Powers of 2

KYRIAKOS KEREMEDIS and HORST HERRLICH

Abstract

It is shown that in ZF Martin's \aleph_{0}-axiom together with the axiom of countable choice for finite sets imply that arbitrary powers $\mathbf{2}^{X}$ of a 2-point discrete space are Baire; and that the latter property implies the following: (a) the axiom of countable choice for finite sets, (b) power sets of infinite sets are Dedekind-infinite, (c) there are no amorphous sets, and (d) weak forms of the Kinna-Wagner principle.

1 Introduction As is well known, in $\mathbf{Z F}$ (i.e., Zermelo-Fraenkel set theory without the axiom of choice) products of compact Hausdorff spaces may fail to be compact or Baire. In fact the following hold.

Theorem 1.1 (Rubin and Scott [8, Łos and Ryll-Nardzewski 6]) Products of compact Hausdorff spaces are compact if and only if the Boolean prime ideal theorem holds.

Theorem 1.2 (Herrlich and Keremedis (4]) Products of compact Hausdorff spaces are Baire if and only if the axiom of dependent choice holds.
It is further known that Theorem 1.1 emains valid if attention is restricted to powers of the discrete space 2 whose underlying set is $2=\{0,1\}$.
Theorem 1.3 (Mycielski [7]) Powers $\mathbf{2}^{X}$ are compact if and only if the Boolean prime ideal theorem holds.
The natural question whether Theorem 1.2 remains valid, too, if attention is restricted to powers 2^{X} has been left unanswered. In this paper we will show that the axiom of countable choice for finite sets together with Martin's \aleph_{0}-axiom suffice to prove

$$
\text { Baire } \mathbf{2}^{*} \text { : All powers } \mathbf{2}^{X} \text { are Baire } .
$$

We will further present several set theoretic conditions that are necessary to deduce Baire ($\mathbf{2}^{*}$); in particular, the axiom of countable choice for finite sets. However, we are not able to present a set theoretic condition that is equivalent to Baire (2*).

Received September 2, 1999; revised November 20, 2000

2 Terminology Let 2 be the discrete topological space with underlying set $2=$ $\{0,1\}$. For any set X let $\mathbf{2}^{X}$ be the topological product of X copies of 2. Let Y be a subset of X : For $f \in 2^{X}$ let f_{Y} be the restriction of f to Y and let $\pi_{Y}: 2^{X} \rightarrow 2^{Y}$ be the Y th projection, defined by $\pi_{Y}(f)=f_{Y}$. Let $|Y|$ be the cardinality of Y, if Y is finite, and ∞ otherwise. Let $P\left(2^{X}\right)$ be the set of all partial maps $f: X \rightarrow 2$. For $f \in P\left(2^{X}\right)$ let $\operatorname{dom}(f)$ be the domain of f and $B(f)=\pi_{\operatorname{dom}(f)}^{-1}(f)$. Let $P_{\text {fin }}\left(2^{X}\right)$ be the set of all $f \in P\left(2^{X}\right)$ with finite domain. Let $\mathfrak{B}=\left\{B(f) \mid f \in P_{\text {fin }}\left(2^{X}\right)\right\}$ be the canonical base for $\mathbf{2}^{X}$.

Definition 2.1 Consider the following axioms in $\mathbf{Z F}$ (form numbers refer to Howard and Rubin [5]).

Baire $\left(\mathbf{2}^{*}\right)$	All powers $\mathbf{2}^{X}$ are Baire.
BPI	Boolean prime ideal theorem [Form 14]; that is, every Boolean al- gebra with $0 \neq 1$ has a prime ideal.
DC	Axiom of dependent choice [Form 43]; that is, for each relation ϱ on a nonempty set X that satisfies the condition

$$
\forall x \in X \quad \exists y \in X \quad x \varrho y
$$

there exists a sequence $\left(x_{n}\right)$ in X with $x_{n} \varrho x_{n+1}$ for each n.
DMC Axiom of dependent multiple choice [Form 106]; that is, for each relation ϱ on a nonempty set X that satisfies the condition

$$
\forall x \in X \exists y \in X x \varrho y
$$

there exists a sequence $\left(F_{n}\right)$ of nonempty finite subsets of X satisfying the condition

$$
\forall n \in \omega \forall x \in F_{n} \exists y \in F_{n+1} x \varrho y .
$$

$\mathrm{AC}\left(\aleph_{0}\right)$	Axiom of countable choice [Form 8]; that is, products $\prod_{n \in \mathbb{N}} X_{n}$ of sequences (X_{n}) of nonempty sets are nonempty.
CMC	Axiom of countable multiple choice [Form 126]; that is, for each sequence $\left(X_{n}\right)$ of nonempty sets X_{n} there exists a sequence $\left(F_{n}\right)$ of nonempty finite subsets F_{n} of X_{n}.
$\mathbf{A C}\left(\aleph_{0},<\aleph_{0}\right)$	Axiom of countable choice for finite sets [Form 10]; that is, products $\prod_{n \in \mathbb{N}} F_{n}$ of sequences $\left(F_{n}\right)$ of nonempty finite sets are nonempty.
$\mathrm{MA}\left(\aleph_{0}\right)$	Martin's \aleph_{0}-axiom: for every nonempty partially ordered set (P, \leq) with the property that any subset in which any 2 different elements have no common lower bound is at most countable, and for any sequence $\left(D_{n}\right)$ of subsets of P such that $\forall n \forall x \in P \exists y \in$ $D_{n} y \leq x$ holds there exists a filter on P that meets every D_{n} [Form 8F; cf. Remark 3.2 below].
$\operatorname{Ded}\left(\mathbf{2}^{*}\right)$	If X is infinite then 2^{X} is Dedekind infinite [Form 82].

$\mathrm{KW}\left(\aleph_{0}, \infty\right) \quad$ For every sequence $\left(X_{n}\right)$ of infinite sets there exists a sequence $\left(Y_{n}\right)$ of nonempty proper subsets Y_{n} of X_{n} [cf. Form 357].
PKW Partial Kinna-Wagner Selection Principle [Form 379]; that is, for each infinite family $\left(X_{i}\right)_{i \in I}$ of sets X_{i} with $\left|X_{i}\right| \geq 2$ there exist an infinite subset K of I and a family $\left(Y_{k}\right)_{k \in K}$ of nonempty proper subsets Y_{k} of X_{k}.
A
There are no amorphous sets [Form 64]; that is, each infinite set is the disjoint union of two infinite sets.

Definition 2.2 A topological space X is called Baire provided that X is either empty or in X countable intersections of dense, open sets are nonempty.

3 Results

Theorem 3.1 The conjunction of $\mathbf{A C}\left(\aleph_{0},<\aleph_{0}\right)$ and $\mathbf{M A}\left(\aleph_{0}\right)$ implies Baire $\left(\mathbf{2}^{*}\right)$.
Proof: Assume $\mathbf{A C}\left(\aleph_{0},<\aleph_{0}\right)$ and $\mathbf{M A}\left(\aleph_{0}\right)$, let X be a set, and let $\left(D_{n}\right)$ be a sequence of dense, open subsets of $\mathbf{2}^{X}$. Call elements f and g of $P\left(\mathbf{2}^{X}\right)$ compatible provided that they have a common extension: that is, if and only if $f_{\text {dom } f \cap \operatorname{dom} g}=$ $g_{\text {dom } f \cap \operatorname{dom} g}$. We claim
(*) Any set A of pairwise incompatible elements of $P_{\text {fin }}\left(\mathbf{2}^{X}\right)$ is at most countable.

In fact, if the sequence $\left(k_{n}\right)$ of natural numbers is defined by $k_{0}=1$ and $k_{n+1}=1+$ $(n+1) \cdot k_{n}$, then for any set A of pairwise incompatible elements of $P_{\text {fin }}\left(\mathbf{2}^{X}\right)$ and for any natural number n the set $A_{n}=\{f \in A| | \operatorname{dom}(f) \mid=n\}$ has at most k_{n} elements. This follows via induction, since for $f \in A_{n+1}$, and each $x \in \operatorname{dom}(f)$ the set $\{g \in$ $\left.A_{n+1} \mid g(x) \neq f(x)\right\}$ has at most k_{n} elements, hence A_{n+1} at most $1+(n+1) \cdot k_{n}$ elements. Thus, by $\mathbf{A C}\left(\aleph_{0},<\aleph_{0}\right)$, the set A is-as a countable union of finite sets A_{n}-at most countable. Thus (*) holds.

For each $n \in \mathbb{N}$, define $E_{n}=\left\{f \in P_{\text {fin }}\left(\mathbf{2}^{X}\right) \mid B(f) \subset D_{n}\right\}$. Then for each $n \in \mathbb{N}$ and for each $f \in P_{\text {fin }}\left(\mathbf{2}^{X}\right)$ there exists an extension of f in E_{n}. This fact, together with $(*)$ implies via $\mathbf{M A}\left(\aleph_{\mathbf{0}}\right)$ that there exists a subset F of $P_{\text {fin }}\left(\mathbf{2}^{X}\right)$ with the following properties:
(1) Any two elements of F are compatible.
(2) F meets each E_{n}.

In view of (1), there exists in $P\left(\mathbf{2}^{X}\right)$ a common extension f of all elements of F. In view of $(2), B(f) \subset D_{n}$ for each n. Thus $g: X \rightarrow 2$, defined by

$$
g(x)= \begin{cases}f(x), & \text { if } x \in \operatorname{dom}(f) \\ 0, & \text { otherwise }\end{cases}
$$

is an element of each D_{n}.
Remark 3.2 It has been claimed that $\mathbf{A C}\left(\aleph_{0}\right)$ implies MA $\left(\aleph_{\mathbf{0}}\right)$. (See Shannon (9], p. 382 and [5], Form $8 \Longleftrightarrow$ Form 8F.) However, the relation between $\mathbf{A C}\left(\aleph_{\mathbf{0}}\right)$
and MA $\left(\aleph_{0}\right)$ is still unknown. Form 8 F has been changed to Form 339. (See http:www.math.purdue.edu/~jer/cgi-bin/changes.html, changes and additions.)

Theorem 3.3 Baire(2*) implies Ded(2*).
Proof: Let X be an infinite set. Choose $Y=X \times \mathbb{N}$ and consider $\mathbf{2}^{Y}$. For each $n \in \mathbb{N}$, the set

$$
D_{n}=\left\{f \in 2^{Y} \mid \exists k>n \quad \forall m \leq n \quad \exists x \in X \quad f(x, k) \neq f(x, m)\right\}
$$

is open and dense in $\mathbf{2}^{Y}$. By Baire ($\mathbf{2}^{*}$) there exists some f in $\cap D_{n}$. Define, via induction, a strictly increasing sequence $\left(k_{n}\right)$ of natural numbers as follows:

$$
\begin{aligned}
& k_{0}=0 \\
& k_{n+1}=\min \left\{k>k_{n} \mid \forall m \leq k_{n} \quad \exists x \in X \quad f(x, k) \neq f(x, m)\right\}
\end{aligned}
$$

Then the map $\varphi: \mathbb{N} \rightarrow 2^{X}$, defined by $\varphi(n)=f\left(-, k_{n}\right)$, is injective. Thus, 2^{X} is Dedekind-infinite.

Remark 3.4 The above theorem implies that the conditions Baire(2*) (= powers of $\mathbf{2}$ are Baire) and $\operatorname{Tych}\left(\mathbf{2}^{*}\right)(=$ powers of $\mathbf{2}$ are compact; $=\mathbf{B P I})$ are independent of each other. In Feferman's model (M2 in [57) DC hence Baire(2*) hold, but BPI and thus Tych (2*) fail. In Mostowski's Linearly Ordered Model (N3 in 5]) BPI and thus $\operatorname{Tych}\left(\mathbf{2}^{*}\right)$ hold, but $\operatorname{Ded}\left(\mathbf{2}^{*}\right)$ and thus Baire $\left(\mathbf{2}^{*}\right)$ fail.

Theorem 3.5 Baire (2*) implies AC $\left(\aleph_{0},<\aleph_{0}\right)$.
Proof: Let $\left(X_{n}\right)$ be a sequence of nonempty, finite sets. Assume, without loss of generality, that the X_{n} are pairwise disjoint, and form $X=\cup X_{n}$. For each $n \in \mathbb{N}$, the set

$$
D_{n}=\left\{f \in 2^{X}|\exists m \geq n| X_{m} \cap f^{-1}(1) \mid=1\right\}
$$

is open and dense in $\mathbf{2}^{X}$. By Baire $\left(\mathbf{2}^{*}\right)$ there exists some f in $\cap D_{n}$. The set $M=$ $\left\{m \in \mathbb{N}\left|\left|X_{m} \cap f^{-1}(1)\right|=1\right\}\right.$ is unbounded and the product $\prod_{m \in M} X_{m}$ is nonempty. Thus PAC $\left(\aleph_{\mathbf{0}},<\aleph_{\mathbf{0}}\right)$, the partial axiom of countable choice for finite sets, holds. Thus (Brunner [2]) AC $\left(\aleph_{\mathbf{0}},<\aleph_{\mathbf{0}}\right)$ holds.

Corollary 3.6 The following conditions are equivalent:
(1) Products of compact Hausdorff spaces are Baire.
(2) Compact Hausdorff spaces and spaces of the form $\mathbf{2}^{X}$ are Baire.

Proof: Obviously (1) implies (2). The reverse implication follows immediately from Theorem 3.5 and the following facts: (1) is equivalent to DC (4]. Compact Hausdorff spaces are Baire if and only if DMC holds (Fossy and Morillon [3]). DC is equivalent to the conjunction of DMC and AC $\left(\aleph_{\mathbf{0}},<\aleph_{\mathbf{0}}\right)$ (Blass 1]).

Remark 3.7 In $\mathbf{Z F}{ }^{0}$, set theory with atoms, Baire (2*) is not implied by DMC. This follows from Theorem 3.5 since in the second Fraenkel Model (N2 in 5]) DMC (and thus CMC) holds, but $\mathbf{A C}\left(\aleph_{\mathbf{0}},<\aleph_{\mathbf{0}}\right)$ and thus Baire $\left(\mathbf{2}^{*}\right)$ fail.

Theorem 3.8 Baire($\mathbf{2}^{*}$) implies $\mathbf{K W}\left(\aleph_{\mathbf{0}}, \infty\right)$.
Proof: Let $\left(X_{n}\right)$ be a sequence of infinite sets. Assume, without loss of generality that the X_{n} are pairwise disjoint, and form $X=\cup X_{n}$. For each $n \in \mathbb{N}$, the set

$$
D_{n}=\left\{f \in \mathbf{2}^{X} \mid f\left[X_{n}\right]=2\right\}
$$

is open and dense in $\mathbf{2}^{X}$. By Baire ($\mathbf{2}^{*}$) there exists some f in $\cap D_{n}$. Then for each $n \in \mathbb{N}, Y_{n}=f^{-1}[0]$ is a nonempty, proper subset of X_{n}.

Theorem 3.9 Baire(2*) implies PKW.

Proof: Let $\left(X_{i}\right)_{i \in I}$ be an infinite family of sets X_{i} with $\left|X_{i}\right| \geq 2$. Assume without loss of generality that the X_{i} are pairwise disjoint. Form $X=\bigcup_{i \in I} X_{i}$. For each $n \in \mathbb{N}$ the set

$$
D_{n}=\left\{f \in \mathbf{2}^{X}| |\left\{i \in I \mid f\left[X_{i}\right]=2\right\} \mid \geq n\right\}
$$

is open and dense in $\mathbf{2}^{X}$. By Baire (2*) there exists some f in $\cap D_{n}$. Then $J=\{i \in$ $\left.I \mid f\left[X_{i}\right]=2\right\}$ is infinite, and for each $i \in J$ the set $f^{-1}(1) \cap X_{i}$ is a nonempty, proper subset of X_{i}.

In view of the fact that $\operatorname{Ded}\left(\mathbf{2}^{*}\right)$ implies A our next result follows immediately from Theorem 3.3. However, we supply a simple direct proof as well.

Theorem 3.10 Baire(2*) implies A.
Proof: Let X be an infinite set. For each $n \in \mathbb{N}$ the set

$$
D_{n}=\left\{f \in \mathbf{2}^{X}| | f^{-1}(0) \mid \geq n \text { and }\left|f^{-1}(1)\right| \geq n\right\}
$$

is open and dense in $\mathbf{2}^{X}$. By $\operatorname{Baire}\left(\mathbf{2}^{*}\right)$ there exists some f in $\cap D_{n}$. Thus $Y=f^{-1}(0)$ and $X \backslash Y=f^{-1}(1)$ are both infinite.

Remark 3.11 Observe that all the consequences of Baire $\left(\mathbf{2}^{*}\right)$, exhibited in our results 3.3, 3.5, 3.6, 3.8, 3.9. and 3.10 are also consequences of AC($\left.\aleph_{\mathbf{0}}\right)$.

Acknowledgments We gratefully acknowledge several helpful suggestions by the referee which led in particular to a strengthening of our main result (Theorem3.1 and a simplification of its proof.

REFERENCES

[1] Blass, A., "Injectivity, projectivity, and the axiom of choice," Transactions of the American Mathematical Society, vol. 255 (1979), pp. 31-59. Zbl 0426.03053/MR 81i:04004 3
[2] Brunner, N., "Sequential compactness and the axiom of choice," Notre Dame Journal of Formal Logic, vol. 24 (1983), pp. 89-92. Zbl 0502.03030|MR 84f:04009 3
[3] Fossy, J., and M. Morillon, "The Baire category property and some notions of compactness," Journal of the London Mathematical Society, vol. 57 (1998), pp. 1-19. Zbl 0922.03070||MR 99m:03096 3
[4] Herrlich, H., and K. Keremedis, "Products, the Baire category theorem, and the axiom of dependent choice," Commentationes Mathematicae Universitatis Carolinae, vol. 40 (1999), pp. 771-75. MR 2001e:03089 1.2, 3
[5] Howard P., and J. E. Rubin, "Consequences of the Axiom of Choice," American Mathematical Society, Mathematical Surveys and Monographs, vol. 59 (1998). Zbl 0947.03001|MR 99h:03026 2.1,3.2, 3.4, 3.4, 3.7
[6] Łos, J., and C. Ryll-Nardzewski, "Effectiveness of the representation theory for Boolean algebras," Fundamenta Mathematica, vol. 42 (1955), pp. 49-56. MR 16:439g 1.1.
[7] Mycielski, J., "Two remarks on Tychonoff's product theorem," Bulletin L'Académie Polonaise des Science, Série des Sciences Mathématiques, Astronomiques et Physiques, vol. 12 (1964), pp. 439-41. Zbl 0138.17703 MR 35:6566 1.3
[8] Rubin, H. and D. Scott, "Some topological theorems equivalent to the Boolean prime ideal theorem," Bulletin of the American Mathematical Society, vol. 60 (1954), p. 389. 1.1
[9] Shannon, G. P., "Provable forms of Martin's axiom," Notre Dame Journal of Formal Logic, vol. 31 (1990), pp. 382-88. Zbl 0731.03026||MR 91g:03107 3.2

Department of Mathematics
University of the Aegean
Karlovasi
83200 Samos
GREECE
email: kker@aegean.gr
Department of Mathematics
University of Bremen
Postfach 330440
28334 Bremen
GERMANY
email: herrlich@math.uni-bremen.de

