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ASYMPTOTICALLY ALMOST AUTOMORPHIC SOLUTIONS

OF DYNAMIC EQUATIONS ON TIME SCALES

Carlos Lizama — Jaqueline G. Mesquita

Abstract. In the present work, we introduce the concept of asymptoti-

cally almost automorphic functions on time scales and study their main
properties. We study nonautonomous dynamic equations on time scales

given by x∆(t) = A(t)x(t) + f(t) and x∆(t) = A(t)x(t) + f(t, x(t)), t ∈ T,

where T is an invariant under translations time scale and A ∈ R(T,Rn×n).
We give new criteria ensuring the existence of an asymptotically almost

automorphic solution for both equations.

1. Introduction

The theory of time scales is a recent subject of research, which was intro-

duced by Stefan Hilger (see [19]). The study of time scales and their associated

properties have proved to be a fruitful area of research over the past years. See,

for instance, [1], [2], [5], [12], [16], [20]–[22], [24], [26]–[28], [30], [31] and the refe-

rences therein. This is in part due to the interesting mathematical theory that

has resulted from these investigations and also, due to the worthwhile applica-

tions that have arisen from them. It plays an important role to model realistic

problems such as economics, population, physics (specially quantum physics),

technology, among others. See, for instance, [5], [12], [24], [31].
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The qualitative properties of the solutions of dynamic equations on time

scales have been attracting the attention of several researchers, specially con-

cerning their periodicity. Periodic dynamic equations on time scales have been

treated by many authors. See, for instance, [1], [2], [20], [26], [30]. Further,

almost periodicity on time scales was formally introduced by Y. Li and C. Wang

(2011) in [27] and after that, this theory has been a powerful source of research

for other authors and interesting advances have been obtained using this con-

cept. See, for instance, [16], [21], [22], [28] and the references therein. On the

other hand, the concept of almost automorphic functions on time scales was

introduced formally recently in the literature by the authors in the paper [29].

Among others, in that paper, results concerning existence and uniqueness of al-

most automorphic solutions of nonautonomous dynamic equations on time scales

were proved.

Meanwhile, the theory of asymptotically almost automorphic functions in

continuous time is now a classical object of research that has been extensively

investigated and important contributions have been obtained, for example, in

the papers [6]–[11], [13]–[15], [25] and in the books [17], [18].

However, to the best of our knowledge, the concept of asymptotically almost

automorphic functions on time scales as well as their main structural properties

have not been introduced and investigated in the literature until now. Therefore,

the purpose of this paper is to contribute to filling this important gap.

Since dynamic equation on time scales generalizes differential equation and

difference equations, it is natural and desirable to introduce both from a theo-

retical point of view as from a practical, to investigate the properties of asymp-

totically almost automorphic functions on time scales such as the existence of

asymptotically almost automorphic solutions of linear and nonlinear dynamic

equations on time scales.

In this work, we will state and prove for the first time, structural theorems

concerning the existence of asymptotically almost automorphic solutions of dy-

namic equations on time scales and prove some results concerning exponential

dichotomies for such systems.

It is remarkable that in the discrete case, that is, which leads to difference

equations, and which is included in our analysis, the concept of asymptotically

almost automorphic functions on discrete time corresponds also to a new object

of research in the literature. Therefore, we have included this case in several

places as example for the development of this work.

The outline of this paper is as follows: the Section 2 is devoted to present

the preliminaries about the theory of time scales. In Section 3, we present the

definition of asymptotically almost automorphic functions on time scales (De-

finition 3.13) and we prove structural results concerning their main properties.
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Also, we investigate some remarkable properties of invariant under translations

time scales. Then we present some structural results concerning the new theory

of almost automorphic functions on time scales. They unify and complement the

theory initiated by [29]. In Section 4, we deal with the linear dynamic equation

on time scales

x∆(t) = A(t)x(t) + f(t), t ∈ T,

where A : T → Rn×n and f : T → Rn. We prove a general existence result

of an asymptotically almost automorphic solution (Theorem 4.2). Finally, in

Section 5, we prove a result concerning existence and uniqueness of an asymp-

totically almost automorphic solution of

x∆(t) = A(t)x(t) + f(t, x), t ∈ T,

where f : T× Rn → Rn (Theorem 5.1).

2. Preliminaries

In this section, we present some basic concepts and results concerning time

scales which will be essential to prove our main results. For more details, the

reader may want to consult [3], [4].

Let T be a time scale, that is, a closed and nonempty subset of R.

Definition 2.1 (see [3, Definition 1.1]). For every t ∈ T, we define the

forward and backward jump operators σ, ρ : T→ T, respectively, as follows:

σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}.

In this definition, let us consider inf ∅ = supT and sup ∅ = inf T. If σ(t) > t,

we say that t is right-scattered. Otherwise, t is called right-dense. If ρ(t) < t,

then t is called left-scattered, while if ρ(t) = t, then t is left-dense.

Definition 2.2. The graininess function µ : T→ [0,+∞) and the backward

graininess function ν : T→ [0,+∞) are given, respectively, by

µ(t) = σ(t)− t and ν(t) = t− ρ(t) for every t ∈ T.

Definition 2.3 (see [3, Definition 1.57]). A function f : T → R is called

regulated provided its right-sided limits exist (finite) at all right-dense points

in T and its left-sided limits exist (finite) at all left-dense points in T.

Definition 2.4 (see [3, Definition 1.58]). A function f : T → R is called

rd-continuous if it is regulated on T and continuous at right-dense points of T.

We denote the class of all rd-continuous functions f : T→ R by Crd = Crd(T) =

Crd(T,R).
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If f : T→ R is continuous at each right-dense point and each left-dense point,

then f is said to be continuous on T.

Given a pair of numbers a, b ∈ T, the symbol [a, b]T will be used to denote

a closed interval in T, that is, [a, b]T = {t ∈ T; a ≤ t ≤ b}. On the other hand,

[a, b] is the usual closed interval on the real line, that is, [a, b] = {t ∈ R; a ≤
t ≤ b}. We also denote T+ = T ∩ [0,∞).

We define the set Tκ which is derived from T as follows: If T has a left-

scattered maximum m, then Tκ = T− {m}. Otherwise, Tκ = T.

Definition 2.5 (see [3, Definition 1.10]). Assume f : T → R is a function

and let t ∈ Tκ, we define the delta-derivative of f to be a number (if it exists)

with the following property: given ε > 0, there exists a neighborhood U of t such

that ∣∣f(σ(t))− f(t)− f∆(t)[σ(t)− s]
∣∣ ≤ ε|σ(t)− s| for all s ∈ U.

Definition 2.6. A partition of [a, b]T is a finite sequence of points

{t0, . . . , tm} ⊂ [a, b]T such that a = t0 < t1 < . . . < tm = b.

Given such a partition, we put ∆ti = ti − ti−1. A tagged partition consists

of a partition and a sequence of tags {ξ1, . . . , ξm} such that ξi ∈ [ti−1, ti)T for

every i ∈ {1, . . . ,m}. The set of all tagged partitions of [a, b]T will be denoted

by the symbol D(a, b).

If δ > 0, then we denote by Dδ(a, b) the set of all tagged partitions of [a, b]T
such that for every i ∈ {1, . . . ,m}, either ∆ti ≤ δ, or ∆ti > δ and σ(ti−1) = ti.

We point out that in the last case, the only way to choose a tag in [ti−1, ti)T is

to take ξi = ti−1.

In the sequel, we present the definition of Riemann ∆-integrals. See [3], [4],

for instance.

Definition 2.7. We say that f : T→ R is Riemann ∆-integrable on [a, b]T,

if there exists a number I with the following property: for every ε > 0, there

exists δ > 0 such that ∣∣∣∣∑
i

f(ξi)(ti − ti−1)− I
∣∣∣∣ < ε,

for every P ∈ Dδ(a, b) independently of ξi ∈ [ti−1, ti)T for 1 ≤ i ≤ n. It is clear

that such a number I is unique and is the Riemann ∆-integral of f from a to b.

Definition 2.8 (see [3, Definition 2.25]). We say that a function p : T→ R
is regressive provided

1 + µ(t)p(t) 6= 0 for all t ∈ T

holds. The set of all regressive and rd-continuous functions will be denoted by

R = R(T) = R(T,R).
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Now, let us define some operations in R(T,R). Let p, q ∈ T, then

(p⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t) for all t ∈ Tκ

and

(	p)(t) :=
−p(t)

1 + µ(t)p(t)
for all t ∈ Tκ.

Clearly, (R,⊕) is an Abelian group.

Definition 2.9 (see [3, Definition 2.30]). If p ∈ R, then we define the

generalized exponential function by

ep(t, s) = exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
for s, t ∈ T,

where the cylinder transformation ξh : Ch → Zh is given by

ξh(z) =
1

h
log(1 + zh),

where log is the principal logarithm function. For h = 0, we define ξ0(z) = z

for all z ∈ C. For the properties of the generalized exponential function, see [3,

Theorem 2.36].

In what follows, we recall some definitions about matrix-valued functions on

time scales. It can be found in [3].

Definition 2.10. Let A be an n × n matrix-valued function on T. We say

that A is rd-continuous on T if each entry of A is rd-continuous on T. We denote

the class of all rd-continuous n×n matrix-valued function on T by Crd = Crd(T) =

Crd(T,Rn×n).

We say that A is delta-differentiable at T if each entry of A is delta-differen-

tiable on T. In this case, we have

Aσ(t) = A(σ(t)) = A(t) + µ(t)A∆(t).

Definition 2.11. An n × n matrix-valued function A on a time scale T is

called regressive (with respect to T) provided

I + µ(t)A(t) is invertible for all t ∈ Tκ,

and the class of all such regressive rd-continuous is denoted by R = R(T) =

R(T,Rn×n).

Let A,B ∈ R(T,Rn×n). Define A⊕B by

(A⊕B)(t) = A(t) +B(t) + µ(t)A(t)B(t) for all t ∈ Tκ

and

(	A)(t) = −[I + µ(t)A(t)]−1A(t) for all t ∈ Tκ.
Clearly, (R(T,Rn×n),⊕) is a group (see [3]).
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Definition 2.12 (Fundamental matrix). Let t0 ∈ T and assume that A ∈ R
is an n×n matrix valued function. The unique matrix-valued solution of the IVPY ∆(t) = A(t)Y (t),

Y (t0) = I,

where I denotes as usual the n × n-identity matrix, is called the fundamental

matrix at t0 and it is denoted by eA( · , t0). For the properties of the fundamental

matrix, see [3, Theorem 5.21].

Theorem 2.13 (Variation of constants formula [3, Theorem 5.21]). Let A ∈
R be an n × n matrix-valued function on T and suppose that f : T → Rn is

rd-continuous. Let t0 ∈ T and y0 ∈ Rn. Then the initial value problem

(2.1)

y∆(t) = A(t)y(t) + f(t),

y(t0) = y0,

has a unique solution y : T→ Rn. Moreover, this solution is given by

y(t) = eA(t, t0)y0 +

∫ t

t0

eA(t, σ(τ))f(τ)∆τ.

Definition 2.14 (see [32, Definition 3.1]). Let A(t) be n× n rd-continuous

matrix-valued function on T. We say that the linear system

(2.2) x∆(t) = A(t)x(t)

has an exponential dichotomy on T if there exist positive constants K and γ and

a projection P such that

|X (t)PX−1(s)| ≤ Ke	γ(t, s), s, t ∈ T, t ≥ s,

|X (t)(I − P )X−1(s)| ≤ Ke	γ(s, t), s, t ∈ T, t ≤ s,

where X (t) is the fundamental solution matrix of (2.2) and I is the n×n identity

matrix.

We will assume that the projection P commutes with X (t) for every t ∈ T
in the previous definition.

Theorem 2.15 (see [3, Theorem 2.39]). If p ∈ R and a, b, c ∈ T, then

[ep(c, · )]∆ = −p[ep(c, ·)]σ

and ∫ b

a

p(t)ep(c, σ(t))∆t = ep(c, a)− ep(c, b).

Lemma 2.16 (see [28, Lemma 5.1]). Let γ > 0, then for any fixed s ∈ T and

s = −∞, one has e	γ(t, s)→ 0 as t→ +∞.
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Lemma 2.17 (see [29, Theorem 2.14]). If γ > 0, then 0 < e	γ(t, s) ≤ 1 for

t, s ∈ T such that t > s.

The next result describes the solution of the equation

(2.3) x∆(t) = A(t)x(t) + f(t).

Theorem 2.18 (see [27, Lemma 2.13]). If the linear system (2.2) admits

exponential dichotomy, then the system (2.3) has a bounded solution x(t) as

follows:

x(t) =

∫ t

−∞
X (t)PX−1(σ(s))f(s)∆s−

∫ +∞

t

X (t)(I − P )X−1(σ(s))f(s)∆s,

where X (t) is the fundamental solution matrix of (2.2).

3. Asymptotically almost automorphic functions on time scales

In this section, we introduce the concept of asymptotically almost automor-

phic functions on time scales and present their properties. We start by recalling

a definition of an invariant under translations time scale (see [29]). Throughout

the paper, T will denote a time scale.

Definition 3.1. A time scale T is called invariant under translations if

(3.1) Π := {τ ∈ R : t± τ ∈ T, for all t ∈ T} 6= {0} and Π 6= ∅.

In the sequel, we present a result which ensures that an invariant under

translations time scale preserves the properties of its elements when they are

shifted by an element of Π.

Lemma 3.2. Let T be invariant under translations. If t is right-dense, then

for every h ∈ Π, t + h is right-dense. Similarly, if t is right-scattered, then for

every h ∈ Π, t+ h is right-scattered.

Proof. In fact, if t is right-dense, then there exists a sequence (tn) such

that tn ∈ T, lim
n→∞

tn = t and tn > t for every n ∈ N. Since T is invariant under

translations, we obtain tn + h ∈ T and tn + h > t + h, for every h ∈ Π. Then,

we have

lim
n→∞

tn + h = t+ h

and thus, it follows that σ(t+h) = t+h, which implies that t+h is right-dense.

Now, suppose t is right-scattered and t+h is right-dense for some h ∈ Π. Then,

there exists γn ∈ T such that

(3.2) lim
n→∞

γn = t+ h and γn > t+ h.

By the invariance of the time scale, it follows that γn − h ∈ T and by (3.2), we

get

γn − h > t and lim
n→∞

γn − h = t.
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It implies that σ(t) = t, contradicting the fact that t is right-scattered. Therefore,

t+ h is right-scattered for every h ∈ Π. �

In what follows, we present a result which ensures the invariance of forward

jump operator σ : T→ T by the set Π, whenever the time scale is invariant under

translations.

Lemma 3.3. Let T be invariant under translations and h ∈ Π. For every

t ∈ T, we have

(3.3) σ(t) + h = σ(t+ h) and σ(t)− h = σ(t− h).

Proof. If t is right-dense, then (3.3) follows immediately by Lemma 3.2. On

the other hand, if t is right-scattered, then for h ∈ Π, t+h is also right-scattered

by Lemma 3.2, and σ(t+ h) > t+ h by the definition. Then σ(t+ h)− h > t for

every t ∈ T. Since T is invariant under translations and h ∈ Π, it follows that

σ(t + h) − h ∈ T. By the definition of forward jump operator, it follows that

σ(t) ≤ σ(t + h) − h, which implies σ(t + h) ≥ σ(t) + h. Reciprocally, since t is

right-scattered, we have σ(t) > t. Then,

(3.4) σ(t) + h > t+ h.

Again, it is clear that σ(t) + h ∈ T, then by (3.4) and from the definition of

forward jump operator, it follows that σ(t) + h ≥ σ(t + h) for every t ∈ T.

Combining these two inequalities, we obtain the desired result. Similarly, one

can prove the other equality σ(t)− h = σ(t− h). �

Corollary 3.4. Let T be invariant under translations and h ∈ Π. For every

t ∈ T, we have

µ(t+ h) = µ(t) = µ(t− h)

Remark 3.5. Clearly, we have the analogues to the backward jump operator

ρ : T→ T and the backward graininess function ν : T→ [0,+∞).

From now on, let us assume that X is a Banach space.

Definition 3.6 (see [29, Definition 3.15]). Let X be (real or complex) Ba-

nach space and T be an invariant under translation time scale. Then, an rd-

continuous function f : T → X is called almost automorphic on T if for every

sequence (α′n) ∈ Π, there exists a subsequence (αn) ⊂ (α′n) such that

lim
n→∞

f(t+ αn) = f(t)

is well defined for each t ∈ T and

lim
n→∞

f(t− αn) = f(t),

for every t ∈ T.
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Theorem 3.7. Let T be invariant under translations and f : T → X be

almost automorphic function, then the composition f ◦ σ : T→ X is also almost

automorphic function.

Proof. Since f is almost automorphic function, for every sequence (α′n)

in Π, there exists a subsequence (αn) ⊂ (α′n) such that

lim
n→∞

f(t+ αn) = f(t)

is well-defined and exists for every t ∈ T and

lim
n→∞

f(t− αn) = f(t)

is well-defined and exists for every t ∈ T. Thus, by Lemma 3.3, we get

lim
n→∞

f(σ(t+ αn)) = lim
n→∞

f(σ(t) + αn) = f(σ(t)),

since σ(t) ∈ T and f is almost automorphic. Reciprocally, we have

lim
n→∞

f(σ(t− αn)) = lim
n→∞

f(σ(t)− αn) = f(σ(t)),

for every t ∈ T. Therefore, it follows that f ◦σ is almost automorphic function.�

Theorem 3.8. Let A ∈ R(T,Rn×n) be almost automorphic on time scales,

that is, for every sequence (α′n) ∈ Π, there exists a subsequence (αn) ⊂ (α′n) such

that

lim
n→∞

A(t+ αn) = A(t)

exists and is well-defined for every t ∈ T and

lim
n→∞

A(t− αn) = A(t)

exists and is well-defined for every t ∈ T. Let T be invariant under translations,

then the fundamental matrix eA(t, s) of

X∆(t) = A(t)X (t)

is also almost automorphic with relation to both variables. More precisely, for

every sequence (α′n) ∈ Π, there exists a subsequence (αn) ⊂ (α′n) such that

lim
n→∞

eA(t+ αn, s+ αn) = eA(t, s)

exists and is well-defined for every t, s ∈ T and

lim
n→∞

eA(t− αn, s− αn) = eA(t, s)

exists and is well-defined for every t, s ∈ T.

Proof. The fundamental matrix of this system is given by eA(t, t0). By the

definition, we have

eA(t+ αn, s+ αn) = exp

(∫ t+αn

s+αn

ξµ(τ)(A(τ))∆τ

)
.
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Consider initially two cases: (i) µ(τ) = 0 for every τ ∈ [s+ αn, t+ αn]T and

(ii) µ(τ) > 0 for every τ ∈ [s+ αn, t+ αn]T.

If µ(τ) = 0 for every τ ∈ [s+ αn, t+ αn]T, then

lim
n→∞

eA(t+ αn, s+ αn) = lim
n→∞

[
exp

(∫ t+αn

s+αn

ξ0(A(τ))∆τ

)]
= lim

n→∞

[
exp

(∫ t+αn

s+αn

A(τ)∆τ

)]
= lim
n→∞

[
exp

(∫ t

s

A(τ + αn)∆τ

)]
= exp

(∫ t

s

A(τ)∆τ

)
= exp

(∫ t

s

ξ0(A(τ))∆τ

)
= eA(t, s),

for every s, t ∈ T. Reciprocally, we obtain

lim
n→∞

eA(t− αn, s− αn) = lim
n→∞

exp

(∫ t−αn

s−αn

ξ0(A(τ))∆τ

)
= lim
n→∞

exp

(∫ t

s

A(τ − αn)∆τ

)
= exp

(∫ t

s

A(τ)∆τ

)
= eA(t, s),

for every t, s ∈ T. Thus, in this case, eA(t, s) is almost automorphic with respect

to both variables. Now, consider µ(τ) > 0 for every τ ∈ [s+ αn, t+ αn]T, then

lim
n→∞

eA(t+ αn, s+ αn) = lim
n→∞

exp

(∫ t+αn

s+αn

ξµ(τ)(A(τ))∆τ

)
= lim

n→∞
exp

(∫ t+αn

s+αn

1

µ(τ)
log(I + µ(τ)A(τ))∆τ

)
= lim

n→∞
exp

(∫ t

s

1

µ(τ + αn)
log(I + µ(τ + αn)A(τ + αn))∆τ

)
= exp

(∫ t

s

1

µ(τ)
log(I + µ(τ)A(τ))∆τ

)
= eA(t, s)

for every s, t ∈ T. Moreover,

lim
n→∞

eA(t− αn, s− αn) = lim
n→∞

exp

(∫ t−αn

s−αn

1

µ(τ)
log(I + µ(τ)A(τ))∆τ

)
= lim

n→∞
exp

(∫ t

s

1

µ(τ − αn)
log(I + µ(τ − αn)A(τ − αn))∆τ

)
= exp

(∫ t

s

1

µ(τ)
log(I + µ(τ)A(τ))∆τ

)
= eA(t, s),

for every s, t ∈ T. Notice that in the case that there exist both τ1, τ2 ∈ [s+ αn,

t+ αn]T such that µ(τ1) = 0 and µ(τ2) > 0, it is only to combine the arguments

presented previously for each case and the result follows as well. �

Now, we introduce the concept of asymptotically almost automorphic func-

tions on time scales.
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Definition 3.9. Let X be a (real or complex) Banach space, T be invariant

under translations and f : T → X. We say that f is an asymptotically almost

automorphic function on time scales if there is an almost automorphic function

f1 : T → X and a continuous function f2 : T+ → X such that lim
t→∞

‖f2(t)‖ = 0

and

f(t) = f1(t) + f2(t),

for every t ∈ T+. We say that f1 and f2 are called, respectively, the principal

and corrective terms of the function f . We denote the set of all asymptotically

almost automorphic functions f : T+ → X by AAAT(X).

Remark 3.10. Clearly, every almost automorphic function on time scale

restricted to T+ is asymptotically almost automorphic on time scales. It is

enough to consider the corrective term equals zero.

The next result is a direct consequence of the definition. We omit its proof

here, since it follows immediately.

Theorem 3.11. Let T be invariant under translations and f, f1 : T+ → X

be asymptotically almost automorphic functions, then the sum of the functions

f + f1 and λf , λ > 0, is an arbitrary scalar are also asymptotically almost

automorphic functions.

In what follows, we present an important property of asymptotically almost

automorphic functions. We omit its proof, since it is very similiar to the proof

of [17, Theorem 2.5.4] with obvious adaptations.

Theorem 3.12. Let T be invariant under translations, the decomposition of

an asymptotically almost automorphic function f : T+ → X is unique.

In the sequel, we present a result which describes some properties of asymp-

totically almost automorphic functions on time scales. We omit its proof, since

it is analogous to the continuous case. See [17].

Theorem 3.13. Let X be a (real or complex) Banach space, T be invariant

under translations and let f : T+ → X and u : T+ → C be asymptotically almost

automorphic functions on time scales. Then the following statements hold :

(a) fa : T+ → X defined by fa(t) = f(t+ a), for a fixed a ∈ Π ∩ [0,+∞), is

asymptotically almost automorphic function on time scales;

(b) uf : T+ → X defined as (uf)(t) = u(t)f(t) is an asymptotically almost

automorphic function on time scales.

The next result follows immediately from the property of asymptotically

almost automorphic function on time scales.
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Theorem 3.14. If T is invariant under translations and f : T+ → X is an

asymptotically almost automorphic function on time scales, then

sup
t∈T+

‖f(t)‖ <∞.

In the sequel, we present a result which describes a property of the compo-

sition of an asymptotically almost automorphic function and the forward jump

operator when the time scale is invariant under translations.

Theorem 3.15. Let T be invariant under translations and f : T → X be

an asymptotically almost automorphic function on time scales, then the function

f ◦σ : T→ X is also asymptotically almost automorphic function on time scales.

Proof. We start by recalling that if T is invariant under translations, then

supT = +∞. The theorem follows immediately combining Theorem 3.7 and the

fact that lim
t→∞

σ(t) =∞. In this case, if f1 and f2 are, respectively, the principal

and the corrective terms of f , it follows that f1 ◦ σ and f2 ◦ σ are, respectively,

the principal and correctives terms of f ◦ σ and we have the desired result. �

The following result will be fundamental to prove our main results. Its proof

is inspired in [17, Theorem 2.4.1].

Theorem 3.16. Let T be invariant under translations and f : T→ X be an

almost automorphic function on time scales and its delta-derivative exists and

is uniformly continuous on T. Then f∆(t) is also almost automorphic on time

scales.

Proof. Let us consider two cases, that is, t is right-scattered and t is right-

dense. Since f is almost automorphic function on time scales, for every sequence

(α′n) in Π, there exists a subsequence (αn) ⊂ (α′n) such that

lim
n→∞

f(t+ αn) = f(t)

exists and is well-defined for every t ∈ T and

lim
n→∞

f(t− αn) = f(t)

exists and is well-defined for every t ∈ T. If t is right-scattered, then

lim
n→∞

f∆(t+ αn) = lim
n→∞

f(σ(t+ αn))− f(t+ αn)

µ(t+ αn)

= lim
n→∞

f(σ(t+ αn))− f(t+ αn)

µ(t)

=
f(σ(t))− f(t)

µ(t)
= f

∆
(t) := g(t),
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for every t ∈ T and

lim
n→∞

g(t− αn) = lim
n→∞

f(σ(t− αn))− f(t− αn)

µ(t− αn)

= lim
n→∞

f(σ(t− αn))− f(t− αn)

µ(t)
=
f(σ(t))− f(t)

µ(t)
= f∆(t),

for every t ∈ T, proving for this case. Now, consider that t is right-dense, then

there exists a sequence (tn) ∈ T such that

(3.5) tn → t and tn > t.

Let ε > 0, since f∆(t) is uniformly continuous, we can choose δ > 0 such that

for every pair t1, t2 ∈ T such that |t1− t2| < δ, we obtain ‖f∆(t1)− f∆(t2)‖ < ε.

By (3.5), for this δ > 0, we can choose N ∈ N such that |tn − t| < δ for every

n > N . It implies that

(f(tn)− f(t))

tn − t
− f∆(t) =

1

tn − t

∫ tn

t

(f∆(s)− f∆(t))∆s

Thus the sequence of almost automorphic functions (f(tn)− f(t))/(tn − t) con-

verges uniformly to f∆(t) on T. By [29, Theorem 3.18], we get that f∆(t) is

almost automorphic. �

Lemma 3.17. Let T be a time scale such that supT = +∞ and fn : T+ → X

be a sequence of continuous and bounded function satisfying lim
t→∞

‖fn(t)‖ = 0,

for every n ∈ N0, which converges uniformly to a function f : T+ → X. Then f

is a continuous function and satisfies lim
t→∞

‖f(t)‖ = 0.

Proof. Let ε > 0. Since lim
t→∞

‖fn(t)‖ = 0 for every n ∈ N0, there exists a T

sufficiently large such that for every t > T , we have

‖fn(t)‖ < ε

2

and by the uniform convergence of the sequence fn, there exists a sufficiently

large N ∈ N0 such that for n > N , we have

‖fn(t)− f(t)‖ < ε

2
.

Thus, for n > N and t > T , we have

‖f(t)‖ ≤ ‖f(t)− fn(t)‖+ ‖fn(t)‖ < ε

2
+
ε

2
,

which implies that

lim
t→∞

‖f(t)‖ = 0.

The continuity of the function f follows from Theorem 3.14 and by using the

fact that the space of continuous and bounded functions f : T+ → X endowed

with the supremum norm is a Banach space. �
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4. Asymptotically almost automorphic solutions

of linear dynamic equations on time scales

In this section, our goal is to prove the existence of an asymptotically almost

automorphic solution of first order linear dynamic equation on time scales given

by

(4.1) x∆(t) = A(t)x(t) + f(t)

where A : T→ Rn×n, f : T→ Rn and its associated homogeneous equation

(4.2) x∆(t) = A(t)x(t).

Throughout this section, we assume that A : T→ Rn×n is almost automorphic.

The next theorem is one of the main results of this paper. It ensures the

existence of an asymptotically almost automorphic solution of (4.1).

Theorem 4.1. Let T be invariant under translations time scales and A

in R(T,Rn×n) be almost automorphic and nonsingular on T and {A−1(t)}t∈T
and {(I + µ(t)A(t))−1}t∈T are bounded. Also, suppose the equation (4.2) admits

an exponential dichotomy with positive constants K and γ and f ∈ Crd(T+,Rn)

is asymptotically almost automorphic function on time scales. Then the equa-

tion (4.1) has an asymptotically almost automorphic solution on T+.

Proof. Since f is an asymptotically almost automorphic function on time

scales, f can be written by

f(t) = f1(t) + f2(t),

for every t ∈ T, where f1 and f2 are the principal and corrective terms of f ,

respectively. Thus the equation (4.1) can be rewritten as follows

x∆(t) = A(t)x(t) + f1(t) + f2(t),

for every t ∈ T. Then by Theorem 2.18, the equation (4.1) has a bounded

solution given by

x(t) =

∫ t

t0

X (t)PX−1(σ(s))f(s)∆s−
∫ +∞

t

X (t)(I − P )X−1(σ(s))f(s)∆s

=

∫ t

t0

X (t)PX−1(σ(s))[f1(s) + f2(s)]∆s

−
∫ +∞

t

X (t)(I − P )X−1(σ(s))[f1(s) + f2(s)]∆s

where t0 ∈ T+. Denoting by

x1(t) :=

∫ t

t0

X (t)PX−1(σ(s))f1(s)∆s−
∫ +∞

t

X (t)(I − P )X−1(σ(s))f1(s)∆s,
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x2(t) :=

∫ t

t0

X (t)PX−1(σ(s))f2(s)∆s−
∫ +∞

t

X (t)(I − P )X−1(σ(s))f2(s)∆s,

since (4.2) admits an exponential dichotomy and f1 is almost automorphic, it

is not difficult to prove that x1(t) is an almost automorphic function on T, by

following the same steps as the proof of [29, Theorem 5.6]. It remains to show

that x2 satisfies lim
t→∞

‖x2(t)‖ = 0. Therefore, we get

‖x2(t)‖ ≤
∫ t

t0

‖X (t)PX−1(σ(s))‖‖f2(s)‖∆s

+

∫ +∞

t

‖X (t)(I − P )X−1(σ(s))‖‖f2(s)‖∆s.

By the exponential dichotomy, we obtain

‖x2(t)‖ ≤
∫ t

t0

Ke	γ(t, σ(s))‖f2(s)‖∆s+

∫ +∞

t

Ke	γ(σ(s), t)‖f2(s)‖∆s,

which implies that

(4.3) lim
t→+∞

‖x2(t)‖ ≤ lim
t→+∞

∫ t

t0

Ke	γ(t, σ(s))‖f2(s)‖∆s.

Using the fact that lim
t→+∞

‖f2(t)‖ = 0, it follows that given ε > 0, there exists

a T sufficiently large such that for every t > T , we get ‖f2(t)‖ < ε. Then, we

have

lim
t→+∞

∫ t

t0

Ke	γ(t, σ(s))‖f2(s)‖∆s

= lim
t→+∞

[ ∫ T

t0

Ke	γ(t, σ(s))‖f2(s)‖∆s+

∫ t

T

Ke	γ(t, σ(s))‖f2(s)‖∆s
]

≤ lim
t→+∞

K[e	γ(t, T )− e	γ(t, t0)]M

| 	 γ|
+ lim
t→+∞

ε
K[e	γ(t, t)− e	γ(t, T )]

| 	 γ|
≤ εK

| 	 γ|
,

by Theorems 2.15 and 3.14 and by Lemmas 2.16 and 2.17, whereM= sup
t∈T+

‖f2(t)‖.

Since ε > 0 is arbitrary, we obtain

lim
t→+∞

∫ t

t0

Ke	γ(t, σ(s))‖f2(s)‖∆s = 0.

Therefore, by inequality (4.3), we get lim
t→+∞

‖x2(t)‖ = 0 and the result follows

as well. �

Remark 4.2. It is clear that the previous theorem remains valid for linear

nabla dynamic equations on time scales. In other words, one can prove analo-

gously that the nabla dynamic equation

x∇(t) = A(t)x(t) + f(t),
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where A : T → Rn×n and f : T+ → Rn, has an asymptotically almost automor-

phic solution on T+, under similar conditions to the ones presented in Theo-

rem 4.1.

5. Asymptotically almost automorphic solutions

of semilinear dynamic equations on time scales

In this section, consider the following semilinear dynamic equation

(5.1) x∆(t) = A(t)x(t) + f(t, x)

where A : T→ Rn×n, f : T×Rn → Rn and its associated homogeneous equation

(5.2) x∆(t) = A(t)x(t).

In what follows, we present a result which ensures that if (5.1) has an asymp-

totically almost automorphic solution on T+, then (5.1) has also an almost au-

tomorphic solution on T. Its proof is inspired in [17, Theorem 5.1.1].

Theorem 5.1. Let T be invariant under translations and f ∈ Crd(T×Rn,Rn)

be almost automorphic on time scales with respect to the first variable. Assume

A ∈ R(T,Rn×n) is an almost automorphic matrix function on time scales. Sup-

pose also the following conditions are fullfiled :

(a) There exists a constant L > 0 such that

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖ for every x, y ∈ Rn and t ∈ T.

(b) The equation (5.1) possesses an asymptotically almost automorphic so-

lution x(t) on T+, which the principal term of x(t) is ∆-differentiable

and the corrective term of x(t) is ∆-differentiable and is uniformly con-

tinuous on T+.

Then the principal term of x(t) is also an almost automorphic solution of (5.1)

on T+.

Proof. Let x(t) be an asymptotically almost automorphic solution of (5.1).

Then, we get

x(t) = x1(t) + x2(t), t ∈ T+,

where x1 and x2 are its principal and corrective terms, respectively. Since x(t)

is a solution of (5.1), we obtain

(5.3) x∆(t) = A(t)[x1(t) + x2(t)] + f(t, x1(t)) + (f(t, x(t))− f(t, x1(t)))

for each t ∈ T+. Notice that the function F : T→ X defined by F (t) = f(t, x1(t))

is an almost automorphic function (see [29, Theorem 3.19]). Moreover, A(t)x1(t)

is an almost automorphic function, since it is the product of two almost auto-

morphic functions (see [29, Theorem 3.17]). Thus, A(t)x1(t) + f(t, x1(t)) is an

almost automorphic function.
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On the other hand, the function H : T+ → X defined by

H(t) = f(t, x(t))− f(t, x1(t))

satisfies

‖f(t, x(t))− f(t, x1(t))‖ ≤ L‖x(t)− x1(t)‖ = L‖x2(t)‖.
Therefore,

lim
t→∞

‖f(t, x(t))− f(t, x1(t))‖ ≤ lim
t→∞

L‖x2(t)‖ = 0,

which implies that

lim
t→∞

‖f(t, x(t))− f(t, x1(t))‖ = 0.

Also

lim
t→∞

‖A(t)x2(t)‖ ≤ lim
t→∞

Ã‖x2(t)‖ = 0,

where Ã = sup
t∈T
‖A(t)‖. By (5.3), it is clear that x∆(t) is asymptotically almost

automorphic function on time scales. On the other hand, we have

(5.4) x∆(t) = x∆
1 (t) + x∆

2 (t), t ∈ T+.

Therefore, using the fact that x∆
1 is almost automorphic (Theorem 3.16) and by

equations (5.3), (5.4) and by the uniqueness of the decomposition of an asymp-

totically almost automorphic function, we obtain

x∆
1 (t) = A(t)x1(t) + f(t, x1(t))

for every t ∈ T+. Then, we get

x∆
2 (t) = A(t)x2(t) + (f(t, x(t))− f(t, x1(t)))

and by the properties proved before, it follows that

lim
t→∞

‖x∆
2 (t)‖ = 0.

Therefore, the theorem is proved. �

Remark 5.2. It is clear that the previous theorem remains valid for linear

nabla dynamic equations on time scales. In other words, one can prove analo-

gously that if the nabla dynamic equation

(5.5) x∇(t) = A(t)x(t) + f(t, x(t)),

where A : T → Rn×n and f : T × Rn → Rn, possesses an asymptotically al-

most automorphic solution x(t) on T+, then if the principal term of x(t) is

∇-differentiable and the corrective term of x(t) is ∇-differentiable and uniformly

continuous on T+, then the principal term of x(t) is an almost automorphic

solution of (5.5) on T.

Now, we introduce a definition of solution of (5.1) in a strict sense. Here, we

will restrict ourselves for this concept of solution for (5.1).



76 C. Lizama — J.G. Mesquita

Definition 5.3. We say that x : T → Rn is a solution of (5.1) if x satisfies

the following equation

(5.6) x(t) =

∫ t

−∞
X (t)PX−1(σ(s))f(s, x(s))∆s

−
∫ +∞

t

X (t)(I − P )X−1(σ(s))f(s, x(s))∆s,

where X is the fundamental matrix of (5.2).

It is clear from [29, Remark 6.2] that the previous definition makes sense.

In what follows, we prove our main result of this section.

Theorem 5.4. Let T be invariant under translations and f ∈ Crd(T×Rn,Rn)

be almost automorphic with respect to the first variable. Assume that A ∈
R(T,Rn×n) is almost automorphic and nonsingular matrix function, the sets

{A−1(t)}t∈T and {(I + µ(t)A(t))−1}t∈T are bounded. Suppose also the equa-

tion (5.2) admits an exponential dichotomy on T with positive constants K and

γ and there exists a constant 0 < L < γ/(2K(2 + µ̃γ)) such that

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖, for every x, y ∈ Rn and t ∈ T,

where µ̃ = sup
t∈T
‖µ(t)‖. Then the system (5.1) has a unique solution which is

asymptotically almost automorphic on T+.

Proof. Let t0 ∈ T. Define an operator T : AAA(T, X) → AAA(T, X) as

follows

(Tx)(t) =

∫ t

t0

X (t)PX−1(σ(s))f(s, x(s))∆s

−
∫ +∞

t

X (t)(I − P )X−1(σ(s))f(s, x(s))∆s.

Let us prove that T is well-defined. Take x ∈ AAA(T,Rn), we can rewrite

x(t) = x1(t) + x2(t), where x1 ∈ AA(T, X) and x2 is a continuous function

which satisfies

(5.7) lim
t→∞

‖x2(t)‖ = 0.

Therefore, we get

(Tx)(t) =

∫ t

t0

X (t)PX−1(σ(s))[f(s, x(s))− f(s, x1(s))]∆s

+

∫ t

t0

X (t)PX−1(σ(s))f(s, x1(s))∆s
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−
∫ +∞

t

X (t)(I − P )X−1(σ(s))f(s, x1(s))∆s

−
∫ +∞

t

X (t)(I − P )X−1(σ(s))[f(s, x(s))− f(s, x1(s))]∆s.

Since x1 is almost automorphic, it is not difficult to show that∫ t

t0

X (t)PX−1(σ(s))f(s, x1(s))∆s−
∫ +∞

t

X (t)(I − P )X−1(σ(s))f(s, x1(s))∆s

is almost automorphic. It is only to use the similar arguments than the ones

found in the proof of [29, Theorem 6.3]. It remains to prove that

lim
t→+∞

∥∥∥∥∫ t

t0

X (t)PX−1(σ(s))[f(s, x(s))− f(s, x1(s))]∆s

−
∫ +∞

t

X (t)(I − P )X−1(σ(s))[f(s, x(s))− f(s, x1(s))]∆s

∥∥∥∥ = 0.

Define the following function

U(t) :=

∫ t

t0

X (t)PX−1(σ(s))[f(s, x(s))− f(s, x1(s))]∆s

−
∫ +∞

t

X (t)(I − P )X−1(σ(s))[f(s, x(s))− f(s, x1(s))]∆s.

By the exponential dichotomy and the Lipschitz condition, we have

‖U(t)‖ ≤
∫ t

t0

Ke	γ(t, σ(s))L‖x2(s)‖∆s+

∫ +∞

t

Ke	γ(t, σ(s))L‖x2(s)‖∆s.

Since x2(t) is continuous and satisfies (5.7), we obtain that given ε > 0, there

exists T̃ sufficiently large such that for t > T̃ , we get ‖x2(t)‖ < ε, and also, by

Theorem 3.14, x2(t) is a bounded function. Thus, we have for t > T̃

‖U(t)‖ ≤
∫ T̃

t0

Ke	γ(t, σ(s))L‖x2(s)‖∆s+

∫ t

T̃

Ke	γ(t, σ(s))L‖x2(s)‖∆s

<
KL[e	γ(t, T̃ )− e	γ(t, t0)]M

| 	 γ|
+ ε

KL[e	γ(t, t)− e	γ(t, T̃ )]

| 	 γ|
,

where M = sup
t∈T
‖x2(t)‖. Therefore, we obtain

lim
t→+∞

‖U(t)‖ ≤ lim
t→∞

KL[e	γ(t, T̃ )− e	γ(t, t0)]M

| 	 γ|

+ ε lim
t→∞

KL[e	γ(t, t)− e	γ(t, T̃ )]

| 	 γ|
= ε

KL

| 	 γ|
by Lemmas 2.16 and 2.17. Since ε > 0 is arbitrary, we obtain that

lim
t→+∞

‖U(t)‖ = 0.
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Thus, T is well-defined. It remains to prove that T is a contraction. Let z, y ∈
AAA(T,Rn). Then, we get

‖Tz − Ty‖ =

∥∥∥∥∫ t

t0

X (t)PX−1(σ(s))[f(s, z)− f(s, y)]∆s

−
∫ +∞

t

X (t)(I − P )X−1(σ(s))[f(s, z)− f(s, y)]∆s

∥∥∥∥
≤
∫ t

t0

Ke	γ(t, σ(s))L‖z − y‖∆s+

∫ +∞

t

Ke	γ(σ(s), t)L‖z − y‖∆s

≤ 1

| 	 γ|
[
Ke	γ(t, t)−Ke	γ(t, t0)

]
L‖z − y‖∞+

∫ +∞

t

Keγ(t, σ(s))L‖z − y‖∆s

≤ 1

| 	 γ|
[
K −Ke	γ(t, t0)

]
L‖z − y‖∞ +

1

γ
[K −Keγ(t,+∞)]L‖z − y‖∞,

by Theorem 2.15 and by the properties of the generalized exponential function.

Therefore, we obtain

‖Tz − Ty‖ ≤ 1

γ/(1 + µ̃γ)

[
K −Ke	γ(t, t0)

]
L‖z − y‖∞

+
1

γ

[
K −Keγ(t,+∞)

]
L‖z − y‖∞

≤ 1 + µ̃γ

γ

[
|K|+ |Ke	γ(t, t0)|

]
L‖z − y‖∞ +

1

γ
KL‖z − y‖∞

≤L‖z − y‖∞
(

2K(1 + µ̃γ)

γ
+
K

γ

)
≤ L

(
2K(2 + µ̃γ)

γ

)
‖z − y‖∞

by Lemmas 2.16 and 2.17. By hypothesis, we obtain that

β := L

(
2K(2 + µ̃γ)

γ

)
< 1,

which implies that T is a contraction. Thus, by Banach Fixed Point Theorem,

T has a unique fixed point. By the definition of T and Definition 5.3, we obtain

that the equation (5.1) has a unique solution which belongs to AAA(T,Rn). �
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Departamento de Matemática y Ciencia de la Computación

Las Sophoras 173
Estación Central, Santiago, CHILE

E-mail address: carlos.lizama@usach.cl

Jaqueline G. Mesquita

Universidade de Braśılia
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