1), there exists inP(2X ) a common extensionf of all elements ofF. In
view of (2), B( f ) ⊂ Dn for eachn. Thusg: X → 2, defined by

g(x) =
{

f (x), if x ∈ dom( f )
0, otherwise

is an element of eachDn. �

Remark 3.2 It has been claimed thatAC(ℵ0) impliesMA(ℵ0). (See Shannon [9],
p. 382 and [5], Form 8 ⇐⇒ Form 8F.) However, the relation betweenAC(ℵ0)
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and MA(ℵ0) is still unknown. Form 8F has been changed to Form 339. (See
http:www.math.purdue.edu/∼jer/cgi-bin/changes.html, changes and additions.)

Theorem 3.3 Baire(2∗) implies Ded(2∗).

Proof: Let X be an infinite set. ChooseY = X ×N and consider2Y . For eachn ∈ N,
the set

Dn = { f ∈ 2Y | ∃k > n ∀m ≤ n ∃x ∈ X f (x, k) �= f (x, m)}
is open and dense in2Y . By Baire(2∗) there exists somef in ∩Dn. Define, via in-
duction, a strictly increasing sequence(kn) of natural numbers as follows:

k0 = 0
kn+1 = min{k > kn | ∀m ≤ kn ∃x ∈ X f (x, k) �= f (x, m)}.

Then the mapϕ:N → 2X , defined byϕ(n) = f (−, kn), is injective. Thus, 2X is
Dedekind-infinite. �

Remark 3.4 The above theorem implies that the conditionsBaire(2∗) (= powers
of 2 are Baire) andTych(2∗) (= powers of2 are compact;= BPI) are independent
of each other. In Feferman’s model (M2 in [5]) DC henceBaire(2∗) hold, butBPI
and thusTych(2∗) fail. In Mostowski’s Linearly Ordered Model (N3 in [5]) BPI and
thusTych(2∗) hold, butDed(2∗) and thusBaire(2∗) fail.

Theorem 3.5 Baire(2∗) implies AC(ℵ0,< ℵ0).

Proof: Let (Xn) be a sequence of nonempty, finite sets. Assume, without loss of
generality, that theXn are pairwise disjoint, and formX = ∪Xn. For eachn ∈ N, the
set

Dn = { f ∈ 2X
∣∣∣ ∃m ≥ n |Xm ∩ f −1(1)| = 1}

is open and dense in2X . By Baire(2∗) there exists somef in ∩Dn. The setM =
{m ∈ N

∣∣∣ |Xm ∩ f −1(1)| = 1} is unbounded and the product
∏

m∈M
Xm is nonempty.

ThusPAC (ℵ0,< ℵ0), the partial axiom of countable choice for finite sets, holds.
Thus (Brunner [2]) AC(ℵ0,< ℵ0) holds. �

Corollary 3.6 The following conditions are equivalent:

(1) Products of compact Hausdorff spaces are Baire.
(2) Compact Hausdorff spaces and spaces of the form 2X are Baire.

Proof: Obviously (1) implies (2). The reverse implication follows immediately
from Theorem3.5 and the following facts: (1) is equivalent toDC ([4]. Compact
Hausdorff spaces are Baire if and only ifDMC holds (Fossy and Morillon [3]). DC
is equivalent to the conjunction ofDMC andAC(ℵ0,< ℵ0) (Blass [1]). �

Remark 3.7 In ZF0, set theory with atoms,Baire(2∗) is not implied byDMC.
This follows from Theorem3.5since in the second Fraenkel Model (N2 in [5]) DMC
(and thusCMC) holds, butAC(ℵ0,< ℵ0) and thusBaire(2∗) fail.
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Theorem 3.8 Baire(2∗) implies KW (ℵ0,∞).

Proof: Let (Xn) be a sequence of infinite sets. Assume, without loss of generality
that theXn are pairwise disjoint, and formX = ∪Xn. For eachn ∈ N, the set

Dn = { f ∈ 2X | f [ Xn] = 2}

is open and dense in2X . By Baire(2∗) there exists somef in ∩Dn. Thenfor each
n ∈ N, Yn = f −1[0] is a nonempty, proper subset ofXn. �

Theorem 3.9 Baire(2∗) implies PKW.

Proof: Let (Xi)i∈I be an infinite family of setsXi with |Xi| ≥ 2. Assume without
loss of generality that theXi are pairwise disjoint. FormX = ⋃

i∈I
Xi. For eachn ∈ N

the set
Dn = { f ∈ 2X

∣∣∣ |{i ∈ I| f [ Xi] = 2}| ≥ n}

is open and dense in2X . By Baire(2∗) there exists somef in ∩Dn. Then J = {i ∈
I | f [ Xi] = 2} is infinite, and for eachi ∈ J the setf −1(1)∩ Xi is a nonempty, proper
subset ofXi. �
In view of the fact thatDed(2∗) impliesA our next result follows immediately from
Theorem3.3. However, we supply a simple direct proof as well.

Theorem 3.10 Baire(2∗) implies A.

Proof: Let X be an infinite set. For eachn ∈ N the set

Dn = { f ∈ 2X
∣∣∣ | f −1(0)| ≥ n and| f −1(1)| ≥ n}

is open and dense in2X . By Baire(2∗) there exists somef in ∩Dn. ThusY = f −1(0)

andX\Y = f −1(1) are both infinite. �

Remark 3.11 Observe that all the consequences ofBaire(2∗), exhibited in our re-
sults3.3, 3.5, 3.6, 3.8, 3.9, and3.10are also consequences ofAC(ℵ0).
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