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POSITIVE LEAST ENERGY SOLUTIONS

FOR COUPLED NONLINEAR CHOQUARD EQUATIONS

WITH HARDY–LITTLEWOOD–SOBOLEV

CRITICAL EXPONENT

Song You — Qingxuan Wang — Peihao Zhao

Abstract. In this paper, we study the existence and nonexistence of pos-

itive least energy solutions of the following coupled nonlinear Schrödinger

equations with Choquard type nonlinearities:

−∆u+ ν1u = µ1

(
1

|x|4
∗ u2

)
u+ β

(
1

|x|4
∗ v2

)
u, x ∈ Ω,

−∆v + ν2v = µ2

(
1

|x|4
∗ v2

)
v + β

(
1

|x|4
∗ u2

)
v, x ∈ Ω,

u, v ≥ 0 in Ω, u = v = 0 on ∂Ω.

Here Ω ⊂ RN is a smooth bounded domain, −λ1(Ω) < ν1, ν2 < 0, λ1(Ω)

is the first eigenvalue of (−∆, H1
0 (Ω)), µ1, µ2 > 0 and β 6= 0 is a coupling

constant. We show that the critical nonlocal elliptic system has a positive

least energy solution under appropriate conditions on parameters via varia-

tional methods. For the case in which ν1 = ν2, we obtain the classification
of the positive least energy solutions. Moreover, the asymptotic behaviors

of the positive least energy solutions as β → 0 are studied.
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1. Introduction

In this paper, we consider solitary wave solutions of the time-dependent

coupled nonlinear Schrödinger equations with Choquard type nonlinearities in

the following form (see [16], [37]):

(1.1)



−i ∂
∂t

Φ1 = ∆Φ1 + µ1

(
V (x) ∗ |Φ1|2

)
Φ1 + β

(
V (x) ∗ |Φ2|2

)
Φ1,

x ∈ Ω, t > 0,

−i ∂
∂t

Φ2 = ∆Φ2 + µ2

(
V (x) ∗ |Φ2|2

)
Φ2 + β

(
V (x) ∗ |Φ1|2

)
Φ2,

x ∈ Ω, t > 0,

Φj = Φj(x, t) ∈ C, j = 1, 2,

Φj(x, t) = 0, x ∈ ∂Ω, t > 0, j = 1, 2,

where Ω = RN or Ω ⊂ RN is a smooth bounded domain, i is the imaginary

unit, µ1, µ2 > 0, and β 6= 0 is a coupling constant which describes the scattering

length of the attractive or repulsive interaction, V (x) is the response function

which possesses information on the mutual interaction between the particles.

The problem (1.1) appears in many physical problem, especially in nonlinear

optics. Physically, the solution Φj denotes the j-th component of the beam in

Kerr-like photorefractive media (see [24], [25]). The positive constant µj indicate

the self-focusing in the j-th components of the beam. The coupling constant β

is the interaction between the two components of the beam. The problem (1.1)

also arises in the basic quantum chemistry model of small number of electrons

interacting with static nucleii which can be approximated by Hartree or Hartree–

Fock minimization problems (see [17], [21], [15]).

To obtain solitary wave solutions of system (1.1), we set Φ1(x, t) = eiν1tu(x)

and Φ2(x, t) = eiν2tv(x). Then system (1.1) is reduced to the following elliptic

system

(1.2)


−∆u+ ν1u = µ1

(
V (x) ∗ u2

)
u+ β

(
V (x) ∗ v2

)
u, x ∈ Ω,

−∆v + ν2v = µ2

(
V (x) ∗ v2

)
v + β

(
V (x) ∗ u2

)
v, x ∈ Ω,

u, v ≥ 0 in Ω, u = v = 0 on ∂Ω.

If the response function is a Dirac-delta function, i.e. V (x) = δ(x), then (1.2)

turns to be the following semilinear elliptic system with local nonlinearities:

(1.3)


−∆u+ ν1u = µ1u

3 + βuv2, x ∈ Ω,

−∆v + ν2v = µ2v
3 + βvu2, x ∈ Ω,

u, v ≥ 0 in Ω, u = v = 0 on ∂Ω.

Here, Ω = RN or Ω ⊂ RN is a smooth bounded domain, µ1, µ2 > 0 and β 6= 0

is a coupling constant. The existence and multiplicity of solutions to (1.3) have
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been the subject of extensive mathematical studies in recent years, for example,

[2], [3], [5]–[11], [19], [20], [22], [23], [28]–[30], [35], and references therein.

In this paper we consider the system (1.2) with a response function of Riesz

potential, i.e. V (x) = |x|−µ, then (1.2) is reduced to the following nonlocal

elliptic system:

(1.4)



−∆u+ ν1u = µ1

(
1

|x|µ
∗ u2

)
u+ β

(
1

|x|µ
∗ v2

)
u, x ∈ Ω,

−∆v + ν2v = µ2

(
1

|x|µ
∗ v2

)
v + β

(
1

|x|µ
∗ u2

)
v, x ∈ Ω,

u, v ≥ 0 in Ω, u = v = 0 on ∂Ω.

Here, Ω = RN or Ω ⊂ RN is a smooth bounded domain, µ ∈ (0, N) ∩ (0, 4],

µ1, µ2 > 0 and β 6= 0 is a coupling constant.

Recently, Wang [33] proved the existence of multiple nontrivial solutions

of (1.4) with perturbations. In [34] Wang and Shi studied the existence of positive

ground state solutions and various qualitative properties of ground state solutions

are shown for system (1.4) with N = 3, µ = 1. The paper [38] proved the

existence and nonexistence of positive least energy solutions for system (1.4)

with N ≥ 3, 0 < µ < 4.

Note that the papers mentioned above deal with the subcritical case. In the

present paper we investigate system (1.4) for the critical case with N ≥ 5, µ = 4,

that is

(1.5)



−∆u+ ν1u = µ1

(
1

|x|4
∗ u2)u+ β

(
1

|x|4
∗ v2

)
u, x ∈ Ω,

−∆v + ν2v = µ2

(
1

|x|4
∗ v2

)
v + β

(
1

|x|4
∗ u2

)
v, x ∈ Ω,

u, v ≥ 0 in Ω, u = v = 0 on ∂Ω,

where Ω ⊂ RN is a smooth bounded domain. Recently, Chen and Zou [8] show

that system (1.3) has a positive least energy solution for negative β, positive

small β and positive large β when N = 4 in the critical case. Based on the

above facts, a nature question is whether the critical nonlocal system (1.5) has

a nontrivial least energy solution. The present paper is devoted to this aspect

and partially answers this question.

The starting point of the variational approach to the problem (1.5) is the

following classical Hardy–Littlewood–Sobolev inequality (see [18]), which leads

to a new type of critical problem with nonlocal nonlinearities driven by Riesz

potential.

Proposition 1.1. Let p, r > 1 and 0 < µ < N with 1/p + µ/N + 1/r = 2,

f ∈ Lp(RN ) and h ∈ Lr(RN ). There exists a sharp constant C(p, r, µ,N), such
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that

(1.6)

∣∣∣∣∫
RN

∫
RN

f(x)h(y)

|x− y|µ
dx dy

∣∣∣∣ ≤ C(p, r, µ,N)|f |p|h|r,

where | · |q denotes the Lq(RN )-norm for q ∈ [1,∞]. If p = r = 2N/(2N − µ),

then

(1.7) C(p, r, µ,N) = C(N,µ) = πµ/2
Γ(N/2− µ/2)

Γ(N − µ/2)

{
Γ(N/2)

Γ(N)

}−1+µ/N

.

In this case there is equality in (1.6) if and only if f ≡ (const.)h and

h(x) = A
(
γ2 + |x− a|2

)−(2N−µ)/2

for some A ∈ C, 0 6= γ ∈ R and a ∈ RN .

Notice that, by the Hardy–Littlewood–Sobolev inequality, the integral∫
RN

∫
RN

|u(x)|q|u(y)|q

|x− y|µ
dx dy

is well defined if |u|q ∈ Lt(RN ) for some t > 1 satisfying 2/t+µ/N = 2. Thus, for

u ∈ H1(RN ), by Sobolev embedding theorems, we see that 2 ≤ tq ≤ 2N/(N−2),

that is
2N − µ
N

≤ q ≤ 2N − µ
N − 2

.

Here, (2N−µ)/N is called the lower critical exponent and 2∗µ=(2N−µ)/(N−2)

is the upper critical exponent due to the Hardy–Littlewood–Sobolev inequality.

It is easy to see that 2∗µ = 2 when µ = 4. In this sense we can call the problem

(1.5) a critical nonlocal elliptic system.

Assume that f, g ∈ H1
0 (Ω), as [18] we define

(1.8) D(f, g) :=

∫
Ω

∫
Ω

f(x)g(y)

|x− y|4
dx dy.

The following lemma is important for considering (1.5) and the proof is given

in [18].

Lemma 1.2. If D(|f |, |f |) < ∞, then D(f, f) ≥ 0, there is equality if and

only if f ≡ 0. Moreover, if D(|g|, |g|) <∞, then

(1.9) |D(f, g)|2 ≤ D(f, f)D(g, g).

Suppose that u ∈ H1
0 (Ω), then by Proposition 1.1 we have

(1.10) D
(
u2, u2

)
≤ C|u2|2N/(N−2) = C|u|42N/(N−2).

For any β ∈ R the system (1.5) possesses a trivial solution (0, 0) and a pair of

semi-trivial solutions with one component being zero. These solutions have the

form (ω1, 0) or (0, ω2), where ωi is the positive least energy solution of (see [12])

(1.11) −∆u+ λu = µ

(
1

|x|4
∗ u2

)
u, u ∈ H1

0 (Ω),
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with (λ, µ) = (ν1, µ1) for ω1, and (λ, µ) = (ν2, µ2) for ω2 respectively. The

existence of solutions to (1.11) has received great interest recently, see [26], [32],

[12]–[14], [1] and references therein.

We look for solutions of (1.5) which are different from the preceding ones.

A solution (u, v) nontrivial if both u 6≡ 0 and v 6≡ 0. We call a nontrivial

solution (u, v) positive if both u > 0 and v > 0. We say a solution (u, v) of (1.5)

is a least energy solution if (u, v) is nontrivial and E(u, v) ≤ E(φ, ψ) for any

other nontrivial solution (φ, ψ) of (1.5). Define H := H1
0 (Ω) × H1

0 (Ω). It is

well known that solutions of (1.5) correspond to the critical points of the C1

functional E : H → R given by

(1.12) E(u, v) =
1

2

∫
Ω

(
|∇u|2 + ν1u

2 + |∇v|2 + ν2v
2
)

− 1

4

∫
Ω

µ1

(
1

|x|4
∗ u2

)
u2 + 2β

(
1

|x|4
∗ u2

)
v2 + µ2

(
1

|x|4
∗ v2

)
v2.

From (1.9) and (1.10), we infer that E is well defined in H, and so we have to

assume that N ≥ 5 in this paper.

As in [19], we define

N =

{
(u, v) ∈ H, u 6≡ 0, v 6≡ 0,∫

Ω

|∇u|2 + ν1u
2 =

∫
Ω

µ1

(
1

|x|4
∗ u2

)
u2 + β

(
1

|x|4
∗ v2

)
u2,∫

Ω

|∇v|2 + ν2v
2 =

∫
Ω

µ2

(
1

|x|4
∗ v2

)
v2 + β

(
1

|x|4
∗ v2

)
u2

}
.

Then any nontrivial solution of (1.5) belongs to N . We set

(1.13) A := inf
(u,v)∈N

E(u, v) = inf
(u,v)∈N

1

4

∫
Ω

|∇u|2 + ν1u
2 + |∇v|2 + ν2v

2.

Now, we list our main results. First we consider the special case −λ1(Ω) <

ν1 = ν2 = ν < 0, where λ1(Ω) is the first eigenvalue of −∆ with Dirichlet

boundary condition, with corresponding eigenfunction φ > 0. Let ω be any

a positive least energy solution of (1.11) with (λ, µ) = (ν, 1). Then we have the

following two theorems.

Theorem 1.3. Assume that −λ1(Ω) < ν1 = ν2 = ν < 0 and N ≥ 5.

(a) If 0 < β < min{µ1, µ2} or β > max{µ1, µ2}, then A is attained by(√
π1ω,

√
π2ω

)
, where π1, π2 > 0 satisfying

(1.14)

µ1π1 + βπ2 = 1,

βπ1 + µ2π2 = 1.

Therefore,
(√
π1ω,

√
π2ω

)
is a positive least energy solution of (1.5).
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(b) If β ∈ [min{µ1, µ2},max{µ1, µ2}] and µ1 6= µ2, then (1.5) does not have

any nontrivial nonnegative solution.

Moreover, we obtain the classification of the positive least energy solutions.

Theorem 1.4. Assume that assumptions in Theorem 1.3 hold, and let 0 <

β < min{µ1, µ2} or β > max{µ1, µ2}. Suppose that (u, v) is any a nontriv-

ial least energy solution of (1.5), then (u, v) =
(√
π1ω,

√
π2ω

)
, where (π1, π2)

satisfies (1.14).

We mention that by Lemma 1.2 and (3.5), the proofs of Theorema 1.3 and 1.4

are similar to that of Theorems 1.3 and 1.4 in [38] respectively, and so we omit it.

Now, let us consider the general case −λ1(Ω) < ν1, ν2 < 0. Without loss

of generality, we may assume that ν2 ≤ ν1. Our second result is more general,

where we also deal with the case in which β < 0.

Theorem 1.5. Assume that −λ1(Ω) < ν2 ≤ ν1 < 0 and N ≥ 5.

(a) There exists β > 0, such that (1.5) has a positive least energy solution

(u, v) with E(u, v) = A for any β ∈ (−β, 0).

(b) There exists β0 ∈ (0,min{µ1, µ2}), such that (1.5) has a positive least

energy solution (u, v) with E(u, v) = A for any β ∈ (0, β0).

(c) There exists β1 ∈ (max{µ1, µ2},+∞), such that (1.5) has a positive least

energy solution (u, v) with E(u, v) = A for any β ∈ (β1,+∞).

(d) If µ1 ≤ β ≤ µ2 and µ1 < µ2, then (1.5) does not have any nontrivial

nonnegative solution.

In fact, we can give an accurate definition of β, β0 in Lemma 3.1 and β1 in

Lemma 3.4, but do not give it here in order to avoid introducing heavy notations

at this stage.

We should point out that the loss of compactness due to the Hardy–Little-

wood–Sobolev upper critical exponent makes it difficult to obtain the existence

of nontrivial solutions. In order to obtain the existence of nontrivial least energy

solutions, we need to estimate the least energy and give an accurate upper bound

of the least energy; see Lemmas 3.1 and 3.4. The idea of the proof mainly follows

from [8]. However, because of the nonlocal nature of the critical Choquard

equations where the convolution type nonlinearities are totally determined by

the behavior on the domain Ω, the method in [8] cannot be used directly, and

some new techniques are needed for our proof (see Section 3).

Remark 1.6. Here, we only obtain existence of least energy solution for

β ∈ (−β, 0) due to the nonlocal nature of the critical Choquard equations. We

do not know whether system (1.5) has a least energy solution for β ∈ (−∞,−β].

Remark 1.7. If Ω = RN and (u, v) is any a solution of (1.5), then by the

Pohožaev Identity (see Appendix) and E′(u, v)(u, v) = 0, it is easy to get that



Coupled Nonlinear Choquard Equations 629∫
RN ν1u

2 + ν2v
2 = 0, where E is a related functional defined in (1.12). This

implies that (u, v) ≡ (0, 0) if ν1ν2 > 0. Therefore, in the sequel we assume that

Ω ⊂ RN is a smooth bounded domain.

Remark 1.8. If Ω is star-shaped with respect to some x1 and ν1, ν2 ≥ 0,

then using the Pohožaev Identity (see Appendix) and E′(u, v)(u, v) = 0, it is

easy to see that

0 ≤
∫
∂Ω

(
|∇u|2 + |∇v|2

)
((x− x1) · n) = −2

∫
Ω

ν1u
2 + ν2v

2 ≤ 0,

where n denotes the unit outward normal to ∂Ω. This yields that (u, v) ≡ (0, 0).

This is one reason that we need the assumption ν1, ν2 < 0. Moreover, this

assumption is also required in the proof of Lemma 3.1 in section 3. On the other

hand, assume that β > 0. We multiply the equation for u in (1.5) by the first

eigenfunction φ and integrate over Ω, which yields

(ν1 + λ1(Ω))

∫
Ω

uφ =

∫
Ω

(
µ1

(
1

|x|4
∗ u2

)
uφ+ β

(
1

|x|4
∗ v2

)
uφ

)
> 0.

Thus, we have to assume that ν1, ν2 > −λ1(Ω) if we want to obtain nontrivial

nonnegative solutions of (1.5).

Finally, we study the asymptotic behavior of the positive least energy solu-

tions in the case β → 0. Then we have the following result.

Theorem 1.9. Assume that −λ1(Ω) < ν2 ≤ ν1 < 0 and N ≥ 5. Let βn,

n ∈ N, be a sequence with 0 < |βn| < min{β, β0}, βn → 0 as n → +∞, and

(un, vn) be the positive least energy solutions of (1.5) with β = βn which exists

by Theorem 1.5. Then, passing to a subsequence, (un, vn) → (û, v̂) strongly in

H1
0 (Ω)×H1

0 (Ω) as n→ +∞, where û is a positive least energy solution of

−∆u+ ν1u = µ1

(
1

|x|4
∗ u2

)
u, u ∈ H1

0 (Ω),

and v̂ is a positive least energy solution of

−∆v + ν2v = µ2

(
1

|x|4
∗ v2

)
v, v ∈ H1

0 (Ω).

The paper is organized as follows. In Section 2, we consider the limit problem.

In Section 3, we give the proof of Theorem 1.5. In Section 4, we investigate the

the asymptotic behavior of the positive least energy solutions. In Section 5, we

establish the Pohožaev type identity.

We give some notations here. Throughout this paper, we denote the norm

of Lq by

|u|q =

(∫
Ω

|u|q dx
)1/q

,
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the norm of H1
0 (Ω) by

‖u‖ = |∇u|2,

the norm of H by

‖(u, v)‖2 = ‖u‖2 + ‖v‖2

and positive constants (possibly different in different places) by C, C1, C2.

2. The limit problem

First of all, by [12] we know

(2.1)

∫
RN
|∇u|2 dx ≥ SH,L

(∫
RN

∫
RN

u2(x)u2(y)

|x− y|4
dx dy

)1/2

,

for all u ∈ D1,2(RN ), where SH,L denotes the best constant defined by

(2.2) SH,L := inf
u∈D1,2(RN )\{0}

∫
RN
|∇u|2 dx(∫

RN

∫
RN

u2(x)u2(y)

|x− y|4
dx dy

)1/2
,

and D1,2(RN ) :=
{
u ∈ L2∗(RN ) : |∇u| ∈ L2(RN )

}
with norm

‖u‖D1,2 :=

(∫
RN
|∇u|2 dx

)1/2

.

Proposition 2.1 (see [12]). The constant SH,L defined in (2.2) is achieved

if and only if

u(x) = C

(
b

b2 + |x− a|2

)(N−2)/2

,

where C > 0 is a fixed constant, a ∈ RN and b ∈ (0,∞) are parameters. What’s

more,

SH,L =
S

C(N, 4)1/2
,

where C( · , · ) is defined in (1.7) and S is the best Sobolev constant.

Let

U(x) :=
[N(N − 2)](N−2)/4

(1 + |x|2)(N−2)/2

be a minimizer for S (see [36]), then

(2.3) Ũ(x) = S(4−N)/4C(N, 4)−1/2 [N(N − 2)](N−2)/4

(1 + |x|2)(N−2)/2

is the unique minimizer for SH,L and satisfies

−∆u =

(
1

|x|4
∗ u2

)
u, in RN ,
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with

(2.4)

∫
RN

∣∣∇Ũ ∣∣2 dx =

∫
RN

∫
RN

∣∣Ũ(x)
∣∣2∣∣Ũ(y)

∣∣2
|x− y|4

dx dy = S2
H,L.

Moreover, for every open subset Ω of RN ,

SH,L(Ω) := inf
u∈D1,2

0 (Ω)\{0}

∫
Ω

|∇u|2 dx(∫
Ω

∫
Ω

|u(x)|2|u(y)|2

|x− y|4
dx dy

)1/2
,

and SH,L(Ω) is never achieved except Ω = RN (see [12]).

Since the nonlinearity and the coupling terms are both critical in (1.5), the

existence of nontrivial least energy solutions to (1.5) depends heavily on the least

energy of the following limit system

(2.5)



−∆u = µ1

(
1

|x|4
∗ u2

)
u+ β

(
1

|x|4
∗ v2

)
u, x ∈ RN ,

−∆v = µ2

(
1

|x|4
∗ v2

)
v + β

(
1

|x|4
∗ u2

)
v, x ∈ RN ,

u, v ∈ D1,2(RN ).

Note that (2.5) has semi-trivial solutions
(
µ
−1/2
1 Ũ , 0

)
and

(
0, µ
−1/2
2 Ũ

)
. Here, we

are only interested in nontrivial solutions of (2.5).

Define D := D1,2(RN )×D1,2(RN ) and a C1 functional I : D → R given by

I(u, v) =
1

2

∫
RN
|∇u|2 + |∇v|2

− 1

4

∫
RN

µ1

(
1

|x|4
∗ u2

)
u2 + 2β

(
1

|x|4
∗ u2

)
v2 + µ2

(
1

|x|4
∗ v2

)
v2.

As in [19], we consider the set

M =

{
(u, v) ∈ D, u 6= 0, v 6= 0,(2.6) ∫

RN
|∇u|2 =

∫
RN

µ1

(
1

|x|4
∗ u2

)
u2 + β

(
1

|x|4
∗ u2

)
v2,∫

RN
|∇v|2 =

∫
RN

µ2

(
1

|x|4
∗ v2

)
v2 + β

(
1

|x|4
∗ u2

)
v2

}
.

Then any nontrivial solution of (2.5) belongs to M. We set

(2.7) A0 := inf
(u,v)∈M

I(u, v) = inf
(u,v)∈M

1

4

∫
RN
|∇u|2 + |∇v|2.

For any (u, v) ∈M, by (2.6) and Lemma 1.2, it is standard to see that

(2.8) A0 = inf
(u,v)∈M

1

4

∫
RN
|∇u|2 + |∇v|2 ≥ C > 0.



632 S. You — Q. Wang — P. Zhao

Then we have the following theorem, which plays an important role in the proof

of Theorem 1.5.

Theorem 2.2.

(a) If β < 0, then A0 is not attained and A0 =
(
µ−1

1 + µ−1
2

)
S2
H,L/4.

(b) If 0 < β < min{µ1, µ2} or β > max{µ1, µ2}, then A0 is attained by(√
π1 Ũ ,

√
π2 Ũ

)
and A0 = (π1 + π2)S2

H,L/4, where π1, π2 > 0 is defined

in (1.14). Therefore,
(√
π1 Ũ ,

√
π2 Ũ

)
is a positive least energy solution

of (2.5).

(c) If β ∈ [min{µ1, µ2},max{µ1, µ2}] and µ1 6= µ2, then (2.5) does not have

a nontrivial nonnegative solution.

Before proceeding, repeating the proof of Lemma 2.3 in [34], we have

Proposition 2.3. If A0 (resp. A) is attained by a couple (u, v) ∈ M (resp.

(u, v) ∈ N ), then this couple is a critical point of I (resp. E), provided −∞ <

β <
√
µ1µ2.

Now, we turn to prove Theorem 2.2. Similarly to the proof of Theorem 1.3, we

see that (c) in Theorem 2.2 holds. It remains to prove (a) and (b) of Theorem 2.2.

Proof of (a) in Theorem 2.2. By (2.3) we see that ωµi := µ
−1/2
i Ũ satisfies

equation

−∆u = µi

(
1

|x|4
∗ u2

)
u in RN .

Let e1 = (1, . . . , 0) ∈ RN and

(u1(x), vε(x)) = (ωµ1(x), ωµ2(x+ εe1)).

Then vε ⇀ 0 weakly in D1,2(RN ) and so v2
ε ⇀ 0 weakly in LN/(N−2)(RN ) as

ε→ +∞. Combining these with(
1

|x|4
∗ u2

1

)
∈ LN/2(RN ),

we know

lim
ε→+∞

∫
RN

(
1

|x|4
∗ u2

1

)
v2
ε = 0.

Therefore, for ε > 0 sufficiently large, the equations

∫
RN
|∇u1|2 = µ1

∫
RN

(
1

|x|4
∗ u2

1

)
u2

1

= t1,εµ1

∫
RN

(
1

|x|4
∗ u2

1

)
u2

1 + t2,εβ

∫
RN

(
1

|x|4
∗ u2

1

)
v2
ε ,∫

RN
|∇vε|2 = µ1

∫
RN

(
1

|x|4
∗ v2

ε

)
v2
ε

= t2,εµ2

∫
RN

(
1

|x|4
∗ v2

ε

)
v2
ε + t1,εβ

∫
RN

(
1

|x|4
∗ u2

1

)
v2
ε ,
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have a solution (t1,ε, t2,ε) with

lim
ε→+∞

(|t1,ε − 1|+ |t2,ε − 1|) = 0.

Noting that
(√
t1,εu1,

√
t2,εvε

)
∈M for ε sufficiently large, by (2.4), we have

A0 ≤ I
(√

t1,εu1,
√
t2,εvε

)
=

1

4

(
t1,ε

∫
RN
|∇u1|2 + t2,ε

∫
RN
|∇vε|2

)
=

1

4

(
t1,εµ

−1
1 + t2,εµ

−1
2

)
S2
H,L.

Letting ε→ +∞, we know that A0 ≤ (µ−1
1 + µ−1

2 )S2
H,L/4.

On the other hand, for any (u, v) ∈M, we see from (2.1) and β < 0 that∫
RN
|∇u|2 ≤ µ1

∫
RN

(
1

|x|4
∗ u2

)
u2 ≤ µ1S

−2
H,L

(∫
RN
|∇u|2

)2

,

and so ∫
RN
|∇u|2 ≥ µ−1

1 S2
H,L.

Similarly, ∫
RN
|∇v|2 ≥ µ−1

2 S2
H,L.

Combining these with (2.7), we get that A0 ≥ (µ−1
1 + µ−1

2 )S2
H,L/4. Therefore,

(2.9) A0 =
1

4

(
µ−1

1 + µ−1
2

)
S2
H,L.

Now, if we assume that A0 is attained by some (u, v) ∈ M, then (|u|, |v|) ∈ M
and I(|u|, |v|) = A0. By Proposition 2.3, we have (|u|, |v|) is a nontrivial solution

of (2.5). By the maximum principle, u > 0, v > 0 and so∫
RN

(
1

|x|4
∗ u2

)
v2 > 0.

Then ∫
RN
|∇u|2 < µ1

∫
RN

(
1

|x|4
∗ u2

)
u2 ≤ µ1S

−2
H,L

(∫
RN
|∇u|2

)2

.

Therefore, it is easy to see that

A0 = I(u, v) =
1

4

∫
RN
|∇u|2 + |∇v|2 > 1

4

(
µ−1

1 + µ−1
2

)
S2
H,L,

which is a contradiction. �

Proof of (b) in Theorem 2.2. Since 0 < β < min{µ1, µ2} or β >

max{µ1, µ2}, then equation (1.14) has a solution (π1, π2) satisfying π1 > 0,

π2 > 0. Apparently, we see that
(√
π1Ũ ,

√
π2Ũ

)
is a nontrivial solution of (2.5)

and

A0 ≤ I
(√
π1Ũ ,

√
π2Ũ

)
=

1

4
(π1 + π2)S2

H,L.
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Let (un, vn) ⊂ M be a minimizing sequence for A0, that is, I(un, vn) → A0.

We set

an =

(∫
RN

(
1

|x|4
∗ u2

n

)
u2
n

)1/2

, bn =

(∫
RN

(
1

|x|4
∗ v2

n

)
v2
n

)1/2

.

Then, by Lemma 1.2 and (2.1) we have

SH,Lan ≤
∫
RN
|∇un|2

=

∫
RN
µ1

(
1

|x|4
∗ u2

n

)
u2
n + β

(
1

|x|4
∗ u2

n

)
v2
n ≤ µ1a

2
n + βanbn,

SH,Lbn ≤
∫
RN
|∇vn|2

=

∫
RN

µ2

(
1

|x|4
∗ v2

n

)
v2
n + β

(
1

|x|4
∗ v2

n

)
u2
n ≤ µ2b

2
n + βanbn.

Since

I(un, vn) =
1

4

∫
RN
|∇un|2 + |∇vn|2,

we have

SH,L(an + bn) ≤ 4I(un, vn) = 4A0 + o(1) ≤ (π1 + π2)S2
H,L + o(1),

µ1an + βbn ≥ SH,L, µ2bn + βan ≥ SH,L.

By (1.14) the above three inequalities are equivalent to

(an − π1SH,L) + (bn − π2SH,L) ≤ o(1),

µ1(an − π1SH,L) + β(bn − π2SH,L) ≥ 0,

β(an − π1SH,L) + µ2(bn − π2SH,L) ≥ 0.

So an → π1SH,L and bn → π2SH,L as n→∞. Then

4A0 = lim
n→∞

4I(un, vn) ≥ lim
n→∞

SH,L(an + bn) = (π1 + π2)S2
H,L.

This yields

(2.10) A0 =
1

4
(π1 + π2)S2

H,L = I
(√
π1Ũ ,

√
π2Ũ

)
,

and so
(√
π1Ũ ,

√
π2Ũ

)
is a positive least energy solution of (2.5). �

3. Proof of Theorem 1.5

In this section, we assume that −λ1(Ω) < ν2 ≤ ν1 < 0. Multiply the equation

for u in (1.5) by v, the equation for v by u, and integrate over Ω, which yields∫
Ω

uv

[
(ν1 − ν2) + (β − µ1)

(
1

|x|4
∗ u2

)
+ (µ2 − β)

(
1

|x|4
∗ v2

)]
= 0.
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This implies that (d) of Theorem 1.5 holds. Note that

(3.1)

∫
Ω

(
|∇u|2 + νiu

2
)
≥
(
λ1(Ω) + νi
λ1(Ω)

)∫
Ω

|∇u|2, i = 1, 2.

It is easy to see that A > 0 just as (2.8). As has been pointed out in Section 1,

by [12] the problem

(3.2) −∆u+ νiu = µi

(
1

|x|4
∗ u2

)
u, u ≥ 0, u ∈ H1

0 (Ω),

has a positive least energy solution ωi ∈ C2(Ω) ∩ C(Ω) (see Appendix) with

energy

(3.3)
1

4

(
λ1(Ω) + νi
λ1(Ω)

)2

µ−1
i S2

H,L ≤ mi <
1

4
µ−1
i S2

H,L, i = 1, 2,

where

(3.4) mi :=
1

2

∫
Ω

(
|∇ωi|2 + νiω

2
i

)
− 1

4

∫
Ω

µi

(
1

|x|4
∗ ω2

i

)
ω2
i , i = 1, 2.

Moreover,

(3.5)

∫
Ω

(
|∇u|2 + νiu

2
)
≥ 2
√
mi

(∫
Ω

µi

(
1

|x|4
∗u2)u2

)1/2

, for all u ∈ H1
0 (Ω).

The following lemma is very important. In the proof, we need the assumption

ν1, ν2 < 0, and define

(3.6) β0 := min

{
µ2,

√
µ1µ2m1

m2
,

√
µ1µ2m2

m1
, µ1

ν2 + λ1(Ω)

ν1 + λ1(Ω)
,

(ν1 + λ1(Ω))(ν2 + λ1(Ω))

λ2
1(Ω)(µ−1

1 + µ−1
2 )

}
,

(3.7) β := min

 |ν2|

2C̃
(

2 +
√

4 + S2
H,L/(µ2m1)

)
|ω1|2L∞

,

|ν1|

2C̃
(

2 +
√

4 + S2
H,L/(µ1m2)

)
|ω2|2L∞

 ,

where C̃ is defined in (3.25).

Lemma 3.1. Assume that −λ1(Ω) < ν2 ≤ ν1 < 0 and N ≥ 5.

(a) If β ∈ (0, β0), then β0 ≤ min{µ1, µ2} and A < min{m1 +m2, A0}.
(b) If β ∈ (−β, 0), then

A < min

{
m1 +

1

4
µ−1

2 S2
H,L,m2 +

1

4
µ−1

1 S2
H,L, A0

}
.
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Proof. First, we prove (a) of Lemma 3.1. Define

(3.8) G(u, v) :=

µ1

∫
Ω

(
1

|x|4
∗ u2

)
u2 β

∫
Ω

(
1

|x|4
∗ u2

)
v2

β

∫
Ω

(
1

|x|4
∗ u2

)
v2 µ2

∫
Ω

(
1

|x|4
∗ v2

)
v2

 ,

when |G(u, v)| := detG(u, v) > 0, the inverse matrix of G(u, v) is

(3.9) G−1(u, v) :=
1

detG(u, v)

(
µ2D(v2, v2)) −βD(u2, v2)

−βD(u2, v2) µ1D(u2, u2)

)
,

where D( · , · ) is defined in (1.8). Since ν2 ≤ ν1, then β0 ≤ min{µ1, µ2}. It

follows from (1.9) that |G(ω1, ω2)| > 0. Note that
(√
t1ω1,

√
t2ω2

)
∈ N for some

t1, t2 > 0 is equivalent to

(3.10)

(
t1
t2

)
:= G−1(ω1, ω2)

(
µ1D

(
ω2

1 , ω
2
1

)
µ2D

(
ω2

2 , ω
2
2

))

=
1

|G(ω1, ω2)|

(
µ2D

(
ω2

2 , ω
2
2

)(
µ1D

(
ω2

1 , ω
2
1

)
− βD

(
ω2

1 , ω
2
2

))
µ1D

(
ω2

1 , ω
2
1

)(
µ2D

(
ω2

2 , ω
2
2

)
− βD

(
ω2

1 , ω
2
2

))) >

(
0

0

)
.

Meanwhile, we deduce from (1.9) and 0 < β < β0 ≤
√
µ1µ2 that

βD
(
ω2

1 , ω
2
2

)
<

√
µ1µ2

m1

m2
D1/2

(
ω2

1 , ω
2
1

)
D1/2

(
ω2

2 , ω
2
2

)
= µ1D

(
ω2

1 , ω
2
1

)
.

Similarly, when β ∈ (0, β0) we have βD
(
ω2

1 , ω
2
2

)
< µ2D

(
ω2

2 , ω
2
2

)
. Then (3.10)

holds and
(√
t1ω1,

√
t2ω2

)
∈ N . Therefore,

A ≤E
(√
t1ω1,

√
t2ω2

)
=
t1
4

∫
Ω

|∇ω1|2 + ν1ω
2
1 +

t2
4

∫
Ω

|∇ω2|2 + ν2ω
2
2

=
t1
4

∫
Ω

µ1

(
1

|x|4
∗ ω2

1

)
ω2

1 +
t2
4

∫
Ω

µ2

(
1

|x|4
∗ ω2

2

)
ω2

2

<
t1
4

∫
Ω

µ1

(
1

|x|4
∗ ω2

1

)
ω2

1 + β

(
1

|x|4
∗ ω2

1

)
ω2

2

+
t2
4

∫
Ω

µ2

(
1

|x|4
∗ ω2

2

)
ω2

2 + β

(
1

|x|4
∗ ω2

1

)
ω2

2

=
1

4

∫
Ω

|∇ω1|2 + ν1ω
2
1 +

1

4

∫
Ω

|∇ω2|2 + ν2ω
2
2 = m1 +m2.

Hence, A < m1 + m2. It remains to prove A < A0. Without loss of generality,

we may assume that 0 ∈ Ω. Then there exists δ > 0 such that {x : |x| ≤ δ} ⊂ Ω.

Let ξ ∈ C1
0 (Ω) be a nonnegative function with ξ ≡ 1 for |x| ≤ δ. Recall that

N ≥ 5 and Ũ in Proposition 2.1. For ε > 0, we define

Ũε(x) := ε(2−N)/2 Ũ

(
x

ε

)
.
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It is easy to see that∫
RN
|∇Ũε|2 = S2

H,L,

∫
RN

(
1

|x|4
∗ Ũ2

ε

)
Ũ2
ε = S2

H,L.

Define Uε := ξŨε. First we claim that there holds∫
Ω

|∇Uε| = S2
H,L +O

(
εN−2

)
,(3.11) ∫

Ω

|Uε|2 ≥ Cε2 +O
(
εN−2

)
,(3.12) ∫

Ω

(
1

|x|4
∗ U2

ε

)
U2
ε = S2

H,L +O(εN−2),(3.13)

where C is a positive constant.

By [36], it is standard to see that (3.11) and (3.12) hold. It remains to prove

(3.13). Let 0 < ε� δ. On one hand, by (2.1) we have

SH,L

(∫
Ω

(
1

|x|4
∗ U2

ε

)
U2
ε

)1/2

≤
∫

Ω

|∇Uε|2 = S2
H,L +O

(
εN−2

)
,

that is

(3.14)

∫
Ω

(
1

|x|4
∗ U2

ε

)
U2
ε ≤ S2

H,L +O
(
εN−2

)
.

On the other hand,

(3.15)

∫
Ω

(
1

|x|4
∗ U2

ε

)
U2
ε ≥

∫
Bδ

∫
Bδ

U2
ε(x)U2

ε(y)

|x− y|4
dx dy

=

∫
RN

∫
RN

Ũ2
ε (x) Ũ2

ε (y)

|x− y|4
dx dy − 2

∫
RN\Bδ

∫
Bδ

Ũ2
ε(x) Ũ2

ε (y)

|x− y|4
dx dy

−
∫
RN\Bδ

∫
RN\Bδ

Ũ2
ε(x) Ũ2

ε (y)

|x− y|4
dx dy := S2

H,L − 2I1 − I2,

where

I1 =

∫
RN\Bδ

∫
Bδ

Ũ2
ε (x) Ũ2

ε (y)

|x− y|4
dx dy, I2 =

∫
RN\Bδ

∫
RN\Bδ

Ũ2
ε (x) Ũ2

ε (y)

|x− y|4
dx dy.

We are going to estimate I1 and I2. By a direct computation, we have

I1 = ε4−2N

∫
RN\Bδ

∫
Bδ

S4−NC−2(N, 4)[N(N − 2)]N−2

(1 + |x/ε|2)N−2|x− y|4(1 + |y/ε|2)N−2
dx dy(3.16)

≤O
(
ε2N−4

)(∫
RN\Bδ

1

(ε2 + |x|2)N
dx

)(N−2)/N

·
(∫

Bδ

1

(ε2 + |y|2)N
dy

)(N−2)/N

≤O
(
εN−2

)(∫ +∞

0

rN−1

(1 + r2)N
dr

)(N−2)/N

= O
(
εN−2

)
,
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and

I2 = ε4−2N

∫
RN\Bδ

∫
RN\Bδ

S4−NC−2(N, 4)[N(N − 2)]N−2

(1 + |x/ε|2)N−2|x− y|4(1 + |y/ε|2)N−2
dx dy(3.17)

≤ O
(
ε2N−4

) ∫
RN\Bδ

∫
RN\Bδ

1

|x|2N−4|x− y|4|y|2N−4
dx dy=O(ε2N−4).

It follows from (3.14)–(3.17) that (3.13) holds. Recalling π1 and π2 in (1.14),

we set

(3.18) (uε, vε) :=
(√
π1 Uε,

√
π2 Uε

)
.

Combining this with (3.11)–(3.13) and recalling that ν1, ν2 < 0, N ≥ 5, we have

E(
√
tuε,
√
svε) =

1

2
t

∫
Ω

|∇uε|2 + ν1u
2
ε(3.19)

+
1

2
s

∫
Ω

|∇vε|2 + ν2v
2
ε −

1

4

∫
Ω

t2µ1

(
1

|x|4
∗ u2

ε

)
u2
ε

+ 2tsβ

(
1

|x|4
∗ u2

ε

)
v2
ε + s2µ2

(
1

|x|4
∗ v2

ε

)
v2
ε

≤ 1

2
(π1t+ π2s)

(
S2
H,L − Cε2 +O

(
εN−2

))
− 1

4

(
µ1π

2
1t

2 + 2βπ1π2ts+ µ2π
2
2s

2)(S2
H,L +O

(
εN−2

))
.

Denote

(3.20) Bε = S2
H,L − Cε2 +O

(
εN−2

)
, Dε = S2

H,L +O
(
εN−2

)
.

Obviously, 0 < Bε < Dε and Bε < S2
H,L for ε > 0 small enough. Consider

h(t, s) :=
1

2
Bε(π1t+ π2s)−

1

4
Dε

(
µ1π

2
1t

2 + 2βπ1π2ts+ µ2π
2
2s

2
)
,

then it is easy to see that there exists tε, sε > 0 such that

h(tε, sε) = max
t,s>0

h(t, s) and
∂

∂t
h(t, s)|(tε,sε) =

∂

∂s
h(t, s)|(tε,sε) = 0.

Combining these with (1.14), we get that tε = sε = Bε/Dε. Therefore, it follows

from (1.14), (2.10) and (3.19) that

(3.21) max
t,s>0

E(
√
tuε,
√
svε) ≤ max

t,s>0
h(t, s)

=
1

2
(π1 + π2)

B2
ε

Dε
− 1

4

(
µ1π

2
1 + 2βπ1π2 + µ2π

2
2

)B2
ε

Dε

<
1

4
(π1 + π2)S2

H,L = A0

for ε small enough. As above, we have |G(uε, vε)| > 0. Note that β ∈ (0, β0),

by a similar argument as that of Lemma 5.1 in [8], we know that there exists
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tε, sε > 0 such that
(√

t̃εuε,
√
s̃εvε

)
∈ N . Therefore,

A ≤ E
(√

t̃εuε,
√
s̃εvε

)
≤ max
t,s>0

E
(√
tuε,
√
svε
)
< A0.

We complete the proof of (a) of Lemma 3.1.

It suffices to prove (b) of Lemma 3.1. As (a) of Lemma 3.1, we define

vε := ξŨε. Similarly, we have the following inequalities∫
Ω

|∇vε|2 = S2
H,L +O

(
εN−2

)
,

∫
Ω

(
1

|x|4
∗ v2

ε

)
v2
ε = S2

H,L +O(εN−2),(3.22)

C1ε
2 +O

(
εN−2

)
≤
∫

Ω

v2
ε ≤ C2ε

2 +O
(
εN−2

)
.(3.23)

It follows from (3.22) and (3.23) that, for ε small enough,

(3.24)

∫
Ω

v2
ε ≤ 2

∫
Ω

(
1

|x|4
∗ v2

ε

)
v2
ε .

Note that N ≥ 5, then we know that

(3.25)

∣∣∣∣ 1

|x|4
∗ ω2

1

∣∣∣∣
L∞(Ω)

≤ C̃|ω1|2L∞(Ω), where C̃ =

∫
B(0,diam(Ω))

1

|y|4
dy.

Combining (3.25) with (3.23) and (3.24) we have for t, s > 0 that

2|β|ts
∫

Ω

(
1

|x|4
∗ ω2

1

)
v2
ε ≤ 2C̃|β|ts|ω1|2L∞(Ω)

∫
Ω

v2
ε(3.26)

≤ 4C̃2|β|2|ω1|4L∞(Ω)µ
−1
2 t2

∫
Ω

v2
ε +

1

4
s2µ2

∫
Ω

v2
ε

≤ 1

2
t2
∫

Ω

µ1

(
1

|x|4
∗ ω2

1

)
ω2

1 +
1

2
s2

∫
Ω

µ2

(
1

|x|4
∗ v2

ε

)
v2
ε ,

for ε small enough. Therefore, by (3.26) we have

(3.27) E
(√
tω1,
√
svε
)
≤ 1

2
t

∫
Ω

|∇ω1|2 + ν1ω
2
1 −

1

8
t2
∫

Ω

µ1

(
1

|x|4
∗ ω2

1

)
ω2

1

+
1

2
s

∫
Ω

|∇vε|2 + ν2v
2
ε −

1

8
s2

∫
Ω

µ2

(
1

|x|4
∗ v2

ε

)
v2
ε = f1(t) + g1(s).

By (3.22) and (3.23), it is standard to check, for ε small enough, that

(3.28) max
s>0

g1(s) <
1

2
µ−1

2 S2
H,L.

Let t0 be the larger root of

(3.29) µ2m1t
2 − 4µ2m1t− S2

H,L = 0,

and

t0 = 2 +
√

4 + S2
H,L/µ2m1.
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Then we have

(3.30) 2m1t−
1

2
m1t

2 < − 1

2µ2
S2
H,L, for all t > t0.

Note that

f1(t) = 2m1t−
1

2
m1t

2.

Combining this with (3.30), we have

f1(t) + g1(s) < 0, for all t > t0, s > 0,

and so it follows from (3.27) that

(3.31) max
t,s>0

E
(√
tω1,
√
svε
)

= max
0<t≤t0,s>0

E
(√
tω1,
√
svε
)
.

For 0 < t ≤ t0, s > 0, we see from (3.7) that

|β|ts
∫

Ω

(
1

|x|4
∗ ω2

1

)
v2
ε ≤ C̃|β|t0s|ω1|2L∞(Ω)

∫
Ω

v2
ε ≤ −

ν2

2
s

∫
Ω

v2
ε .

Therefore,

(3.32) E
(√
tω1,
√
svε
)
≤ 1

2
t

∫
Ω

|∇ω1|2 + ν1ω
2
1 −

1

4
t2
∫

Ω

µ1

(
1

|x|4
∗ ω2

1

)
ω2

1

+
1

2
s

∫
Ω

|∇vε|2 +
ν2

2
v2
ε −

1

4
s2

∫
Ω

µ2

(
1

|x|4
∗ v2

ε

)
v2
ε = f2(t) + g2(s).

Note that max
t>0

f2(t) = f2(1) = m1. Similarly to (3.28), we know

max
s>0

g2(s) <
1

4
µ−1

2 S2
H,L for ε small enough.

It follows from (3.31) and (3.32) that

max
t,s>0

E
(√
tω1,
√
svε
)

= max
0<t≤t0, s>0

E
(√
tω1,
√
svε
)

≤ max
t>0

f2(t) + max
s>0

g2(s) < m1 +
1

4
µ−1

2 S2
H,L

for ε small enough. Similarly to (3.26), we get that(∫
Ω

β

(
1

|x|4
∗ ω2

1

)
v2
ε

)2

≤ C̃2|β|2|ω1|4L∞(Ω)

(∫
Ω

v2
ε

)2

<

∫
Ω

µ1

(
1

|x|4
∗ ω2

1

)
ω2

1

∫
Ω

µ2

(
1

|x|4
∗ v2

ε

)
v2
ε

for ε small enough, that is detG(ω1, vε) > 0. Similarly,
(√

t̂εω1,
√
ŝεvε

)
∈ N

for some t̂ε, ŝε > 0 is equivalent to

(3.33)

(
t̂ε
ŝε

)
:= G−1(ω1, vε)


∫

Ω

|∇ω1|2 + ν1ω
2
1∫

Ω

|∇vε|2 + ν2v
2
ε

 >

(
0

0

)
.
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Since β < 0, we see from (3.9) that every element of G−1(ω1, vε) is positive.

Hence, (3.33) holds and
(√

t̂εω1,
√
ŝεvε

)
∈ N . Therefore,

A ≤ E
(√

t̂εω1,
√
ŝεvε

)
≤ max
t,s>0

E
(√
tω1,
√
svε
)
< m1 +

1

4
µ−1

2 S2
H,L.

By a similar argument, we can also prove that A < m2 + µ−1
1 S2

H,L/4. We see

from (2.9) and (3.3) that

A0 > max

{
m1 +

1

4
µ−1

2 S2
H,L, m2 +

1

4
µ−1

1 S2
H,L

}
. �

Lemma 3.2. Assume that β ∈ (−β, β0), where β0, β are defined in (3.6) and

(3.7), respectively. Then there exists C2 > C1 > 0 such that, for any (u, v) ∈ N
with E(u, v) ≤ (µ−1

1 + µ−1
2 )S2

H,L/4, there holds

C1 ≤
∫

Ω

(
1

|x|4
∗ u2

)
u2,

∫
Ω

(
1

|x|4
∗ v2

)
v2 ≤ C2.

Proof. For any (u, v) ∈ N with E(u, v) ≤ (µ−1
1 + µ−1

2 )S2
H,L/4. Denote

D1 =

(∫
Ω

(
1

|x|4
∗ u2

)
u2

)1/2

, D2 =

(∫
Ω

(
1

|x|4
∗ v2

)
v2

)1/2

.

It follows from (2.1) and (3.1) that

λ1(Ω) + ν1

λ1(Ω)
SH,LD1 ≤

∫
Ω

|∇u|2 + ν1u
2

=

∫
Ω

µ1

(
1

|x|4
∗ u2

)
u2 + β

(
1

|x|4
∗ u2

)
v2

≤ µ1D
2
1 + β+D1D2,

λ1(Ω) + ν2

λ1(Ω)
SH,LD2 ≤

∫
Ω

|∇v|2 + ν2v
2

=

∫
Ω

µ2

(
1

|x|4
∗ v2

)
v2 + β

(
1

|x|4
∗ u2

)
v2

≤ µ2D
2
2 + β+D1D2,

where β+ = max{β, 0}. Since∫
Ω

|∇u|2 + ν1u
2 + |∇v|2 + ν2v

2 ≤
(
µ−1

1 + µ−1
2

)
S2
H,L,

then there exists C2 such that D1, D2 ≤ C2. Obviously, D1, D2 ≥ C for some C

if β ≤ 0. It suffices to consider the case β > 0. Note that

µ1D1 + βD2 ≥
λ1(Ω) + ν1

λ1(Ω)
SH,L,(3.34)

βD1 + µ2D2 ≥
λ1(Ω) + ν2

λ1(Ω)
SH,L,(3.35)
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(3.36)
λ1(Ω) + ν1

λ1(Ω)
D1 +

λ1(Ω) + ν2

λ1(Ω)
D2 ≤

(
µ−1

1 + µ−1
2

)
SH,L.

It follows from (3.6), (3.34) and (3.36) that

D1 ≥
SH,L

[
(λ1(Ω) + ν1)(λ1(Ω) + ν2)− βλ2

1(Ω)
(
µ−1

1 + µ−1
2

)]
λ1(Ω)[µ1(λ1(Ω) + ν2)− β(λ1(Ω) + ν1)]

> 0.

Similarly, we have

D2 ≥
SH,L

[
(λ1(Ω) + ν1)(λ1(Ω) + ν2)− βλ2

1(Ω)
(
µ−1

1 + µ−1
2

)]
λ1(Ω)[µ2(λ1(Ω) + ν1)− β(λ1(Ω) + ν2)]

> 0. �

Lemma 3.3. Assume that −β < β < β0 and β 6= 0, where β0, β are defined

in (3.6) and (3.7), respectively. Then there exists a sequence {(un, vn)} ⊂ N
satisfying

(3.37) lim
n→∞

E(un, vn) = A, lim
n→∞

E′(un, vn) = 0.

Proof. Note that E is coercive and bounded from below on N . Then, by

the Ekeland variational principle (see [36]), there exists a minimizing sequence

{(un, vn)} ⊂ N satisfying

E(un, vn) ≤ min

{
A+

1

n
,

1

4

(
µ−1

1 + µ−1
2

)
S2
H,L

}
,(3.38)

E(u, v) ≥ E(un, vn)− 1

n
‖(un, vn)− (u, v)‖, for all (u, v) ∈ N .(3.39)

Then {(un, vn)} is bounded in H. For any (ϕ, φ) ∈ H with ‖ϕ‖, ‖φ‖ ≤ 1 and

each n ∈ N, we define hn and gn : R3 → R by

hn(t, s, l) =

∫
Ω

∣∣∣∣∇(un + tϕ+
s

2
un

)∣∣∣∣2 + ν1

∫
Ω

∣∣∣∣un + tϕ+
s

2
un

∣∣∣∣2
− µ1

∫
Ω

(
1

|x|4
∗
∣∣∣∣un + tϕ+

s

2
un

∣∣∣∣2)∣∣∣∣un + tϕ+
s

2
un

∣∣∣∣2
− β

∫
Ω

(
1

|x|4

∣∣∣∣un + tϕ+
s

2
un

∣∣∣∣2)∣∣∣∣vn + tφ+
l

2
vn

∣∣∣∣2
and

gn(t, s, l) =

∫
Ω

∣∣∣∣∇(vn + tφ+
l

2
vn

)∣∣∣∣2 + ν2

∫
Ω

∣∣∣∣vn + tφ+
l

2
vn

∣∣∣∣2
− µ2

∫
Ω

(
1

|x|4
∗
∣∣∣∣vn + tφ+

l

2
vn

∣∣∣∣2)∣∣∣∣vn + tφ+
l

2
vn

∣∣∣∣2
− β

∫
Ω

(
1

|x|4
∗
∣∣∣∣un + tϕ+

s

2
un

∣∣∣∣2)∣∣∣∣vn + tφ+
l

2
vn

∣∣∣∣2.
let 0 = (0, 0, 0). Then hn, gn ∈ C1(R3,R) and hn(0) = gn(0) = 0. Moreover,

∂hn
∂s

(0) = −µ1

∫
Ω

(
1

|x|4
∗ u2

n

)
u2
n,

∂hn
∂l

(0) = −β
∫

Ω

(
1

|x|4
∗ u2

n

)
v2
n,
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∂gn
∂s

(0) = −β
∫

Ω

(
1

|x|4
∗ u2

n

)
v2
n,

∂gn
∂l

(0) = −µ2

∫
Ω

(
1

|x|4
∗ v2

n

)
v2
n.

Define the matrix

Gn :=


∂hn
∂s

(0)
∂hn
∂l

(0)

∂gn
∂s

(0)
∂gn
∂l

(0)

 .
Then, for 0 < β < β0, we see from Lemma 3.2 and (1.9) that

(3.40) det(Gn) = µ1µ2D
(
u2
n, u

2
n

)
D
(
v2
n, v

2
n

)
− β2D2

(
u2
n, v

2
n

)
≥
(
µ1µ2 − β2

)
a2
nb

2
n ≥ C > 0,

where C is independent of n and D( · , · ) is defined in (1.8). For β < 0, by

Lemma 3.2 and (un, vn) ∈ N we have

det(Gn) =

(
|β|
∫

Ω

(
1

|x|4
∗ u2

n

)
v2
n +

∫
Ω

(
|∇un|2 + ν1u

2
n

))
×
(
|β|
∫

Ω

(
1

|x|4
∗ u2

n

)
v2
n +

∫
Ω

(
|∇vn|2 + ν2v

2
n

))
− β2

(∫
Ω

(
1

|x|4
∗ u2

n

)
v2
n

)2

≥
∫

Ω

(
|∇un|2 + ν1u

2
n

) ∫
Ω

(
|∇vn|2 + ν2v

2
n

)
≥ (λ1(Ω) + ν1)(λ1(Ω) + ν2)

λ1(Ω)2

× S2
H,L

(∫
Ω

(
1

|x|4
∗ u2

n

)
u2
n

)1/2(∫
Ω

(
1

|x|4
∗ v2

n

)
v2
n

)1/2

≥ C.

Therefore, det(Gn) ≥ C > 0 holds for all −β < β < β0. By the implicit function

theorem, functions sn and ln are well defined and class C1 on some interval

(−δn, δn) for δn > 0. Moreover, sn(0) = ln(0) = 0 and

hn(t, sn(t), ln(t)) ≡ 0, gn(t, sn(t), ln(t)) ≡ 0, t ∈ (−δn, δn).

This implies that
s′n(0) =

1

det(Gn)

(
∂gn
∂t

(0)
∂hn
∂l

(0)− ∂gn
∂l

(0)
∂hn
∂t

(0)

)
,

l′n(0) =
1

det(Gn)

(
∂gn
∂s

(0)
∂hn
∂t

(0)− ∂gn
∂t

(0)
∂hn
∂s

(0)

)
.
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While, since (un, vn) is bounded in H, we have∣∣∣∣∂hn∂t (0)

∣∣∣∣ = 2

∣∣∣∣ ∫
Ω

(
∇un∇ϕ+ ν1unϕ−µ1

(
1

|x|4
∗u2

n

)
unϕ−µ1

(
1

|x|4
∗ (unϕ)

)
u2
n

− β
(

1

|x|4
∗ u2

n

)
vnφ− β

(
1

|x|4
∗ (unϕ)

)
v2
n

)∣∣∣∣ ≤ C,
where C is independent of n. Similarly,

∣∣∂gn
∂t (0)

∣∣ ≤ C. From Lemma 3.2 we also

have ∣∣∣∣∂hn∂s (0)

∣∣∣∣, ∣∣∣∣∂hn∂l (0)

∣∣∣∣, ∣∣∣∣∂gn∂s (0)

∣∣∣∣, ∣∣∣∣∂gn∂l (0)

∣∣∣∣ ≤ C.
Hence, combining these with (3.40), we have

(3.41) |s′n(0)|, |l′n(0)| ≤ C,

where C is independent of n.

With these, it is standard to prove that (see [8, Theorem 1.3 (1)])

(3.42) lim
n→∞

E′(un, vn) = 0.

Proof of (a)–(b) in Theorem 1.5. By Lemma 3.3, we know that there

exists a sequence {(un, vn)} ⊂ N satisfying (3.37). Then {(un, vn)} is bounded

in H, passing to a subsequence, we may assume that (un, vn) ⇀ (u, v) weakly

in H, and so

un ⇀ u, vn ⇀ v, weakly in L2N/(N−2)(Ω),

u2
n ⇀ u2, v2

n ⇀ v2, weakly in LN/(N−2)(Ω),

un → u, vn → v, strongly in L2(Ω).

It follows from (3.37) that E′(u, v) = 0. Denote ωn = un − u and σn = vn − v.

Note that

ωn ⇀ 0, σn ⇀ 0, weakly in H1
0 (Ω),

|ωn|N/(N−2) ⇀ 0, |σn|N/(N−2) ⇀ 0, weakly in L2(Ω),∫
Ω

|ωnu|N/(N−2) → 0,

∫
Ω

|σnv|N/(N−2) → 0, as n→∞,

|ωn|2 ⇀ 0, |σn|2 ⇀ 0, weakly in LN/(N−2)(Ω).(3.43)

Thus ∣∣∣∣ ∫
Ω

(
1

|x|4
∗ (ωnu)

)
v2
n

∣∣∣∣ ≤ C|ωnu|N/(N−2)|vn|22∗ = o(1),(3.44) ∣∣∣∣ ∫
Ω

(
1

|x|4
∗ u2

)
(σnv)

∣∣∣∣ ≤ C|u|22∗ |σnv|N/(N−2) = o(1),(3.45) ∣∣∣∣ ∫
Ω

(
1

|x|4
∗ ω2

n

)
(σnv)

∣∣∣∣ ≤ C|ωn|22∗ |σnv|N/(N−2) = o(1).(3.46)
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By the Hardy–Littlewood–Sobolev inequality, we have(
1

|x|4
∗ u2

)
∈ LN/2(Ω),

(
1

|x|4
∗ v2

)
∈ LN/2(Ω).

Combining these with (3.43) we get that

(3.47)

∫
Ω

(
1

|x|4
∗ u2

)
σ2
n = o(1),

∫
Ω

(
1

|x|4
∗ v2

)
ω2
n = o(1).

It follows from (3.44)–(3.47) that∫
Ω

(
1

|x|4
∗ u2

n

)
v2
n =

∫
Ω

(
1

|x|4
∗ ω2

n

)
σ2
n(3.48)

+

∫
Ω

(
1

|x|4
∗ u2

)
v2 + 2

∫
Ω

(
1

|x|4
∗ (ωnu)

)
v2
n

+

∫
Ω

(
1

|x|4
∗ u2

)
σn(2v + σn) +

∫
Ω

(
1

|x|4
∗ ω2

n

)
v(v + 2σn)

=

∫
Ω

(
1

|x|4
∗ ω2

n

)
σ2
n +

∫
Ω

(
1

|x|4
∗ u2

)
v2 + o(1).

Similarly, we have∫
Ω

(
1

|x|4
∗ u2

n

)
u2
n =

∫
Ω

(
1

|x|4
∗ ω2

n

)
ω2
n +

∫
Ω

(
1

|x|4
∗ u2

)
u2 + o(1),(3.49) ∫

Ω

(
1

|x|4
∗ v2

n

)
v2
n =

∫
Ω

(
1

|x|4
∗ σ2

n

)
σ2
n +

∫
Ω

(
1

|x|4
∗ v2

)
v2 + o(1).(3.50)

Note that (un, vn) ∈ N and E′(u, v) = 0. Combining these with (3.48)–(3.50)

we have ∫
Ω

|∇ωn|2 −
∫

Ω

µ1

(
1

|x|4
∗ ω2

n

)
ω2
n + β

(
1

|x|4
∗ ω2

n

)
σ2
n = o(1),(3.51) ∫

Ω

|∇σn|2 −
∫

Ω

µ2

(
1

|x|4
∗ σ2

n

)
σ2
n + β

(
1

|x|4
∗ ω2

n

)
σ2
n = o(1),(3.52)

E(un, vn) = E(u, v) + I(ωn, σn) + o(1).(3.53)

Passing to a subsequence, we may assume that

lim
n→+∞

∫
Ω

|∇ωn|2 = d1, lim
n→+∞

∫
Ω

|∇σn|2 = d2.

Then by (3.51) and (3.52) we have I(ωn, σn) = (d1 + d2)/4 + o(1). Letting

n→ +∞ in (3.53), we see that

(3.54) 0 ≤ E(u, v) ≤ E(u, v) +
1

4
(d1 + d2) = lim

n→+∞
E(un, vn) = A.

Case 1. u ≡ 0,v ≡ 0. It follows from Lemma 3.2 that d1 > 0 and d2 > 0,

and so we may assume that both ωn 6≡ 0 and σn 6≡ 0 for n large. It follows from
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(3.51) and (3.52) that there exists tn, sn > 0 such that
(√
tnωn,

√
snσn

)
∈ M

and

lim
n→+∞

(|tn − 1|+ |sn − 1|) = 0.

Therefore

A =
1

4
(d1 + d2) = lim

n→+∞
I(ωn, σn) = lim

n→+∞
I
(√
tnωn,

√
snσn

)
≥ A0,

which implies A ≥ A0, a contradiction with Lemma 3.1. Hence, Case 1 is

impossible.

Case 2. u 6≡ 0, v ≡ 0 or u ≡ 0, v 6≡ 0. Without loss of generality, we may

assume that u 6≡ 0, v ≡ 0. Then d2 > 0. By Case 1 we may assume that d1 = 0.

Then ωn → 0 strongly in H1
0 (Ω). Hence, by (1.9) and (1.10) we know that

lim
n→+∞

∫
Ω

(
1

|x|4
∗ ω2

n

)
σ2
n = 0.

Combining this with (3.52) we have∫
Ω

|∇σn|2 =

∫
Ω

µ2

(
1

|x|4
∗ σ2

n

)
σ2
n + o(1) ≤ µ2S

−2
H,L

(∫
Ω

|∇σn|2
)2

+ o(1).

This implies that d2 ≥ µ−1
2 S2

H,L. Note that u is a nontrivial solution of −∆u+

ν1u = µ1

(
1/|x|4 ∗ u2

)
u, then E(u, 0) ≥ m1. By (3.54) we get that

A ≥ m1 +
1

4
d2 ≥ m1 +

1

4
µ−1

2 S2
H,L > m1 +m2,

a contradiction with Lemma 3.1. Hence, Case 2 is impossible.

Since Cases 1 and 2 are both impossible, then we get that u 6≡ 0 and v 6≡ 0.

Therefore, (u, v) ∈ N . It follows from (3.54) that E(u, v) = A. Then we have

(|u|, |v|) ∈ N and E(|u|, |v|) = A. By Proposition 2.3, (|u|, |v|) is a least energy

solution of (1.5). Then, using the maximum principle, we know |u|, |v| > 0 in Ω.

Therefore, (|u|, |v|) is a positive least energy solution of (1.5). �

It suffices to prove (c) of Theorem 1.5. Assume that β > max{µ1, µ2}. Define

(3.55) A := inf
h∈Γ

max
t∈[0,1]

E(h(t)),

where Γ = {h ∈ C([0, 1], H) : h(0) = (0, 0), E(h(1)) < 0}. By (1.12), we know

that, for any (u, v) ∈ H and (u, v) 6= (0, 0),

max
t>0

E
(√
tu,
√
tv
)

= E
(√

tu,vu,
√
tu,vv

)
(3.56)

=
1

4
tu,v

∫
Ω

(
|∇u|2 + ν1u

2 + |∇v|2 + ν2v
2
)
,
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where tu,v > 0 satisfies

tu,v =

∫
Ω

(
|∇u|2 + ν1u

2 + |∇v|2 + ν2v
2
)

∫
Ω

µ1

(
1

|x|4
∗ u2

)
u2 + 2β

(
1

|x|4
∗ u2

)
v2 + µ2

(
1

|x|4
∗ v2

)
v2

.

Note that
(√
tu,vu,

√
tu,vv

)
∈ N ′, where

(3.57) N ′ :=

{
(u, v) ∈ H \ {(0, 0)},

F (u, v) :=

∫
Ω

(
|∇u|2 + ν1u

2 + |∇v|2 + ν2v
2
)
−
∫

Ω

µ1

(
1

|x|4
∗ u2

)
u2

+ 2β

(
1

|x|4
∗ u2

)
v2 + µ2

(
1

|x|4
∗ v2

)
v2 = 0

}
,

it is standard to see that

(3.58) A = inf
H3(u,v)6=(0,0)

max
t>0

E(tu, tv) = inf
(u,v)∈N ′

E(u, v).

Note that N ⊆ N ′, one has that A ≤ A. Similarly as (2.8), we have A > 0.

Denote

(3.59) γ := min

{
µ−1
i

(
1 +

νi
λ1(Ω)

)2

, i = 1, 2

}
.

Then we have the following lemma.

Lemma 3.4. Assume that −λ1(Ω) < ν2 ≤ ν1 < 0. Let β1 be the larger root

of the equation

β2 − 2

γ
β +

µ1 + µ2

γ
− µ1µ2 = 0,

where γ is defined in (3.59). Then β1 ≥ max{µ1, µ2}, and for any β > β1 there

holds A < min{m1,m2, A0}.

Proof. First, we prove that A < A0. Without loss of generality, we assume

that µ2 ≥ µ1. Define

f(β) := β2 − 2

γ
β +

µ1 + µ2

γ
− µ1µ2,

by (3.59) we have γ < µ−1
2 and so f(µ2) ≤ 0, that is, β1 ≥ µ2 = max{µ1, µ2}.

Then π1, π2 > 0, where (π1, π2) is defined in (1.14). Recall (3.18) and (3.20),

similarly to (3.19) we know that

E
(√
tuε,
√
tvε
)

=
1

2
t

∫
Ω

|∇uε|2 + ν1u
2
ε + |∇vε|2 + ν2v

2
ε

− 1

4
t2
∫

Ω

µ1

(
1

|x|4
∗ u2

ε

)
u2
ε + 2β

(
1

|x|4
∗ u2

ε

)
v2
ε + µ2

(
1

|x|4
∗ v2

ε

)
v2
ε

≤ 1

2
Bε(π1 + π2)t− 1

4
Dε

(
µ1π

2
1 + 2βπ1π2 + µ2π

2
2

)
t2.
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Similarly to (3.21) we get that

(3.60) 0 < A ≤ max
t>0

E
(√
tuε,
√
tvε
)
<

1

4
(π1 + π2)S2

H,L = A0.

It remains to prove A < min{m1,m2}. Note that β > β1, then f(β) > 0 and so

γ >
2β − µ1 − µ2

β2 − µ1µ2
= π1 + π2.

Combining this with (3.3) and (3.60) we have

min{m1,m2} ≥
1

4
γS2

H,L >
1

4
(π1 + π2)S2

H,L = A0 > A. �

With these, the following proof is similar to that of (3) in Theorem 1.3 in [8],

and so we omit it.

4. Proof of Theorem 1.9

This section is devoted to the proof of Theorem 1.9. Recall the definitions of

E, N , A, they all depend on β, and we use notations Eβ , Nβ , Aβ in this section.

Proof of Theorem 1.9. Let 0 < |βn| < min{β, β0}, n ∈ N, satisfy βn → 0

as n → +∞, and (un, vn) be the positive least energy solutions of (1.5) with

β = βn. By Lemma 3.1, we know that Eβn(un, vn) is uniformly bounded, and

so (un, vn) is uniformly bounded in H. Passing to a subsequence, we may as-

sume that

un ⇀ û, vn ⇀ v̂ weakly in H1
0 (Ω),

un → û, vn → v̂ strongly in L2(Ω),

un → û, vn → v̂ almost everywhere x ∈ Ω.

Hence, û(x), v̂(x) ≥ 0 for almost everywhere x ∈ Ω.

First, we claim that for |βn| < min{β, β0} sufficiently small, there holds

(4.1) lim
n→∞

Aβn ≤ m1 +m2.

For 0 < βn < β0, by Lemma 3.1 we have

(4.2) lim
n→∞

Aβn ≤ m1 +m2.

On the other hand, for −β < βn < 0 sufficiently small, by a similar argu-

ment as that of Lemma 3.1, we know that there exists t1,n, s1,n > 0 such that(√
t1,nω1,

√
s1,nω2

)
∈ Nβn and

(4.3) lim
n→∞

(|t1,n − 1|+ |s1,n − 1|) = 0.
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It follows from (3.4) that for −β < βn < 0 we have

lim
n→∞

Aβn ≤
1

4
lim
n→∞

t1,n

∫
Ω

|∇ω1|2 + ν1ω
2
1 +

1

4
lim
n→∞

s1,n

∫
Ω

|∇ω2|2 + ν2ω
2
2

= E0(ω1, 0) + E0(0, ω2) = m1 +m2.

Combining this with (4.2) we get that (4.1) holds.

Case 1. û ≡ 0, v̂ ≡ 0. Note that∫
Ω

u2
n → 0 and

∫
Ω

βn

(
1

|x|4
∗ u2

n

)
v2
n → 0.

It follows from (un, vn) ∈ Nβn that∫
Ω

|∇un|2 + ν1

∫
Ω

u2
n =

∫
Ω

µ1

(
1

|x|4
∗ u2

n

)
u2
n + βn

(
1

|x|4
∗ v2

n

)
u2
n

≤ µ1S
−2
H,L

(∫
Ω

|∇un|2
)2

+ o(1),

and so

d1 := lim
n→∞

∫
Ω

|∇un|2 ≥ µ−1
1 S2

H,L.

Similarly, we have

(4.4) d2 := lim
n→∞

∫
Ω

|∇vn|2 ≥ µ−1
2 S2

H,L.

We see from (4.1) and (3.3) that

m1 +m2 ≥ lim
n→∞

Aβn =
1

4
(d1 + d2) > m1 +m2,

a contradiction. Therefore, Case 1 is impossible.

Case 2. û 6≡ 0, v̂ ≡ 0 or û ≡ 0, v̂ 6≡ 0. Without loss of generality, we assume

that û 6≡ 0, v̂ ≡ 0. Then (4.4) holds. Multiply the equation for u in (1.5) by û

and integrate over Ω, which implies

(4.5)

∫
Ω

∇un∇û+ ν1unû =

∫
Ω

µ1

(
1

|x|4
∗ u2

n

)
unû+ βn

(
1

|x|4
∗ v2

n

)
unû.

We claim that

(4.6)

∫
Ω

(
|x|−4 ∗ u2

n

)
unû→

∫
Ω

(
|x|−4 ∗ û2

)
û2, as n→∞.

Note that

u2
n ⇀ û2 weakly in LN/(N−2)(Ω), as n→∞.

By the Hardy–Littlewood–Sobolev inequality, the Riesz potential defines a linear

continuous map from LN/(N−2)(Ω) to LN/2(Ω), hence

|x|−4 ∗ u2
n ⇀ |x|−4 ∗ û2 weakly in LN/2(Ω), as n→∞.

Combining this with the fact that

un ⇀ û weakly in L2N/(N−2)(Ω), as n→∞,
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we have(
|x|−4 ∗ u2

n

)
un ⇀

(
|x|−4 ∗ û2

)
û weakly in L2N/(N+2)(Ω), as n→∞.

Therefore, (4.6) holds. It follows from (3.5), (4.5) and (4.6) that

(4.7)

∫
Ω

(
|∇û|2+ν1û

2
)
≤
∫

Ω

µ1

(
1

|x|4
∗û2

)
û2 ≤ (4m1

)−1
(∫

Ω

(
|∇û|2+ν1û

2
))2

,

and so ∫
Ω

(
|∇û|2 + ν1û

2
)
≥ 4m1.

Combining this with (4.1) and (3.3) we know that

m1 +m2 ≥ lim
n→∞

Aβn =
1

4
lim
n→∞

∫
Ω

|∇un|2 + ν1u
2
n + |∇vn|2 + ν2v

2
n(4.8)

=
1

4

∫
Ω

(
|∇û|2 + ν1û

2
)

+
1

4
d2 + lim

n→∞

1

4

∫
Ω

|∇(un − û)|2

≥ m1 +
1

4
µ−1

2 S2
H,L + lim

n→∞

1

4

∫
Ω

|∇(un − û)|2 > m1 +m2,

a contradiction. Therefore, Case 2 is impossible.

Since Cases 1 and 2 are both impossible, then we get that û 6≡ 0 and v̂ 6≡ 0.

Similarly as the Case 2, we can get that (4.7) holds and∫
Ω

(
|∇û|2 + ν1û

2
)
≥ 4m1,

∫
Ω

(
|∇v̂|2 + ν2v̂

)
≥ 4m2.

Combining these with (4.1) we know that

m1 +m2 ≥ lim
n→∞

Aβn(4.9)

=
1

4
lim
n→∞

∫
Ω

|∇un|2 + ν1u
2
n + |∇vn|2 + ν2v

2
n

=
1

4

∫
Ω

|∇û|2 + ν1û
2 +

1

4

∫
Ω

|∇v̂|2 + ν2v̂
2

+
1

4
lim
n→∞

∫
Ω

(
|∇(un − û)|2 + |∇(vn − v̂)|2

)
≥m1 +m2 +

1

4
lim
n→∞

∫
Ω

(
|∇(un − û)|2 + |∇(vn − v̂)|2

)
≥m1 +m2.

This means that

lim
n→∞

∫
Ω

(
|∇(un − û)|2 + |∇(vn − v̂)|2

)
= 0,

and so (un, vn)→ (û, v̂) strongly in H1
0 (Ω)×H1

0 (Ω) as n→ +∞. Moreover,∫
Ω

(
|∇û|2 + ν1û

2
)

= 4m1,
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and so we see from (4.7) that∫
Ω

(
|∇û|2 + ν1û

2
)

=

∫
Ω

µ1

(
1

|x|4
∗ û2

)
û2 = 4m1.

Therefore, û is a positive least energy solution of

−∆u+ ν1u = µ1

(
1

|x|4
∗ u2

)
u, u ∈ H1

0 (Ω).

Similarly, we know that v̂ is a positive least energy solution of

−∆v + ν2v = µ2

(
1

|x|4
∗ v2

)
v, v ∈ H1

0 (Ω). �

Appendix A

Proposition A.1. Assume that Ω is a smooth bounded domain. Let u ∈
H1

0 (Ω). If

−∆u+ νu = µ

(
1

|x|4
∗ u2

)
u,

where ν < 0, µ > 0 are constants. Then u ∈ C2(Ω).

Proof. By the Hardy–Littlewood–Sobolev inequality, we have(
1

|x|4
∗ u2

)
∈ LN/2(Ω).

Denote

a(x) = µ

(
1

|x|4
∗ u2

)
− ν,

then a(x) ∈ LN/2(Ω). From Lemma B.3 of [31], we have u ∈ Lq(Ω) for any

q <∞. Therefore ((1/|x|4) ∗ u2) ∈ L∞(Ω), and so∣∣∣∣− νu+ µ

(
1

|x|4
∗ u2

)
u

∣∣∣∣ ≤ C(1 + |u|2
∗−1
)
.

By Theorem 1.16 of [4], we know that u ∈ C2(Ω). �

Proposition A.2. Assume that Ω is a smooth bounded domain. Let u, v ∈
H1

0 (Ω). If

−∆u+ ν1u = µ1

(
1

|x|4
∗ u2

)
u+ β

(
1

|x|4
∗ v2

)
u, x ∈ Ω,

−∆v + ν2v = µ2

(
1

|x|4
∗ v2

)
v + β

(
1

|x|4
∗ u2

)
v, x ∈ Ω,

u, v ≥ 0 in Ω, u = v = 0 on ∂Ω.

Then u, v ∈ C2(Ω).

The proof is similar to that of Proposition A.1, and so we omit it.
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Proposition A.3. Let u, v ∈W 1,2(RN ) ∩ L2Np/(2N−µ)(RN ). If

(A.1)



−∆u+ ν1u = µ1

(
1

|x|µ
∗ |u|p

)
|u|p−2u

+β

(
1

|x|µ
∗ |v|p

)
|u|p−2u, x ∈ RN ,

−∆v + ν2v = µ2

(
1

|x|µ
∗ |v|p

)
|v|p−2v

+β

(
1

|x|µ
∗ |u|p

)
|v|p−2v, x ∈ RN ,

and u, v ∈W 2,2
loc (RN ) ∩W 1,2Np/(2N−µ)(RN ), then

N − 2

2

∫
RN
|∇u|2 + |∇v|2 +

N

2

∫
RN

ν1u
2 + ν2v

2

=
2N − µ

2p

∫
RN

µ1

(
1

|x|µ
∗ |u|p

)
|u|p +

2N − µ
2p

∫
RN

2β

(
1

|x|µ
∗ |u|p

)
|v|p

+ µ2

(
1

|x|µ
∗ |v|p

)
|v|p.

Proof. The idea of the following proof comes from [27], where Moroz and

Van Schaftingen establish the Pohožaev type identity for single Choquard equa-

tion. We take φ ∈ C1
c (RN ) such that φ = 1 on B1. Denote

uλ(x) = φ(λx)x · ∇u(x),

where λ ∈ (0,∞) and x ∈ RN . We multiply the first equation in (A.1) by uλ,

which yields∫
RN
∇u·∇uλ+ν1uuλ =

∫
RN

µ1

(
1

|x|µ
∗|u|p

)
|u|p−2uuλ+β

(
1

|x|µ
∗|v|p

)
|u|p−2uuλ.

We compute for every λ > 0,∫
RN
∇u · ∇uλ =

∫
RN

(λ∇u · ∇φ(λx)x · ∇u+ φ(λx)∇u · ∇(x∇u)) dx

=

∫
RN

λ∇u · ∇φ(λx)x · ∇u dx

−
∫
RN

((N − 2)φ(λx) + λx · ∇φ(λx))
|∇u|2

2
dx.

Thus

lim
λ→0

∫
RN
∇u∇uλ = −N − 2

2

∫
RN
|∇u|2.

Note that ∫
RN

uuλ = −
∫
RN

(Nφ(λx) + λx · ∇φ(λx))
|u|2

2
dx.
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Hence

lim
λ→0

∫
RN

uuλ = −N
2

∫
RN
|u|2.

Next ∫
RN

(
1

|x|µ
∗ |u|p

)
|u|p−2uuλ

=

∫
RN

∫
RN
|u(y)|p 1

|x− y|µ
φ(λx)x · ∇

(
|u|p

p

)
(x) dx dy

=
1

2

∫
RN

∫
RN

1

|x− y|µ

(
|u(y)|pφ(λx)x · ∇

(
|u|p

p

)
(x)

+ |u(x)|pφ(λy)y · ∇
(
|u|p

p

)
(y)

)
dx dy

= −
∫
RN

∫
RN
|u(y)|p 1

|x− y|µ
(Nφ(λx) + λx · ∇φ(λx))

|u(x)|p

p
dx dy

+
µ

2p

∫
RN

∫
RN
|u(y)|p 1

|x− y|µ

× (x− y) · (xφ(λx)− yφ(λy))

|x− y|2
|u(x)|p dx dy.

lim
λ→0

∫
RN

(
1

|x|µ
∗ |u|p

)
|u|p−2uuλ = −2N − µ

2p

∫
RN

(
1

|x|µ
∗ |u|p

)
|u|p.

Finally, ∫
RN

(
1

|x|µ
∗ |v|p

)
|u|p−2uuλ(A.2)

=

∫
RN

∫
RN
|v(y)|p 1

|x− y|µ
φ(λx)x · ∇

(
|u|p

p

)
(x) dx dy

= −
∫
RN

∫
RN

|v(y)|p

|x− y|µ
(Nφ(λx) + λx · ∇φ(λx))

|u(x)|p

p
) dx dy

+
µ

p

∫
RN

∫
RN

|v(y)|p

|x− y|µ
· (x− y) · xφ(λx)

|x− y|2
|u(x)|p dx dy.

Define vλ(x) = φ(λx)x · ∇v(x), where λ ∈ (0,∞) and x ∈ RN . Similarly, we get

that∫
RN
∇v ·∇vλ+ν2vvλ =

∫
RN

µ2

(
1

|x|µ
∗|v|p

)
|v|p−2vvλ+β

(
1

|x|µ
∗|u|p

)
|v|p−2vvλ,

lim
λ→0

∫
RN
∇v · ∇vλ = −N − 2

2

∫
RN
|∇v|2, lim

λ→0

∫
RN

vvλ = −N
2

∫
RN
|v|2,

lim
λ→0

∫
RN

(
1

|x|µ
∗ |v|p

)
|v|p−2vvλ = −2N − µ

2p

∫
RN

(
1

|x|µ
∗ |v|p

)
|v|p,
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RN

(
1

|x|µ
∗ |u|p

)
|v|p−2vvλ(A.3)

= −
∫
RN

∫
RN

|u(x)|p

|x− y|µ
(Nφ(λy) + λy · ∇φ(λy))

|v(y)|p

p
dx dy

+
µ

p

∫
RN

∫
RN
|u(x)|p 1

|x− y|µ
(y − x) · yφ(λy)

|x− y|2
|v(y)|p dx dy.

It follows from (A.2) and (A.3) that

lim
λ→0

∫
RN

(
1

|x|µ
∗ |v|p

)
|u|p−2uuλ +

(
1

|x|µ
∗ |u|p

)
|v|p−2vvλ

= −2N − µ
p

∫
RN

(
1

|x|µ
∗ |u|p

)
|v|p.

From the above, we get that

N − 2

2

∫
RN
|∇u|2 + |∇v|2 +

N

2

∫
RN

ν1u
2 + ν2v

2

=
2N − µ

2p

∫
RN

µ1

(
1

|x|µ
∗|u|p

)
|u|p+2β

(
1

|x|µ
∗|u|p

)
|v|p+µ2

(
1

|x|µ
∗|v|p

)
|v|p. �

Proposition A.4. Assume that Ω is a smooth bounded domain and 0 ∈ Ω.

Let u, v ∈ H1
0 (Ω) ∩ L2Np/(2N−µ)(Ω). If

(A.4)



−∆u+ ν1u = µ1

(
1

|x|µ
∗ |u|p

)
|u|p−2u

+β

(
1

|x|µ
∗ |v|p

)
|u|p−2u, x ∈ Ω,

−∆v + ν2v = µ2

(
1

|x|µ
∗ |v|p

)
|v|p−2v

+β

(
1

|x|µ
∗ |u|p

)
|v|p−2v, x ∈ Ω,

u = v = 0 on ∂Ω,

and u, v ∈W 2,2(Ω) ∩W 1,2Np/(2N−µ)(Ω). Then

N − 2

2

∫
Ω

|∇u|2 + |∇v|2 +
1

2

∫
∂Ω

(|∇u|2 + |∇v|2)(x ·n) dσ+
N

2

∫
Ω

ν1u
2 +ν2v

2

=
2N − µ

2p

∫
Ω

µ1

(
1

|x|µ
∗|u|p

)
|u|p+2β

(
1

|x|µ
∗|u|p

)
|v|p+µ2

(
1

|x|µ
∗|v|p

)
|v|p,

where n denotes the unit outward normal to ∂Ω.

The proof is similar to that of Proposition A.3, and so we omit it.
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