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Completeness and Definability
in the Logic of Noncontingency

EVGENI E. ZOLIN

Abstract Hilbert-style axiomatic systems are presented for versions of the
modal logics KΣ, where Σ ⊆ {D, 4, 5}, with noncontingency as the sole modal
primitive. The classes of frames characterized by the axioms of these systems
are shown to be first-order definable, though not equal to the classes of serial,
transitive, or euclidean frames. The canonical frame of the noncontingency
logic of any logic containing the seriality axiom is proved to be nonserial. It is
also shown that any class of frames definable in the noncontingency language
contains the class of functional frames, and dually, there exists a greatest con-
sistent normal noncontingency logic.

1 Introduction The noncontingency operator � is defined in terms of the necessity
operator � by putting �A := �A ∨ �¬A. This induces a translation of �-formulas
(i.e., formulas in the propositional modal language with � as the sole modal primitive,
�-language for short) into �-formulas. So, to any �-logic L (i.e., logic in the �-
language) one can associate a noncontingency logic of L, denoted by L�, consisting
of all �-formulas whose translations are theorems of L.

Montgomery and Routley [8] axiomatized the noncontingency logics of T, S4,
and S5 (see also [9] and [10]). It is worth noting that in case when L contains T,
or more specifically, the reflexivity scheme �A → A, necessity is definable in terms
of noncontingency (�-definable, for short) by �A = A & �A. In the logic Ver, the
same effect is observed: it proves, for any A, a formula �A ↔ �, which can be re-
garded as a �-definition of �. Cresswell [3] provides an example of logic H such
that H �⊇ T, H �= Ver, but � is �-definable in H.

A systematic study of noncontingency logic, in particular, the cases when � is
not �-definable, was initiated by Humberstone. In his paper [4], a (rather compli-
cated) system axiomatizing the noncontingency logic of K was presented. Kuhn [5]
succeeded in simplifying this system and proposed a finite axiomatization of the
noncontingency logic of K4.
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Our paper continues this line of investigation. In Section 2 we present finite ax-
iomatization for the logics KΣ�, where Σ ⊆ {4, 5}. We have slightly modified the
axiomatization of K� and K4� suggested by Kuhn [5] to make it similar to the stan-
dard axiomatization of normal logics. In Section 3 we discuss a problem with canon-
ical model construction for the logic D�; it appears that if a normal logic L contains
the seriality axiom then the canonical frame of L� is not serial and hence falsifies L.
However, there is a detour way to find an axiomatization of some of these noncon-
tingency logics; namely, adding the seriality axiom to some logics does not change
the noncontingency logic thereof. Section 4 is concerned with definability of classes
of frames by sets of �-formulas. Here we show that the class of functional frames is
the smallest �-definable class; in particular, this explains why most of �-definable
classes of frames are not �-definable. Dually, in Section 3 the logic Ver� is shown to
be the greatest in the lattice of consistent normal noncontingency logics. In the final
Section 5 first-order formulas are found that correspond to (i.e., characterize the same
classes of frames as) the axioms of noncontingency logics mentioned in Section 2.

The logic KD45 is known to capture the principles of reasoning involving epis-
temic judgments: the postulates of this logic are valid under the (informal) interpreta-
tion of a sentence of the form �A as “A is known (to some idealized person)”. In this
context, the noncontingency assertion �A means “the truth value of A is known to
the person”. (Strictly speaking, the logic KD45 is usually proposed to represent cat-
egorical beliefs, when �A is read “A is believed (by an idealized person)”, for this
logic does not contain the axiom �A → A and hence allows the person to believe
in false statements. In accordance with this, doxastic, understanding of the modal-
ity ‘�’, the assertion �A means “the person has a definite view-point concerning the
truth value of A”.) In Section 3 the logic of this modality, that is, the noncontingency
logic of KD45, is shown to coincide with that of K45.

2 Transitive euclidean noncontingency logic The propositional modal language
consists of a denumerable set of variables Var = {p0, p1, . . .}, symbols for falsehood
⊥, implication →, and a unary modal operator �. Other connectives (�, ¬, &, ∨, ↔,
♦) are taken as standard abbreviations. The set of formulas of this language is defined
as usual and is denoted by Fm�. This language will be referred to as a �-language
and its formulas as �-formulas. A �-language and the set Fm� of �-formulas are de-
fined similarly. We fix a natural translation tr: Fm� → Fm� which respects Boolean
connectives and tr(�A) := �tr(A) ∨ �¬tr(A).

A (Kripke) frame is a structure 〈W,↑〉, where W is a nonempty set of “worlds”
and ↑ is a binary “accessibility” relation on W . By ↓ we denote the converse relation
of ↑. A model M = 〈F, |=〉 consists of a frame F and a valuation |= ⊆ W × Var. The
notion “A is true in M at w” (written M,w |= A and M usually omitted) is defined
for both �- and �-formulas in the standard way; the modal clauses are as follows:

w |= �A � ∀x↓w x |= A;
w |= �A �

(∀x↓w x |= A
)

or
(∀x↓w x �|= A

)
.

Obviously, w |= A ⇔ w |= tr(A), for any �-formula A. A formula A is valid in a
frame F (F |= A, in symbols) if A is true at every world in every model based on F.
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If � is a formula or a set of formulas then a �-frame is a frame validating �; the class
of all �-frames is denoted by F (�).

A �-logic is a set of �-formulas containing all classical tautologies and closed
under the rules of modus ponens, substitution, and equivalent replacement:

(MP)
A A → B

B
(Sub)

A
A[B/p]

(RE�)
A ↔ B

�A ↔ �B
.

(Here A[B/p] is the result of substituting a formula B for all occurrences of a variable
p in A.) The notion of �-logic is defined similarly. Given a �-logic L, a noncontin-
gency logic of L (briefly, a �-logic of L), denoted by L�, is the set of all �-formulas
whose translations are theorems of L (it is indeed a �-logic):

L� = {A ∈ Fm� | tr(A) ∈ L} = tr−1(L) .

The minimal normal modal logic K has the rules (MP), (Sub), and the following ax-
ioms and the “necessitation” rule:

(A�
� ) All classical tautologies in the �-language

(A�
K ) �(p → q) → (�p → �q) (distributivity)

(Nec)
A

�A

In this paper we consider the systems KΣ, Σ ⊆ {D, 4, 5}, obtained by adding to K
the axioms (A�

S
), S ∈ Σ, listed below (the class of frames characterized by (A�

S
) is

first-order definable by a formula (ϕ�
S

) also shown below).

(A�
D ) �p → ♦p (ϕ�

D ) ∀w ∃x w↑x (seriality)
(A�

4 ) �p → ��p (ϕ�
4 ) ∀w ∀x↓w ∀y↓x w↑y (transitivity)

(A�
5 ) ♦p → �♦p (ϕ�

5 ) ∀w ∀x↓w ∀y↓w x↑y (euclideanness)

Now we formulate our axiomatic systems for �-logics of KΣ, Σ ⊆ {4, 5}; logics con-
taining the seriality axiom are considered in the next section. For notation simplicity,
we denote the systems by KΣ�; Theorem 2.2 below justifies the notation. The logic
K� has the rules (MP) and (Sub) as well as the following axioms and the “noncon-
tingentization” rule (cf. [4]):

(A�
�) All classical tautologies in the �-language

(A�
K) �(p ↔ q) → (�p ↔ �q) (equivalence)

(A�¬ ) �p ↔ �¬p (mirror axiom)
(A�∨ ) �p → [

�(q → p) ∨ �(p → r)
]

(dichotomy)

(NCR)
A

�A

To obtain the system KΣ�, Σ ⊆ {4, 5}, add to K� the relevant axioms:

(A�
4 ) �p → �(q → �p) (weak transitivity).

(A�
5 ) ¬�p → �(q → ¬�p) (weak euclideanness).

Clearly, these systems are closed under the rule (RE�).
Before we pass to the main result of this section, let us recall for the future ref-

erence the axiomatization of �-logics of T, S4, and S5 (cf. [8] and [9]). First, T, S4,
and S5 are axiomatized over K as follows:

T = K + (A�
T ), S4 = T + (A�

4 ), S5 = T + (A�
5 ),
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where (A�
T ) is the reflexivity axiom �p → p. The �-logics of T, S4, and S5 can be

axiomatized over K�, however, in [8] and [9] the following simple axiomatization
thereof is proposed. The rules of T� are (MP), (Sub), and (NCR) and the axioms
are (A�

�), (A�¬ ), and

(A�
T ) p → [�(p → q) → (�p → �q)] (weak distributivity).

The logics S4� and S5� are axiomatized as follows:

S4� = T� + (A�
4�), S5� = T� + (A�

5�) = T� + (A�
5′ ),

where the extra axioms are

(A�
4�) �p → ��p (�-transitivity)

(A�
5�) ��p (�-euclideanness)

(A�
5′ ) �(�p → p) (weak euclideanness).

The properties of frames expressed by the above-mentioned noncontingency axioms
are presented in Section 5. There we show that classes of frames validating the ax-
ioms (A�

4 ) and (A�
4�) (respectively, (A�

5 ), (A�
5�), and (A�

5′ )) strictly contain the classes
of transitive (respectively, euclidean) frames. The names we gave to these axioms can
be partially justified by Theorem 5.3.

The main result of this section is formulated in the theorem below. It states that
the systems KΣ� axiomatize exactly the �-logics of KΣ, Σ ⊆ {4, 5}. For its proof,
we use the canonical model argument adapted for �-logics by Humberstone [4] and
Kuhn [5]. For K� and K4� the theorem is proved in [5], however, the axiomatization
of these logics proposed in that paper differs slightly from ours, so we restate the result
for our systems. We need an auxiliary lemma.

Lemma 2.1 K� � �p & �q → �(p & q).

Proof: We derive in K� (derivations are written quite schematically):

K� � �[p → q]
1↔ �[p ↔ (p & q)]

2→ [�p → �(p & q)].

Here ‘
1↔’ is obtained from a tautology [p → q] ↔ [p ↔ (p & q)] by applying the

rule (RE�) and ‘
2→’ is an instance of the axiom (A�

K). Similarly,

K� � �[q → p] → [�q → �(p & q)].

Finally, we use the dichotomy axiom:

K� � �p → {�(q → p) ∨ �(p → q)} →
→ {[�p → �(p & q)] ∨ [�q → �(p & q)]} ↔
↔ {(�p & �q) → �(p & q)}.

The first premise �p of �p → {(�p & �q) → �(p & q)} is redundant. �

Theorem 2.2 (Completeness) For any Σ ⊆ {4, 5} and any �-formula A, the fol-
lowing statements are equivalent:
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1. KΣ� � A;
2. KΣ � tr(A);
3. A is valid in all KΣ-frames.

Proof: We follow the scheme (1) ⇒ (2) ⇔ (3) ⇒ (1). The equivalence (2) ⇔ (3)

is the well-known (cf. [2]) completeness of KΣ with respect to KΣ-frames. In the rest
of the proof we refer to �-formulas as just formulas.

(1) ⇒ (2) The axioms of K� are valid in any frame and so the translations
thereof are provable in K. The case of the axiom (A�

4 ) is considered in [5]. We give
a sketch of a derivation of (the translation of) the axiom (A�

5 ) in K5:

K5 � ¬�p ���
���

♦p → �♦p
♦¬p → �♦¬p

���
��� �¬�p → �(q → ¬�p) → �(q → ¬�p).

(3) ⇒ (1) We construct the canonical model ML = 〈WL,↑, |=〉 for the logic L =
KΣ�. Its worlds are maximal L-consistent sets of formulas. A valuation is defined in
the usual way: w |= p ⇔ p ∈ w, for any world w and a variable p. Before defining
the relation ↑ we introduce some notation.

For a formula A, denote �A := {�(B → A) | B ∈ Fm�}. In the subsequent
proof, the symbol � plays the role similar to that of � in the standard canonical model
argument for �-logics. The difference is in their “types”: the operator � maps a for-
mula to a formula, whereas � maps a formula to a set of formulas. Note that seman-
tically � is by no means equivalent to �, in the sense that the truth at a world w of
the formula �A is not equivalent to the truth at w of all formulas in the set �A.

Now denote �w := {A ∈ Fm� | �A ⊆ w}. Finally, put w↑x if and only if
�w ⊆ x.

Lemma 2.3 For any world w ∈ WL, the following properties are satisfied:

1◦ (Dichotomy) If �A ∈ w then either A ∈ �w or ¬A ∈ �w.
2◦ The set �w is closed under (even empty) conjunction (hence �w �= ∅).
3◦ The set �w is closed under derivability in L: if A ∈ �w and L � A → B, then

B ∈ �w.
4◦ The dichotomy property is reversible: if A ∈ �w then �A ∈ w.

Proof:

1◦ Suppose A,¬A /∈ �w, then by definition of �w, for some formulas B, C we
have: ¬�(B → A) ∈ w, ¬�(C → ¬A) ∈ w. However, using the dichotomy
axiom, we derive: K� � �A → [

�(B → A) ∨ �(C → ¬A)
]
, and hence w

is even K�-inconsistent, which contradicts our assumptions.
2◦ By definition, the empty conjunction is �. Since �(B → �) is provable in K�

for any formula B, we have �� ⊆ K� ⊆ L ⊆ w and so � ∈ �w.
Now let A, B ∈ �w and prove that (A & B) ∈ �w, that is, �[C→(A & B)] ∈ w,
for any formula C. From �A ⊆ w and �B ⊆ w it follows that �(C→A) ∈ w

and �(C→B) ∈ w. Using Lemma 2.1, we derive

K� � �(C → A) & �(C → B) −→ �[(C → A) & (C → B)] ←→
←→ �[C → (A & B)].
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Since w is closed under conjunction and derivability in K� (and even in L), we
conclude: �[C → (A & B)] ∈ w.

3◦ To prove that B ∈ �w, we take an arbitrary formula C and show that �(C →
B) ∈ w. Since �A ⊆ w, we have �[¬(C → B) → A] ∈ w. The assumption
L � A → B truth-functionally implies L � [¬(C → B) → A] ↔ [C → B],
and an application of the rule (RE�) finally yields �(C → B) ∈ w.

4◦ �A ⊆ w implies �(�→A) ∈ w, which is equivalent to �A ∈ w. �

Lemma 2.4 (|= = �) For any formula A and a world w, w |= A ⇔ A ∈ w.

Proof: By induction on A. Atomic and Boolean cases are trivial. Now consider
A = �B.

(⇐)
�B ∈ w ⇒ (by dichotomy 1◦)
B ∈ �w or ¬B ∈ �w ⇒ (by definition of ↑)

(∀x↓w B ∈ x) or (∀x↓w ¬B ∈ x) ⇒ (by consistency of x)

(∀x↓w B ∈ x) or (∀x↓w B /∈ x) ⇒ (by induction hypothesis)
(∀x↓w x |= B) or (∀x↓w x �|= B) ⇒ w |= �B.

(⇒)

Suppose �B /∈ w. Then the sets X = �w ∪ {B} and Y = �w ∪ {¬B} are L-consistent.
For, if Y is not then L � (A1 & · · · & An) → B for some formulas A1, . . . , An ∈ �w

and n ≥ 0. By 2◦, (A1 & · · · & An) ∈ �w, then B ∈ �w by 3◦ and �B ∈ w by 4◦,
which is not the case. The argument for X is similar except for additional use of the
mirror axiom.

Therefore, X and Y are contained in some worlds x and y. Since �w ⊆ x and
�w ⊆ y, we have w↑x and w↑y; by induction hypothesis, B ∈ x and B /∈ y imply
x |= B and y �|= B, thus w �|= �B. �
By this lemma, the canonical model falsifies all the nontheorems of L. To conclude
the proof, it remains to check that the canonical frame is a KΣ-frame. The case Σ = ∅

is trivial.
Suppose 4 ∈ Σ and prove that ↑ is transitive. Let w↑x↑y and show that w↑y,

that is, �w ⊆ y. Take any A ∈ �w, then �(B → A) ∈ w, for every B. By the ax-
iom (A�

4 ), K4� � �(B → A) → �[C → �(B → A)], for any C. Since w is closed
under K4�-derivability, �[C → �(B → A)] ∈ w. Hence ��(B → A) ⊆ w and
�(B → A) ∈ �w ⊆ x, whence �A ⊆ x and A ∈ �x ⊆ y, as desired.

Suppose 5 ∈ Σ and prove that ↑ is euclidean. Let w↑x, w↑y and show that x↑y,
that is, �x ⊆ y. Take any A /∈ y, then A /∈ �w by �w ⊆ y, hence ¬�(B→A) ∈ w, for
some B. Since w is closed under K5�-derivability, we apply (A�

5 ) to obtain �[C →
¬�(B → A)] ∈ w, for all C, therefore �¬�(B → A) ⊆ w. By w↑x, we conclude:
¬�(B → A) ∈ x, thus �A �⊆ x and A /∈ �x, hence the claim. �

3 A problem with seriality It is known (see [2]) that the canonical frame of the logic
D = KD is serial (and so it validates D). It turns out that this does not hold for the �-
logic of D. More precisely, an application of the construction described in the previ-
ous section to D yields a frame which is not serial. A possible solution of the problem
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consists in appropriate modification of the construction. However, in this section we
show that, in order to axiomatize �-logic of some logics containing D, this is not nec-
essary. In particular, we prove that KDΣ� = KΣ�, for any Σ ⊆ {4, 5}. Note that the
canonical frame of KDΣ� validates KΣ� (since its transitivity and euclideanness fol-
low from the presence of the axioms (A�

4 ) and (A�
5 ) in the logic) and hence KDΣ�,

so KDΣ� is a canonical logic in the usual sense.
Recall that the logic Ver is obtained by adding to K the axiom �p, that is, Ver =

K + �p. Similarly, Triv = K + (�p ↔ p). The results obtained in [7] imply that,
for any logic L ⊇ K, if ♦� ∈ L then L ⊆ Triv, otherwise L ⊆ Ver. Now observe that
the logic Ver� can be axiomatized by adding to K� the axiom �p. The following
fact is already mentioned in [4], p. 225.

Theorem 3.1 For any consistent �-logic L containing K, L� ⊆ Ver�.

Proof: Let A ∈ L�. Consider a formula A as a truth-functional compound of vari-
ables and formulas of the form �B : A = f ( �p,�B1, . . . ,�Bn), where f is a non-
modal formula and �p is the list of all variables occurring in A. We must show that
Ver� � A, or equivalently, Ver� � f ( �p,�, . . . ,�), since Ver� � �B ↔� for any
B. The logic Ver� is conservative over propositional logic, so it remains to prove
that f ( �p,�, . . . ,�) is a tautology. To this end, we take an arbitrary �σ ∈ {⊥,�}m

with m = | �p| and check that the value ϑ := f (�σ,�, . . . ,�) = �.
Since L� is closed under the rule (Sub), substituting �σ for �p in A yields a �-

sentence (i.e., �-formula containing no variable) A[�σ/ �p] ∈ L�. It is easily seen that
any �-sentence of the form �B is equivalent to � in K� (for this, observe that any
�-sentence is equivalent to either ⊥ or �, and both �⊥ and �� are equivalent to
�). Hence A[�σ/ �p] is equivalent to ϑ in K�, so ϑ ∈ L�. Finally, due to consistency
of L�, we conclude: ϑ = �. �

Corollary 3.2 For any consistent �-logic L ⊇ D, the canonical frame for L� is
not serial and hence not an L-frame.

Proof: The set Ver� is L�-consistent, since it is even Ver�-consistent and L� ⊆
Ver�. So it is contained in some world w of the canonical frame FL for L�. We
claim that w has no ↑-successors (and thus the frame FL is not serial). Indeed, if
w↑x then �w ⊆ x, but w contains �A for all formulas A, hence �w = Fm� and x is
inconsistent. �
Now we show, following [4], that adding the axiom (A�

D ) to some �-logics does
not change �-logic thereof. Let F = 〈W,↑〉 be a frame. A set of worlds accessible
from w ∈ W is denoted by w↑ := {x ∈ W | w↑x}. We turn each “blind” world into a
world “seeing” only itself and obtain a frame F̂ := 〈W,⇑〉, where ⇑ := ↑ ∪ {〈w,w〉 |
w↑ = ∅}. Given a class of frames F , we denote F̂ := {F̂ | F ∈ F }. In [4] it is noted
that frames F and F̂ validate the same �-formulas. Consequently, the �-logic of
classes F and F̂ coincide.

Definition 3.3 We call the set L�(F ) := {A ∈ Fm� | F |= A} a �-logic of a class
of frames F . A �-logic L is called ( Kripke) complete (with respect to a class F ) if
L = L�(F ); finitely approximable if it is complete with respect to a class of finite
frames. For the �-language, the same notions are defined similarly.
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Theorem 3.4 Suppose a �-logic L is complete with respect to a class F and LD
is the smallest logic containing L and the axiom (A�

D ). If F̂ ⊆ F then LD� = L�.

Proof: The inclusion (⊇) is trivial. Now take any A ∈ LD�; clearly, A ∈ L� ⇔
tr(A) ∈ L ⇔ F |= tr(A) ⇔ F |= A, so it remains to show that F |= A, for any frame
F ∈ F . Since F̂ ⊆ F , we have F̂ ∈ F and so F̂ |= L; besides, F̂ is serial, hence
F̂ |= (A�

D ). Thus F̂ |= LD, whence F̂ |= LD�, in particular, F̂ |= A. By the above,
this is equivalent to F |= A. �
As a consequence, KDΣ� = KΣ�, for any Σ ⊆ {4, 5}, since the transitivity and eu-
clideanness properties are preserved as we pass from F to F̂. For the case Σ = ∅ the
result was obtained in [4].

4 Definability Insofar as the �-language is embeddable into the �-language via
the translation tr, the expressive power of the former is no more than that of the lat-
ter. Moreover, as is already noted in [4], it is essentially less, for some well-known
�-definable classes are not �-definable. In this section we show that this effect is
explainable by the fact that every �-definable class of frames must contain the class
of functional frames.

Definition 4.1 A class of frames F is �-definable if there exists a set � of �-
formulas such that, for any frame F, F ∈ F ⇔ F |= �; in this case � is said to �-
define F . For the �-language, the same notions are defined similarly.

Following [1], p. 91, we call a frame functional if it satisfies the condition

∀w ∀x↓w ∀y↓w x = y (functionality).

In [4] it is shown that the logic Ver� is complete with respect to the class Func of
functional frames and moreover, this logic �-defines the class Func.

Lemma 4.2 If � (respectively, �′) defines a class F (respectively, F ′) and � ⊆ �′

then F ′ ⊆ F (of course, � and �′ are supposed to be in the same, �- or �-, lan-
guage).

Proof: By assumption, ∀F(F ∈ F ⇔ F |= �) and ∀F(F ∈ F ′ ⇔ F |= �′). Then,
for any frame F, we have F ∈ F ′ ⇔ F |= �′ ⇒ F |= � ⇔ F ∈ F ′. �

Theorem 4.3 If a class of frames F �= ∅ is �-definable then Func ⊆ F .

Proof: Suppose a set ��-defines F . Take a logic L := L�(F ). Since F |= �, we
have F |= tr(�), whence tr(�) ⊆ L and � ⊆ L�. By Theorem 3.1, L� ⊆ Ver�, so
� ⊆ Ver�. Now Lemma 4.2 implies Func ⊆ F . �

Corollary 4.4 The classes of reflexive, serial, transitive, symmetric, euclidean
frames, as well as any subclass thereof, are not �-definable.

This corollary (for the first four classes) was already obtained by Humberstone [4],
Theorem 4.2 from other considerations.

We shall return to definability issues in the next section. Now we show that the
map L �→ L� preserves (Kripke) completeness; moreover, it is an epimorphism of
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the lattice (with respect to inclusion) of complete logics containing K onto the lattice
of complete logics in the segment [K�,Ver�]. In addition, we obtain the same result
for finitely approximable logics.

Theorem 4.5

(a) If a �-logic L is complete with respect to a class F then L� is complete with
respect to the same class F . In particular, if L is finitely approximable then so
is L�.

(b) If a �-logic M is complete with respect to a class F then M = L� for some
�-logic L that is complete with respect to the same class F . In particular, if M
is finitely approximable then M = L� for some finitely approximable logic L.

Proof:

(a) By assumption, L = L�(F ); then L� = L�(F ), since, for any �-formula A,
A ∈ L�(F ) ⇔ F |= A ⇔ F |= tr(A) ⇔ tr(A) ∈ L ⇔ A ∈ L�.

(b) Suppose M = L�(F ). Then take L := L�(F ) and the above argument shows
that M = L�. �

The above map is not injective, as the following example shows. Clearly, Triv �= Ver,
however, Triv� = Ver�, since Triv� � �p and Ver� is the greatest noncontingen-
cy logic, by Theorem 3.1. The same argument applied to any logic L containing the
functionality axiom ♦p → �p yields L� = Ver�.

On the other hand, the restriction of this map to the family of logics contain-
ing T is injective. This is an easy consequence of �-definability of � in these logics
by �A = A & �A and hence the existence of a natural translation from �- into �-
language. Details are left to the reader.

We close this section with an observation that adding the class Func to a nonempty
class F does not change its �-logic. Thus, any (consistent) complete �-logic can be
represented as the �-logic of a class containing Func.

Lemma 4.6 L�(F ) = L�(F ∪ Func) for any nonempty class F .

Proof: First, L�(F ∪ G) = L�(F ) ∩ L�(G), for any classes F and G. Secondly,
since F is nonempty, the logic L := L�(F ) is consistent and L� ⊆ Ver� by Theo-
rem 3.1. Thirdly, the argument used in the proof of Theorem 4.5(a) yields L�(F ) =
L� and therefore L�(F ) ⊆ Ver�. Finally, L�(F ∪Func) = L�(F )∩ L�(Func) =
L�(F ) ∩ Ver� = L�(F ). �

5 First-order correspondence Here we present first-order formulas characterizing
the same classes of frames as the axioms of the noncontingency logics mentioned in
Section 2. We begin with introducing some convenient notation.

Validity of a first-order formula ϕ in a frame F = 〈W,↑〉 will be denoted by
F |=1 ϕ to distinguish from validity of modal formulas. Quantification over worlds
accessible from a given world w ∈ W will be written as ∀x↓w and ∃x↓w (as was
done in Section 2). Instead of X ∩ Y �= ∅, we write briefly X ∩ Y .
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A world w is called functional if it “sees” at most one world; this property is
obviously first-order expressible by

Fnc(w) � ∀x, y↓w (x = y).

A world w is branching (Bra(w), in symbols) if it is not functional. We introduce
special notation for bounded quantification over branching worlds:

∀̂w ϕ(w) � ∀w[Bra(w) → ϕ(w)];
∃̂w ϕ(w) � ∃w[Bra(w) & ϕ(w)].

Bounded quantification over branching worlds accessible from w is written as

∀̂x↓w ϕ(x) � ∀x[{w↑x & Bra(x)} → ϕ(x)];
∃̂x↓w ϕ(x) � ∃x[w↑x & Bra(x) & ϕ(x)].

The existence of a branching world accessible from w will be abbreviated as ∃̂x↓w,
which is equivalent to ∃̂x↓w�. Finally, by Tran and Eucl we denote the classes of
transitive and euclidean frames, respectively.

Recall that the formula �p defines the class Func of frames satisfying the con-
dition ∀wFnc(w). The main theorem of this section states that the classes of frames
defined by �-formulas,

(A�
T ) p → [�(p → q) → (�p → �q)]

(A�
4 ) �p → �(q → �p)

(A�
4�) �p → ��p

(A�
5 ) ¬�p → �(q → ¬�p)

(A�
5′ ) �(�p → p)

(A�
5�) ��p,

are first-order definable by the following formulas (braces enclosing two formulas
mean a conjunction thereof):

(ϕ�
T ) ∀̂w w↑w

(ϕ�
4 ) ∀̂w ∀̂x↓w ∀y↓x w↑y

(ϕ�
4�) ∀̂w

[̂
∀x↓w(x↑ ⊆ w↑) ∨ ∀x, y↓w

{
x↑ \ w↑ = y↑ \ w↑
x↑ ∩ w↑ ⇔ y↑ ∩ w↑

}]
(ϕ�

5 ) ∀̂w ∀x, y↓w x↑y
(ϕ�

5′ ) ∀̂w ∀x, y↓w x↑y
(ϕ�

5�) ∀̂w
[̂∃x↓w → ∀x, y↓w (x↑ = y↑)

]
.

Theorem 5.1 F |= (A�
S

) ⇐⇒ F |=1 (ϕ�
S

), for each S ∈ {T, 4, 4�, 5, 5�, 5′} and any
frame F.

Proof: Note that the claim for S = T is already stated in [4]. Each formula (A�
S

) un-
der consideration belongs to the logic Ver� and hence is true at any functional world
under any valuation. Wherefore in the ‘⇐’ part of our proof it is assumed that we



LOGIC OF NONCONTINGENCY 543

are given an arbitrary frame F = 〈W,↑〉 such that F |=1 (ϕ�
S

), a valuation |=, and a
branching world w ∈ W .

S = T:

(⇒) Assume that F �|=1 (ϕ�
T ), that is, ∃̂w ¬(w↑w) and then ∃x, y↓w : x �= y.

To falsify (A�
T ) at w, put p (respectively, q) to be true only at w (respectively, x).

Then w |= p; w |= �p, even w |= �¬p, since ∀t↓wt �|= p; w |= �(p → q), even
w |= �(p → q), since ∀t↓wt |= p → q; however, w �|= �q, since x |= q and y �|= q.

(⇐) Suppose w |= p,�p; by (ϕ�
T ), we have w↑w, hence w |= �p. Further,

suppose w |= �(p → q). To see that w |= �q, consider two cases:

(a) w |= �(p → q); together with w |= �p, this implies w |= �q.
(b) w |= �¬(p → q), that is, w |= �(p & ¬q); it follows that w |= �¬q.

S = 4:

It suffices to consider a formula �p → �(q → �p) instead of (A�
4 ).

(⇒) Assume that F �|=1 (ϕ�
4 ), that is, ∃̂w∃̂x↓w∃y↓x : ¬(w↑y). Let p be false

only at y and q be true only at x. Then w |= �p, since ¬(w↑y); however, w �|=
�(q → �p), for the following hold:

(a) w |= ♦(q → �p), since Bra(w) implies ∃z↓w, z �= x, so that z �|= q and z |=
q → �p.

(b) w |= ♦¬(q → �p), since w↑x, x |= q, and x �|= �p; to see the latter, note that
x↑y and y �|= p, whereas Bra(x) implies ∃t↓x, t �= y, so that t |= p.

(⇐) Suppose w |= �p and prove that even w |= �(q → �p). Take any x↓w;
if Fnc(x) then x |= �p and so x |= q → �p; if Bra(x) then even x |= �p, since, for
any y↓x, we have w↑y by (ϕ�

4 ), and from w |= �p it follows that y |= p.

S = 4�:

Clearly, instead of (A�
4�) we can deal with �p → ��p.

(⇒) Assume that F �|=1 (ϕ�
4�), that is, ∃̂w∃̂x0↓w : x0↑ �⊆ w↑ and ∃x, y↓w such

that at least one of the conditions in braces in (ϕ�
4�) fails. There are two cases:

1. Either x or y is functional, say, Fnc(y). Since Bra(x0) and x0↑ �⊆ w↑, we have
∃s, t↓x0 : s �= t, ¬(w↑s). Let p be false only at s. Then w |= �p, for ¬(w↑s);
y |= �p, for Fnc(y); and x0 �|= �p, for s �|= p and t |= p; thus w �|= ��p.

2. Both x and y are branching. Then two subcases are possible:

(a) (x↑ \ w↑) �= (y↑ \ w↑). Due to symmetry, we can assume that ∃s ∈
(x↑ \ w↑), s /∈ (y↑ \ w↑). This implies x↑s, ¬(y↑s), and ¬(w↑s). Let
p be false only at s. Then w |= �p, for ¬(w↑s); y |= �p, even y |= �p,
for ¬(y↑s); and x �|= �p, since s �|= p, whereas Bra(x) implies ∃t↓x,
t �= s, so that t |= p; thus w �|= ��p.

(b) Now assume that (x↑ \ w↑) = (y↑ \ w↑) and (due to symmetry) x↑ ∩ w↑
and y↑ ∩ w↑ = ∅. Let p be true only at worlds accessible from w. Then
w |= �p by construction; y |= �p, even y |= �¬p, for y↑ ∩ w↑ = ∅;
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and x �|= �p, since x↑ ∩ w↑ implies x |= ♦p, whereas (x↑ \ w↑) = (y↑ \
w↑) �= ∅ (the inequality is due to Bra(y) and y↑ ∩ w↑ = ∅) implies
x |= ♦¬p. Thus again w �|= ��p.

(⇐) According to (ϕ�
4�), two cases are possible:

1. ∀̂x↓w(x↑ ⊆ w↑). Then even w |= �p → ��p, for assume that w |= �p and
w↑x. If Fnc(x) then x |= �p; if Bra(x) then even x |= �p, since x↑ ⊆ w↑.

2. Now suppose the second disjunct in (ϕ�
4�) holds. We must show that w |=

�p & ♦¬�p → �¬�p. Assume that w |= �p & ♦¬�p, then ∃x↓w : x �|=
�p, hence ∃s, t↓x : s |= p, t �|= p (clearly, s �= t), and so Bra(x). Now take
any y↓w; to see that y �|= �p, first note that ¬(w↑t), for w |= �p, hence
t ∈ (x↑ \ w↑) = (y↑ \ w↑), so y↑t and y |= ♦¬p; secondly, consider cases:

(a) w↑s; then x↑ ∩ w↑, hence y↑ ∩ w↑ by (ϕ�
4�) and so y |= ♦p.

(b) ¬(w↑s); then s ∈ (x↑ \ w↑) = (y↑ \ w↑) (the equality holds by (ϕ�
4�)),

whence y↑s and y |= ♦p.

S = 5:

(⇒) Assume that F �|=1 (ϕ�
5 ), that is, ∃̂w∃x, y↓w : ¬(x↑y). From Bra(w) it fol-

lows that ∃z↓w : z �= x (possibly z = y). Let p (respectively, q) be true only at y (re-
spectively, x). Then w |= ¬�p, since y |= p and either x or z differs from y, call it t,
so that w↑t and t �|= p; w |= ♦(q → ¬�p), for z �|= q; w |= ♦¬(q → ¬�p), since
x |= q and x |= �p, even x |= �¬p, for ¬(x↑y).

(⇐) Suppose w |= ¬�p, then ∃x, y↓w : x |= p, y �|= p. We prove that even w |=
�(q → ¬�p) and moreover: w |= �¬�p. For any z↓w, we have z↑x, z↑y by (ϕ�

5 ),
hence z |= ♦p and z |= ♦¬p and so z |= ¬�p.

S = 5′:

The formula (A�
5′ ) is equivalent (modulo replacing ¬p by p) to ♦(p &�p) → (�p &

��p).

(⇒) Assume that F �|=1 (ϕ�
5′ ), that is, ∃̂w∃x, y↓w : ¬(x↑y). Consider two cases:

1. x = y. Let p be true only at x. Then w |= ♦(p & �p), since x |= p and
x |= �¬p, for ¬(x↑x); however, w �|= �p, since Bra(w) implies ∃z↓w : z �=
x, so that z �|= p.

2. x �= y. Let p be false only at y. Then w |= ♦(p & �p), since x |= p and
x |= �p, for ¬(x↑y); however, w �|= �p, since y �|= p.

(⇐) Suppose w |= ♦(p & �p). Then ∃x↓w : x |= p and x |= �p. From (ϕ�
5′ )

it follows that w↑ ⊆ x↑. Since w↑x, we have x↑x, whence x |= �p. Therefore
w |= �p, since w↑ ⊆ x↑; and for any y↓w we have y |= �p and even y |= �p; to
see the latter, first note that w↑x and w↑y imply y↑x; now take any z↓y. If z = x
then z |= p; if z �= x then from y↑x, y↑z, and hence Bra(y) we infer, by (ϕ�

5′ ), that
x↑z, so z |= p.
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S = 5�:

The formula (A�
5�) is equivalent to ♦�p → ��p.

(⇒) Assume that F �|=1 (ϕ�
5�), that is, ∃̂w∃̂x0↓w and ∃x, y↓w : x↑ �= y↑. Then

two cases are possible:

1. Either x or y is functional, say, Fnc(y). Since Bra(x0), we have ∃s, t↓x0 : s �= t.
Let p be true only at s. Then w |= ♦�p, for y |= �p by Fnc(y); and w |=
♦¬�p, since x0 �|= �p, for s |= p and t �|= p. Thus w �|= ��p.

2. Both x and y are branching. Since x↑ �= y↑, we can assume (due to symmetry)
that ∃s↓x : ¬(y↑s). Let p be true only at s. Then w |= ♦�p, for y |= �p and
even y |= �p by virtue of ¬(y↑s); and w |= ♦¬�p, since x �|= �p: indeed,
s |= p, whereas Bra(x) implies ∃t↓x : t �= s, hence t �|= p. Again w �|= ��p.

(⇐) There are two possibilities:

1. ∀x↓w Fnc(x). Then ∀x↓w x |= �p, hence w |= ��p and so w |= (A�
5�).

2. ∃̂x↓w. Assume that w |= ♦�p, that is, ∃x↓w : x |= �p. Take any y↓w; then
x↑ = y↑ by (ϕ�

5�), whence y |= �p. Thus w |= ♦�p → ��p. �

Corollary 5.2 The following strict inclusions hold. Other inclusions between these
classes of frames follow from the exhibited ones.

Tran ⊂ F (A�
4 ) ⊂ F (A�

4�)

∪ ∪
Func F (A�

5�)

∩ ∪
Eucl ⊂ F (A�

5 ) = F (A�
5′ )

Proof: That Func ⊆ F (A) for any �-formula A is proved in Theorem 4.3. The
Completeness Theorem 2.2 implies that Tran ⊆ F (A�

4 ) as well as Eucl ⊆ F (A�
5 ).

Since putting q := � in (A�
4 ) yields a formula equivalent to (A�

4�) in K�, we have
F (A�

4 ) ⊆ F (A�
4�). The inclusion F (A�

5�) ⊆ F (A�
4�) is trivial, since (A�

5�) is the
succedent of the implication in (A�

4�). The equality F (A�
5 ) = F (A�

5′ ) is established
in Theorem 5.1.

Let us prove that F (A�
5 ) ⊆ F (A�

5�). Suppose F |=1 (ϕ�
5 ), that is, any two worlds

accessible from a branching world “see” each other (themselves as well). We prove
that even ∀̂w∀x, y↓w(x↑ = y↑). Take a branching world w in F and any x, y↓w,
then x↑y and y↑y. To prove the inclusion x↑ ⊆ y↑, take any z↓x. If z = y then
clearly y↑z. If z �= y then from x↑y and x↑z it follows that Bra(x) and again y↑z.
The converse inclusion is left to the reader.

The inclusion of classes Func, Tran, and Eucl into the nearest classes in our
diagram is strict, since these three classes are incomparable. The inclusion F (A�

5�) ⊂
F (A�

4�) is strict, for the following inclusion of logics is strict:

T� + (A�
4�) = S4� ⊂ S5� = T� + (A�

5�).
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Figure 1: Three frames.

The inclusions F (A�
4 ) ⊂ F (A�

4�) and F (A�
5 ) ⊂ F (A�

5�) are strict, since the frame X
in Figure 1 validates (A�

5�) and (A�
4�), but falsifies (A�

4 ) and (A�
5 ) at w. (Reflexive

and irreflexive points are depicted by • and ◦, respectively.)
Finally, no other inclusions hold that do not follow from our diagram. To show

this, it suffices to refute the inclusions Eucl ⊆ F (A�
4 ) and Tran ⊆ F (A�

5�). In Fig-
ure 1, the euclidean frame Y falsifies (A�

4 ) at w, whereas the transitive frame Z fal-
sifies (A�

5�) at w. �
It is worth noting that if we modify the frame Z by making w irreflexive and y reflex-
ive then we obtain a frame possessing, as Cresswell [3] proved, the following inter-
esting property: its �-logic is not equal to Ver, does not contain T, but necessity is
�-definable in it by �A = [�A & (A ↔ ��A)].

Theorem 5.3 For S ∈ {4, 4�} (respectively, S ∈ {5, 5�, 5′}), the axiom (A�
S

) ex-
presses the transitivity (respectively, euclideanness) property of reflexive frames.
Precisely, a reflexive frame F validates (A�

S
) if and only if F is transitive (respec-

tively, euclidean).

Proof: Recall that, in the presence of reflexivity, necessity is �-definable by �A =
A & �A. This induces a translation Tr from �- into �-language which respects
Boolean connectives and Tr(�A) := Tr(A) & �Tr(A). Clearly, F |= A ⇔ F |=
Tr(A), for any reflexive frame F and any �-formula A. Therefore, in the logic T,
�-formulas A and tr(Tr(A)) are equivalent.

Now we are ready to prove our theorem. For S ∈ {4�, 5�, 5′} the claim follows
immediately from completeness of axiomatization of S4� and S5� proved in [8] and
[9]. Consider, for instance, the case S = 4�.

Take an arbitrary reflexive frame F. If F is transitive then F |= S4, so F |= S4�

and F |= (A�
4�). To prove the converse, assume that F |= (A�

4�), then F |= S4�. Due
to completeness of S4�, from S4 � tr(Tr(A�

4 )) it follows that S4� � Tr(A�
4 ), so F |=

Tr(A�
4 ) and F |= (A�

4 ), thus F is transitive.
The claim for S = 5 follows from equivalence of (A�

5 ) and (A�
5′ ).

For S = 4 the argument is: on the one hand, (A�
4 ) is stronger than (A�

4�), by
Corollary 5.2; on the other, it is not too strong to go beyond S4�, that is, (A�

4 ) ∈
K4� ⊂ S4�. Hence, (A�

4 ) can be treated like (A�
4�) above. �

We conclude with a remark on axiomatic systems presented in Section 2. According
to Corollary 5.2, the axiom (A�

4 ) is stronger than (A�
4�). Hence (A�

4�) can be replaced
by (A�

4 ) in the axiomatization of S4�. Humberstone [4] conjectured that K4� can
be axiomatized using the simpler axiom (A�

4�) instead of (A�
4 ). However, Kuhn [6]
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refuted the conjecture by providing the frame X (see Figure 1 above) which separates
these axioms. For the same reason, in the axiomatization of K5�, the axiom (A�

5 )

cannot be replaced by (A�
5�) (for the frame X separates these axioms too). At the same

time, we can replace (A�
5′ ) by (A�

5 ) in the axiomatization of S5�, since K5� � (A�
5′ )

by Corollary 5.2 and Theorem 2.2. Here is an open question: Can we replace (A�
5 )

by (A�
5′ ) in the axiomatization of K5�?
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