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ON THE LINEARIZATION OF VECTOR FIELDS

ON A TORUS WITH PRESCRIBED FREQUENCY

Dongfeng Zhang — Xindong Xu

Abstract. In this paper we are mainly concerned with the linearization

of the flow with prescribed frequency for analytic perturbation of constant
vector fields on a torus under weaker non-degeneracy condition and non-

resonant condition. As is well known the perturbation of constant vector

fields may induce a shift of frequency, when Kolmogorov’s non-degeneracy
condition is violated. By introducing external parameters and using the

polynomial structure to truncate, we prove that if the frequency mapping

has the nonzero Brouwer’s topological degree at some non-resonant fre-
quency, then the conjugated vector fields will have a linear flow with this

frequency.

1. Introduction and main results

KAM theory was founded by A.N. Kolmogorov, V.I. Arnold and J. Moser [1],

[10], [12] as a powerful tool to deal with the problem of small denominator and

small perturbation of conservative systems. Due to its importance in dynamical

systems, KAM theory has been extensively applied to Hamiltonian, reversible,

volume preserving, and general (dissipative) systems.

In this paper we consider a vector field with parameters X = N + P , where

N = ω(ξ) denotes a constant vector on the n-torus Tn = Rn/2πZn, describing

2010 Mathematics Subject Classification. 70H08, 37J40, 34C27.
Key words and phrases. KAM theory; linear flow; non-degeneracy condition; non-resonant

condition.
The work was supported by the National Natural Science Foundation of China (11001048)

(11771077) (11571072) and the Fundamental Research Funds for the Central Universities
(2242017k41046).

649



650 D. Zhang — X. Xu

uniform rotation motions with frequency ω(ξ) = (ω1(ξ), . . . , ωn(ξ)), P (θ; ξ) is

a small perturbation, the parameters ξ vary on some bounded closed connected

domain Π. Suppose the frequency ω(ξ) satisfies

(1.1) |〈k, ω(ξ)〉| ≥ α

∆(|k|)
, for all 0 6= k ∈ Zn,

where α > 0, ∆ is continuous increasing unbounded function ∆: [1,∞)→ [1,∞)

such that ∆(1) = 1 and ∫ ∞
1

ln ∆(t)

t2
dt <∞.

The condition (1.1) is usually called Brjuno–Rüssmann’s non-resonant condition.

When the frequency ω(ξ) satisfies the Kolmogorov’s non-degeneracy condition

(1.2) Rank

(
∂ω

∂ξ

)
= n, for all ξ ∈ Π,

and non-resonant condition (1.1), Pöschel [14] proved that if the perturbation P

is sufficiently small, and if we are allowed to add a small correctional n-vector to

adjust frequency, then X is conjugated to ω, i.e. for any given frequency in the

image of the frequency mapping, which satisfies the Brjuno–Rüssmann’s non-

resonant condition (1.1), the conjugated vector field still has a linear flow with

this frequency. Bounemoura and Fischler [3], [4] used rational approximations to

obtain the persistence of invariant tori with prescribed frequency for Hamiltonian

systems.

Recently, in [22] we proved that the results on the linearization of vector field

in [14] also hold under weaker non-degeneracy condition. Namely there exists

ξ ∈ Π such that

(1.3) Rank

{
ω(ξ),

∂βω

∂ξβ

∣∣∣∣ for all β ∈ Zn+, |β| ≤ n− 1

}
= n,

but the frequency of the flow of conjugated vector field may undergo some drifts.

For the relevant results of weaker non-degeneracy condition, we refer to [15]–[18],

[21] and the references therein. In fact, under weaker non-degeneracy condi-

tion [22] we can only get the linearization of vector fields, there is no information

on the persistence of the frequency of the flow of conjugated vector field.

In this paper we are mainly concerned with the persistence of the frequency

of the flow of conjugated vector field. The method of KAM iteration in [14]

closely depends on the Kolmogorov’s non-degeneracy condition, which ensures

that the frequency of each step remains the same. When the Kolmogorov’s

non-degeneracy condition is violated, the frequency of linear flow may undergo

some drifts. So the method in [14] can not be directly applied. By an improved

KAM iteration with parameters and introducing external parameters, we will

prove that if the frequency mapping has nonzero Brouwer’s topological degree
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at some Brjuno–Rüssmann’s non-resonant frequency, then the linear flow with

this frequency will persist under small perturbation.

In order to state our results, we now describe the setting more precisely.

Usually, by Z and Z+ we denote the sets of integers and positive integers. Define

D(s) = {θ ∈ Cn/2πZn | |Im θj | ≤ s, j = 1, . . . , n}

and a complex neighbourhood of Π,

Πh = {ξ ∈ Cn | dist(ξ,Π) ≤ h}.

Suppose that the function f(θ; ξ) is real analytic on D(s) × Πh. We expand

f(θ; ξ) into the Fourier series with respect to θ,

f(θ; ξ) =
∑
k∈Zn

fk(ξ)ei〈k,θ〉,

and define

‖f‖D(s)×Πh
=
∑
k∈Zn

‖fk‖hes|k|,

where ‖fk‖h = sup
ξ∈Πh

|fk(ξ)|.

Finally, with any approximation function ∆ we define two other functions

Λ(τ) = τ∆(τ) and Λ−1(t) = sup{τ ≥ 1 | Λ(τ) ≤ t} for t ≥ Λ(1). The following

theorem is the main result of this paper.

Theorem 1.1. Suppose the vector field X = N + P = ω(ξ) + P (θ; ξ) is real

analytic on D(s)×Πh. Let ω0 = ω(ξ0), where ξ0 ∈ Π. Suppose that ω0 satisfies

the Brjuno–Rüssmann’s non-resonant condition

|〈k, ω0〉| ≥
α

∆(|k|)
, for all 0 6= k ∈ Zn,

and the Brouwer’s degree of the frequency mapping ω(ξ) at ξ0 on Π is not zero,

i.e. deg(ω(ξ),Π, ω0) 6= 0. Then there exists a sufficiently small constant ε > 0,

such that if

‖P‖D(s)×Πh
= ε <

h

16
≤ α

200Λ(τ)
,

where τ is so large that

3

∫ ∞
τ

ln Λ(t)

t2
dt <

s

2
,

there exists a real analytic diffeomorphism Φω0
such that Φ∗ω0

(N +P ) = N∗, and

at least one ξ∗ ∈ Π such that the conjugated vector field N∗ at ξ = ξ∗ has a linear

flow with ω0 as its frequency.

Remark 1.2. An example corresponding to the above theorem is ω(ξ) =

ω0 + (ξ3
1 , . . . , ξ

3
n). At ξ = 0, ω(ξ) is degenerate in the Kolmogorov’s sense. The

previous KAM theorems in the context of vector field can not tell whether the

conjugated vector field has a linear flow with ω0 at its frequency.
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Remark 1.3. In paper [23], [24] we consider the reversible systems with

normal degenerate equilibrium point, and prove the existence of at least one

n-dimensional invariant torus with ω0 as its frequency, when ω0 satisfies the

Diophantine condition:

|〈k, ω0〉| ≥
α

|k|ν
, for all 0 6= k ∈ Zn,

where ν > n− 1. By the methods in this paper, the above results can be gener-

alized to the Brjuno–Rüssmann’s non-resonant condition. For the latest results

of more weaker non-resonant condition, we refer to [2], [9] and the references

therein.

2. Proof of the main results

In this section we will prove our Theorem 1.1. It is effective to introduce an

artificial external parameter γ and consider the vector field

(2.1) X = N + γ + P,

where N = ω(ξ), P = P (θ; ξ). The vector field (2.1) with γ = 0 returns to the

original vector field.

The idea of introducing external parameters was proposed by Herman [8]

and heavily employed later on by others in [5]–[7], [11], [13], [19], [20]. We will

first give a KAM theorem for vector field (2.1) with parameters (ξ, γ) and then

prove Theorem 1.1.

Let µ = max
ξ1,ξ2∈Πh

|ω(ξ1)− ω(ξ2)|, and define

B(ω, µ) = {γ ∈ Cn | dist(γ, ω) < µ}.

Let M = Πh × B(0, 2µ + 1). The vector field X = ω(ξ) + γ + P (θ; ξ) is real

analytic on D(s)×M .

Suppose ω0 = ω(ξ0) satisfies the Brjuno–Rüssmann’s non-resonant condition

|〈k, ω0〉| ≥
α

∆(|k|)
, for all k ∈ Zn \ {0},

where the function ∆ satisfies∫ ∞
1

ln4(t)

t2
dt <∞.

Let d = α/2τ∆(τ). Then, for all ω ∈ B(ω0, d), it follows that

|〈k, ω〉| ≥ α

2∆(|k|)
, 0 < |k| ≤ τ.

Let q = (1 − a + a2b)(1 + b)ea, where 0 < a < 1, 0 < b ≤ 1/2 are positive

constants.
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Theorem 2.1. There exists a small ε > 0 such that if ‖P‖D(s)×M ≤ ε, then

we have an analytic curve {Γω0
: γ = γ(ξ), ξ ∈ Π} ⊂ M , which is determined

implicitly by the equation

ω(ξ) + γ + N̂∗(ξ, γ) = ω0,

where

(2.2)
∣∣N̂∗(ξ, γ)

∣∣ ≤ aε

1− q
,

∣∣N̂∗ξ(ξ, γ)
∣∣+
∣∣N̂∗γ(ξ, γ)

∣∣ ≤ 1

2
,

and a parameterized mapping

Φω0
( · ; ξ, γ) : D

(
s

2

)
→ D(s), (ξ, γ) ∈ Γω0

,

where Φω0
is C∞-smooth in (ξ, γ) on Γω0

in the sense of Whitney and analytic

in θ on D(s/2), such that for each (ξ, γ) ∈ Γω0
, we have

Φ∗ω0
(N(ξ) + γ + P (θ; ξ)) = Φ∗ω0

(ω(ξ) + γ + P (θ; ξ)) = ω0.

Therefore, the conjugated vector field of (2.1) has a linear flow with ω0 as its

frequency.

Now we first use Theorem 2.1 to prove Theorem 1.1. In fact, we only need

to prove that the external parameter γ has at least one zero point so that the

vector field (2.1) returns to the original vector field. By the estimates (2.2) and

using the implicit function theorem, the equation

ω(ξ) + γ + N̂∗(ξ, γ) = ω0

determines an analytic curve γ(ξ) = ω0 − ω(ξ) + γ̂(ξ), satisfying

|γ̂(ξ)| ≤ aε

1− q
,

∣∣γ̂ξ(ξ)∣∣ ≤ 2aε

1− q
.

By assumption deg(ω0 − ω(ξ),Π, 0) 6= 0, if ε is sufficiently small, we have

deg(γ(ξ),Π, 0) = deg(ω0 − ω(ξ),Π, 0) 6= 0.

Thus we have at least one ξ∗ ∈ Π such that γ(ξ∗) = 0. Therefore, the conjugated

vector field Φ∗ω0
(X(θ; ξ∗)) = Φ∗ω0

(X(θ; ξ∗, γ(ξ∗))) has a linear flow with ω0 as its

frequency.

Now we begin to prove Theorem 2.1, its detailed proof consists of KAM step,

setting the parameters and iteration, and convergence of iteration. The idea is

to use the method of introducing external parameter to have a good control of

frequency drift, so that we can obtain a Cantor-like family of analytic curves

in KAM iteration, on which the frequency remains the same and satisfies the

Brjuno–Rüssmann’s non-resonant condition. Every KAM iteration is carried

out in the neighbourhood of one curve, the radius of neighbourhood gradually

tends to zero. When the radius of neighbourhood shrinks to zero, the family of
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curves can converge to the desired curve, on which the frequency is prescribed

and satisfies the Brjuno–Rüssmann’s non-resonant condition.

2.1. KAM step. First we describe our linear iterative scheme with respect

to (2.1) for one KAM step. Suppose we are now in the n-th step, and in what

follows the quantities without subscripts refer to those at the n-th step, while the

quantities with subscripts “+” denote the corresponding ones at the (n + 1)-th

step. We will use the same notation c to indicate different constants, which are

independent of iterative process.

Suppose at the n-th step, the vector field is written as

(2.3) X = N(ξ, γ) + P (θ; ξ, γ),

where the constant vector N(ξ, γ) = ω(ξ, γ) = ω(ξ)+γ+N̂(ξ, γ). We summarize

one KAM step in the following lemma.

Lemma 2.2. Consider the real analytic vector field (2.3) on D(s) ×M . Let

0 < σ < s/2 and τ ≥ 1. Then define a = 1 − e−τσ. Let ω0 = ω(ξ0) be the

prescribed Brjuno–Rüssmann’s non-resonant frequency, i.e.

(2.4) |〈k, ω0〉| ≥
α

∆(|k|)
, for all 0 < |k| ≤ τ.

Let

T = max
ξ∈Πh

∣∣∣∣∂ω∂ξ
∣∣∣∣, h =

α

2Λ(τ)T
.

Suppose that

(2.5) ‖P‖D(s)×M ≤ ε <
bα

2Λ(τ)
,

where 0 < b ≤ 1/2 is a positive constant, and the function N̂(ξ, γ) satisfies

(2.6)
∣∣N̂ξ(ξ, γ)

∣∣+
∣∣N̂γ(ξ, γ)

∣∣ ≤ 1

2
, for all (ξ, γ) ∈M,

such that the equation

ω(ξ) + γ + N̂(ξ, γ) = ω0

defines implicitly an analytic curve Γ : γ = γ(ξ), ξ ∈ Πh → γ(ξ) ∈ B(0, 2µ+ 1),

satisfying Γ = {(ξ, γ(ξ))|ξ ∈ Πh} ⊂ M . Moreover, for d = α/2τ∆(τ), L =

2 + max
ξ∈Πh

|ωξ(ξ)|, we define δ = d/L such that

B(Γ, δ) =
{

(ξ′, γ′) ∈ Πh × Cn
∣∣ |ξ′ − ξ|+ |γ′ − γ(ξ)| ≤ δ, (ξ, γ) ∈ Γ

}
⊂M.

Next define

s+ = s− σ, h+ = h− δ

2
, Λ+ =

Λ(τ)

λq
,

τ+ = Λ−1(Λ+), d+ =
α

2τ+∆(τ+)
, a = 1− e−τ+σ+ ,
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where λ ≥ 2 is a fixed constant. Then, there exists

(2.7) M+ =

{
(ξ′, γ′) ∈ Πh+ ×Cn

∣∣∣∣ |ξ′ − ξ|+ |γ′ − γ(ξ)| ≤ δ

2
, (ξ, γ) ∈ Γ

}
⊂M

such that for any (ξ, γ) ∈M+, there exists a transformation Φ( · ; ξ, γ) : D(s+)→
D(s), which conjugates the vector field (2.3) to X+ = N+(ξ, γ) + P+(θ; ξ, γ),

with the new frequency N+(ξ, γ) = ω+(ξ, γ) = ω(ξ) + γ + N̂+(ξ, γ), N̂+(ξ, γ) =

N̂(ξ, γ)+P 0(ξ, γ), the new perturbation P+ and the drift term P 0(ξ, γ) satisfying

‖P+‖D(s+)×M+
≤ ε+ = qε, and

(2.8) |P 0(ξ, γ)| ≤ aε, |P 0
ξ (ξ, γ)|+ |P 0

γ (ξ, γ)| ≤ 2aε

δ
,

where q = (1− a+ a2b)(1 + b)ea, 0 < a < 1, 0 < b ≤ 1/2 are positive constants,

P 0(ξ, γ) denotes the average value of truncation term. Moreover, the mapping

Φ has the estimates

|Φ− id|D(s+)×M+
≤ 2Λ(τ)α−1σε, |DΦ− Id|D(s+)×M+

≤ 2aΛ(τ)α−1ε.

Thus, if

(2.9)
2aε

δ
≤ 1

4
,

the equation ω(ξ) + γ + N̂(ξ, γ) + P 0(ξ, γ) = ω0 defines implicitly an analytic

curve Γ+ : γ+ = γ+(ξ) : ξ ∈ Πh+ → γ+(ξ) ∈ B(0, 2µ + 1) with h+ = h − δ/2,

satisfying

(2.10) |γ+(ξ)− γ(ξ)| ≤ 2aε ≤ 1

2
δ,

and

(2.11) Γ+ = {(ξ, γ+(ξ)) | ξ ∈ Πh+
} ⊂M+.

If

(2.12) δ+ ≤
1

4
δ,

then we have B(Γ+, δ+) ⊂M+.

Proof. We divide the proof into several parts. In the following the notation

‖ · ‖s;h indicates the norm ‖ · ‖D(s)×Πh
for simplicity.

A. Truncation. As P is real analytic, we expand P as Fourier series P =∑
k

Pk(ξ)ei〈k,θ〉. Let P = P̃ + P̂ with

P̂ =
∑
|k|>τ

Pke
i〈k,θ〉 + (1− a)

∑
|k|≤τ

Pke
|k|σei〈k,θ〉.

In view of e−τσ = 1− a, we have

‖P̂‖s−σ;h ≤ (1− a)‖P‖s;h ≤ (1− a)ε.
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On the other hand, the polynomial rest

P̃ =
∑
|k|≤τ

P̃ke
i〈k,θ〉, P̃k =

(
1− (1− a)e|k|σ

)
Pk,

is bounded. Indeed, with σ̃ = σ(1− a)/a,∥∥P̃∥∥
s+σ̃;h

=
∑

0≤|k|≤τ

(
1− (1− a)e|k|σ

)
‖Pk‖he|k|(s+σ̃)(2.13)

≤ sup
0≤t≤τ

(
1− (1− a)etσ

)
etσ̃

∑
0≤|k|≤τ

‖Pk‖he|k|s = aε,

as the function under the sup is monotonically decreasing for 0 ≤ t ≤ τ and

equals a at t = 0.

B. Extension of the small divisor estimates. First note that the mapping

ω : (ξ, γ) ∈ B(Γ, δ)→ ω(ξ, γ) ∈ B(ω0, d)

is well defined. In fact, for any (ξ′, γ′) ∈ B(Γ, δ), there exists (ξ, γ(ξ)) ∈ Γ such

that

|ξ′ − ξ|+ |γ′ − γ(ξ)| ≤ δ,

so that

|ω(ξ′, γ′)− ω0| = |ω(ξ′) + γ′ + N̂(ξ′, γ′)− (ω(ξ) + γ + N̂(ξ, γ))|

≤ (2 + max
ξ∈Πh

|ωξ(ξ)|)δ ≤ d.

Moreover, we can extend the small divisor condition (2.4) to the neighbourhood

B(Γ, δ), i.e. for any (ξ′, γ′) ∈ B(Γ, δ), we have

(2.14)
∣∣〈k, ω(ξ′, γ′)

〉∣∣ ≥ α

2∆(|k|)
, for all 0 < |k| ≤ τ.

In fact, for any (ξ′, γ′) ∈ B(Γ, δ), there exists (ξ, γ(ξ)) ∈ Γ such that |ξ′ − ξ| +
|γ′ − γ(ξ)| ≤ δ. So it follows that∣∣〈k, ω(ξ′, γ′)− ω0

〉∣∣ ≤ |k|d ≤ α

2∆(τ)
, for all 0 < |k| ≤ τ.

Note that ω0 satisfies the Brjuno–Rüssmann’s non-resonant condition, this prove

the claim (2.14).

C. Construction of the transformation. The coordinate transformation Φ is

generated by the time-1 map of the flow Ft of a vector field F, which satisfies

that

Φ∗(N + P ) = F ∗t
(
N + P̃ + P̂

)∣∣
t=1

= N + [N,F ] +

∫ 1

0

(1− t)F ∗t [[N,F ], F ] dt+ P̃ +

∫ 1

0

F ∗t
[
P̃ , F

]
dt+ F ∗1 P̂ ,

where [ · , · ] is the Lie bracket of two vector fields.
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The point is to find F which solves the homological equation

(2.15) [N,F ] + P̃ = P 0,

where P 0 denotes the mean value of P̃ . By (2.14), for any ξ ∈ Πh the linearized

equation (2.15) is solved by

F =
∑

0<|k|≤τ

P̃k
i〈k, ω(ξ, γ)〉

ei〈k,θ〉.

Then with a = 1− e−τσ ≤ τσ, the estimates (2.13) and (2.14), we get

(2.16) ‖F‖s+σ̃ ≤ 24(τ)α−1‖P̃‖s+σ̃ ≤ 24(τ)α−1aε = 2Λ(τ)σα−1ε.

By hypothesis (2.5), ‖F‖s+σ̃ ≤ σ, so the vector field F generates a flow Ft, which

satisfies for 0 ≤ t ≤ 1,

Ft : D(s− 2σ)→ D(s− σ), ‖Ft − id‖s−2σ ≤ 2Λ(τ)σα−1ε.

Therefore, the vector field X is transformed into X+ = N+ + P+, where

N+ = N + P 0 = ω(ξ) + γ + N̂(ξ, γ) + P 0(ξ, γ)

is a new constant vector field,

P+ =

∫ 1

0

(1− t)F ∗t [[N,F ], F ] dt+

∫ 1

0

F ∗t [P̃ , F ] dt+ F ∗1 P̂

=

∫ 1

0

F ∗t [Pt, F ] dt+ F ∗1 P̂

is the new perturbation of the constant vector field N+, Pt = tP̃ + (1− t)P 0.

D. Construction of parameters domains. Let M+ be defined by (2.7), it

follows that M+ is closed and M+ ⊂ B(Γ, δ) ⊂ M , dist(M+, ∂M) ≥ δ/2, where

∂M is the boundary of M .

Let P 0(ξ, γ) = [P̃ (θ; ξ, γ)]. By Cauchy’s estimates, the estimates (2.8) hold.

Set N̂+(ξ, γ) = N̂(ξ, γ) + P 0(ξ, γ). By the implicit function theorem, if∣∣∣∣∂N̂+

∂γ

∣∣∣∣ ≤ 1

2
, for all (ξ, γ) ∈M,

which will be verified in (2.17), the equation

ω(ξ) + γ + N̂+(ξ, γ) = ω0

defines implicitly an analytic curve

Γ+ : γ+ = γ+(ξ) : ξ ∈ Πh+ → γ+(ξ) ∈ B(0, 2µ+ 1).

Note that γ+ and γ satisfy

ω(ξ) + γ+ + N̂+(ξ, γ+) = ω(ξ) + γ + N̂(ξ, γ) = ω0.
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Then it follows that

|γ+(ξ)− γ(ξ)| ≤
∣∣N̂+(ξ, γ+(ξ))− N̂(ξ, γ(ξ))

∣∣
≤
∣∣N̂(ξ, γ+(ξ))− N̂(ξ, γ(ξ))

∣∣+ |P 0(ξ, γ+(ξ))|

≤ 1

2
|γ+(ξ)− γ(ξ)|+ aε

Hence the conclusions (2.10) and (2.11) hold. By (2.12), we haveB(Γ+, δ+) ⊂M+.

E. Estimates of the new perturbation. To estimate P+ we note that

‖Pt‖s+σ̃ ≤ t
∥∥P̃∥∥

s+σ̃
+ (1− t)‖P 0‖s+σ̃ ≤ aε

and

(s+ σ̃)− (s− σ) =
1− a
a

σ + σ =
σ

a
.

Thus Lemma A.1 of Appendix and the definition b = 2Λ(τ)α−1ε yield

‖[Pt, F ]‖s−σ ≤
a

σ
‖Pt‖s+σ̃‖F‖s+σ̃ ≤ 2a2Λ(τ)α−1ε2 = a2bε.

In view of (2.16), we can apply Lemma A.2 of Appendix with r = s − σ and

η = 1/a to obtain∫ 1

0

‖F ∗t [Pt, F ]‖s−2σ dt ≤ (1 + b)ea‖[Pt, F ]‖s−σ ≤ a2b(1 + b)eaε.

Similarly, ∥∥F ∗1 P̂‖s−2σ ≤ (1 + b)ea‖P̂
∥∥
s−σ ≤ (1− a)(1 + b)eaε.

Both estimates together yield the stated estimates of P+. �

2.2. Setting the parameters and iteration. Now we choose some suit-

able parameters so that the above iteration can go on infinitely. We can always

choose 0 < a < 1 and 0 < b ≤ 1/2 so that

q =
(
1− a+ a2b

)
(1 + b)ea < 1,

and we can even make q sufficiently small as we wish. Then it suffices to choose

for ε and Λ geometric sequences with the same base q, namely

εn = ε0q
n, Λn =

Λ0

(λq)n
,

where λ ≥ 2 is a constant such that λq ≤ 1/4, we assume Λ0 ≥ Λ(1) = ∆(1).

Next, let

τn = Λ−1(Λn) = sup{τn | Λ(τn) ≤ Λn},
and define other parameters through

1− a = e−τnσn , sn = sn−1 − σn−1,

dn =
α

2τn∆(τn)
, δn =

dn
L

=
α

2LΛn
, hn = hn−1 −

δn
2
,
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where L = 2 + max
ξ∈Πh

|ωξ(ξ)|. As we will see in a moment, sn has a positive limit

for Λ0 sufficiently large. Denote

Mn =

{
(ξ′, γ′) ∈ Πhn × Cn

∣∣∣∣ |ξ′ − ξ|+ |γ′ − γ(ξ)| ≤ δn−1

2
, (ξ, γ) ∈ Γn−1

}
and Dn = D(sn) for simplicity. Moreover, for any (ξ′, γ′) ∈ B(Γn, δn), there

exists (ξ, γ(ξ)) ∈ Γn such that |ξ′ − ξ|+ |γ′ − γ(ξ)| < δn = dn/L, hence, in view

of Λ(τn) = τn4(τn),

|〈k, ωn(ξ′, γ′)− ω0〉| ≤ |k||ω(ξ′) + γ′ + N̂n(ξ′, γ′)− (ω(ξ) + γ + N̂n(ξ, γ))|

≤ |k|dn ≤
α

2∆(τn)
,

for all 0 < |k| ≤ τn. As ω0 satisfies (2.4), the following divisor admit the lower

bound

|〈k, ωn(ξ′, γ′)〉| ≥ |〈k, ω0〉| − |〈k, ωn(ξ′, γ′)− ω0〉|

≥ α

4(|k|)
− α

24(τn)
≥ α

24(|k|)
,

for all 0 < |k| ≤ τn. Thus the small divisor condition (2.4) also holds in the

neighbourhood B(Γn, δn).

Lemma 2.3 (Iterative Lemma). Consider the real analytic vector field X0 =

N0 + P0 = ω0(ξ) + P0(θ; ξ), satisfying

‖P0‖D0×M0
≤ ε0 ≤ min

{
bα

2Λ0
,

α

16LaΛ0

}
,

with Λ0 sufficiently large. Then for each n ≥ 1 there exists a parameter and

coordinate transformation

Φn = Φ0 ◦ . . . ◦ Φn : D(sn)×Mn → D(s0)×M0,

which conjugates the vector field X0 to Xn = Nn+Pn = ωn(ξ, γ) +Pn(θ; ξ) such

that

‖Pn‖Dn×Mn ≤ εn = ε0q
n.

Moreover,

|Φn+1 − Φn|Dn+1×Mn+1
≤ cΛ(τn+1)α−1σn+1εn+1.

Proof. By induction and the definition of εn, Λn and δn, we have

εn ≤
bα

2Λn(τn)
,

2aεn
δn
≤ 1

4
,

δn+1

δn
≤ 1

4
, for all n ≥ 0,

i.e. the assumptions (2.5), (2.9) and (2.12) holds for all n ≥ 0. The last as-

sumption (2.6) will be verified in (2.17). Thus the proof follows by applying
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Lemma 2.2 repeatedly. In the following we only give the estimate of Φn. First

by Lemma 2.2, we observe that

|Φn − id|Dn×Mn
≤ 2Λ(τn)α−1σnεn,

|DΦn − Id|Dn×Mn ≤ 2aΛ(τn)α−1εn,

where D denotes the Jacobian with respect to θ. Then we have

|Φn+1 − Φn|Dn+1×Mn+1
= |Φn ◦ Φn+1 − Φn|Dn+1×Mn+1

≤ |DΦn|Dn×Mn
|Φn+1 − id|Dn+1×Mn+1

≤ cΛ(τn+1)α−1σn+1εn+1,

provided that DΦn is uniformly bounded on Dn ×Mn. In fact by induction we

have DΦn = DΦ0 ◦ . . . ◦DΦn, with the Jacobians evaluated at different points,

and

|DΦn| = |DΦ0 ◦ . . . ◦DΦn| ≤
∏
n≥0

(
1 + 2aΛ(τn)α−1εn

)
≤
∏
n≥0

(
1 +

2aΛ0ε0

α

1

λn

)
≤ exp

{
2aλΛ0ε0

(λ− 1)α

}
≤ eabλ/(λ−1),

which is uniformly bounded. �

2.3. Convergence of iteration. We first verify that the sequences of si
tend to a positive limit. Indeed, let t = Λ−1(Λ0(λq)−x), we have∑

i≥0

1

τi
≤
∫ ∞

0

dx

Λ−1(Λ0(λq)−x)
=

1

ln(λq)−1

∫ ∞
τ0

dΛ(t)

tΛ(t)
.

Integrating by parts and requiring Λ(τ0) ≥ (λq)−1 we get∑
i≥0

1

τi
≤ 1

ln(λq)−1

∫ ∞
τ0

ln Λ(t)

t2
dt.

It follows that∑
i≥0

σi =
∑
i≥0

ln(1− a)−1

τi
≤ ln(1− a)

lnλq

∫ ∞
τ0

ln Λ(t)

t2
dt.

Hence by choosing τ0 sufficiently large, we can achieve that
∑
i≥0

σi ≤ s/2 and

thus si → s∗ ≥ s/2. By Iterative Lemma 2.3, Φi satisfies

|Φi+1 − Φi|Di+1×Mi+1
≤ cΛ(τi+1)α−1σi+1εi+1.

Note that D∗ = D(s∗),M∗ =
⋂
i≥0

Mi, and Φω0
= lim
i→∞

Φi. Thus the mappings Φi

converge uniformly on ⋂
i≥0

Di ×Mi = D(s∗)×M∗,
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to a mapping Φω0
, which is real analytic on D(s∗) and uniformly continuous

on M∗. Moreover, we have

|Φω0
− id|D(s∗)×M∗ ≤ e

abλ/(λ−1) λΛ0ε0σ

(λ− 1)α
.

Let h∗ = h− (1/2)
∞∑
i=0

δi. It follows that h∗ ≥ h− 2δ0/3. By the definition of δ0,

we can choose τ0 sufficiently large such that δ0 ≤ h. Therefore h∗ ≥ h/3, and

Πh∗ ⊂
⋂
i≥0

Πhi .

By iteration we have N̂i(ξ, γ) =
i−1∑
k=0

P 0
k (ξ, γ). We now prove the convergence

of N̂i(ξ, γ). Combining with the estimates for P 0
k , we have that for all (ξ, γ) ∈

B(Γi, δi) ⊂Mi, ∣∣N̂i(ξ, γ)
∣∣ ≤ i−1∑

k=0

aεk ≤
aε0

1− q
.

By Cauchy’s estimate, for (ξ, γ) ∈Mi,

∣∣N̂iξ(ξ, γ)
∣∣+
∣∣N̂iγ(ξ, γ)

∣∣ ≤ i−1∑
k=0

2aεk
δk

=

i−1∑
k=0

4Laε0Λ0

λk
≤ 4λLaε0Λ0

λ− 1
≤ λ

4(λ− 1)
.

Thus, by λ ≥ 2, we have

(2.17)
∣∣N̂iξ(ξ, γ)

∣∣+
∣∣N̂iγ(ξ, γ)

∣∣ ≤ 1

2
, for all (ξ, γ) ∈Mi,

the assumption (2.6) holds.

Let N̂∗ = lim
i→∞

N̂i. Then, for all (ξ, γ) ∈M∗, we have

|N̂∗(ξ, γ)| ≤ aε0

1− q
,

∣∣N̂∗ξ(ξ, γ)
∣∣+
∣∣N̂∗γ∣∣ ≤ 1

2
.

Similarly, we can prove the convergence of γi(ξ) on Πh∗ . In fact, we can choose

τ0 sufficiently large such that 2aεi/δi ≤ 1/4, for all i ≥ 0. Then for j ≥ i, if

follows that

|γj(ξ)− γi(ξ)| ≤
j−1∑
k=i

2aεk ≤
δi
2
.

Let γ∗(ξ) = lim
i→∞

γi(ξ). Then we have |γ∗(ξ) − γ(ξ)| ≤ δi/2, which implies

that Γ∗ = {(ξ, γ∗(ξ)) | ξ ∈ Πh∗} ⊂ Mi, and therefore Γ∗ ⊂ M∗ =
⋂
i≥0

Mi.

Moreover, for any (ξ, γ) ∈ Γ∗, we have ω(ξ)+γ+ N̂∗(ξ) = ω0. Therefore, for any

(ξ, γ) ∈ Γ∗ with ω0 satisfying the Brjuno–Rüssmann’s non-resonant condition,

the transformation Φω0
( · ; ξ, γ) conjugates the vector field (2.1) to X∗ = ω0.
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For the statement of the theorem, we choose a = 99/100, b = 1/100 and

λ = 2, which results in

q ≈ 0.0538,
ln(1− q)

lnλq
≈ 2.0661, λq ≤ 1

4
.

Thus this completes the proof of Theorem 1.1. �

Appendix A

In this section we formulate some lemmas which have been used in the pre-

vious section. For detailed proofs we refer to [14].

Lemma A.1. Let U and V be analytic vector fields on the torus Tn. Then,

for 0 < r < min{u, v},∥∥[U, V ]
∥∥
r
≤ 1

e

(
1

u− r
+

1

v − r

)
‖u‖u‖v‖v.

Lemma A.2. Suppose the vector fields F and V are analytic on the torus Tn.

If b = σ−1‖F‖r+ησ ≤ 1/2 with 0 < σ < r and η > 0, then∥∥F ∗t V ∥∥r−σ ≤ (1 + bt)e1/η‖V ‖r, 0 ≤ t ≤ 1.
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