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SMALE STRATEGIES

FOR THE n-PERSON ITERATED PRISONER’S DILEMMA

Ethan Akin — S lawomir Plaskacz — Joanna Zwierzchowska

Abstract. Adapting methods introduced by Steven Smale, we describe

good strategies for a symmetric version of the Iterated Prisoner’s Dilemma
with n players.

1. Introduction

In [5] Smale introduced an approach to strategy for the Iterated Prisoner’s

Dilemma which was different from the popular Markov chain methods. He sug-

gested using as data the current time average payoff to the players rather than

using the results of the most recent round of play. Smale’s results were extended

in [1]. Here we apply these methods to a symmetric n player version of the

Prisoner’s Dilemma. The goal is to describe good plans which stabilize the co-

operative outcome where each player receives (in long-term average) the payoff

pn obtained when all n players cooperate. A strategy is a choice of initial play

together with a plan responding to previous play.

We describe good plans with the following properties:

• If all n players eventually use good plans, then from any initial position,

convergence to cooperation is achieved.
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• Suppose that for some k with 1 ≤ k < n, players j with j = 1, . . . , k even-

tually use good plans and suppose that X = (x1, . . . , xk, zk+1, . . . , zn) is

a limit point for the sequence of time averages of the payoffs. Let x be

the mean of the good player payoffs and z the mean of the remaining,

dissenting, player payoffs. The only way it can occur that z ≥ pn is if

X = (pn, . . . , pn), i.e. the cooperative payoff. Otherwise, while z > x,

i.e. on average the dissenters do better than the good players, their

average payoff remains below pn.

If k < n − 1 it may happen that, while the mean z < pn, some of the

dissenters do get a payoff larger than pn. However, if zk+1 ≥ pn, then if

z̃ is the mean of the remaining dissenters, i.e. the average of zk+2, . . . , zn
then z̃ < x. That is, the remaining players on average do worse than the

good players and thus it pays for some of them to switch to good plans.

Smale strategies for the Iterated Prisoner’s Dilemma with n players were

described by Behrstock, Benaim and Hirsch in [2]. There is overlap between our

results and theirs, but because they were considering a variety of cases, their

exposition is more complicated. Markov strategies for the Iterated Prisoner’s

Dilemma with n players were described in [3] and [4]. An extensive comparison

of Smale and the usual Markov chain approach in the framework of the Iterated

Prisoner’s Dilemma is provided in [1].

We would like to thank the referee for helpful comments and corrections.

2. The game

We consider an n-player symmetric game. Each player has a choice of two

strategies c or d (cooperate or defect). When no players cooperate, each ob-

tains a payoff r0 and, when all n players cooperate, each obtains pn. For

k = 1, . . . , n − 1, when k players cooperate, each cooperator receives pk and

each defector receives rk.

Our first assumption is monotonicity of the payoffs.

(2.1) r0 < r1 < . . . < rn−1 and p1 < p2 < . . . < pn.

That is, the payoffs to both defectors and cooperators increase as the number of

cooperators increase.

Our second assumption concerns the advantage of defection.

(2.2) For k = 1, . . . , n, pk < rk−1.

This says that any cooperator would do better by switching to defection, provided

the choices of the other players remain fixed. Thus, the strategy of defection

dominates cooperation regardless of the choices of the other players.
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For our third assumption, we define the population mean payoff, or just mean

payoff, mk by

(2.3)

m0 = r0, mn = pn,

mk =
1

n
[k · pk + (n− k) · rk] for k = 1, . . . , n− 1.

From (2.1) and (2.2) it is clear that

(2.4) pk < mk < rk for k = 1, . . . , n− 1.

Our third assumption is monotonicity of the mean payoffs.

(2.5) m0 < m1 < . . . < mn−1 < mn.

If there are currently k−1 cooperators and one defector switches to cooperation,

then he bears a cost of rk−1 − pk. This assumption says that the aggregate

increase to the other players exceeds this cost, i.e.

(2.6)

r0 − p1 < (n− 1) · (r1 − r0), rn−1 − pn < (n− 1) · (pn − pn−1),

rk−1 − pk < (k − 1) · (pk − pk−1) + (n− k) · (rk − rk−1),

for k = 2, . . . , n− 1.

In the case when n = 2 the game is the classic Prisoner’s Dilemma. In the

notation of [1]

(2.7) r0 = P, r1 = T, p1 = S, p2 = R,

with the assumptions

(2.8) S < P <
1

2
(T + S) < R < T.

Example 2.1. The values (p1, r0, p2, r1, . . .) = (0, 1, 2, 3, . . .) for n ≥ 2 is an

example.

Proof. pk = 2k − 2, rk = 2k + 1 and so

n ·mk = kpk + (n− k)rk = k(2k − 2) + (n− k)(2k + 1) = (2n− 3)k + n.

Thus,

(2.9) mk =

(
2− 3

n

)
k + 1.

which is positive and increasing in k for n ≥ 2. �
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3. The outcome and strategy regions

We consider repeated play. After the T th round the payoff to the n players is

a vector ST in Rn. There are 2n possible payoff vectors according to the choices

made by the players. For example, if in round T a single player cooperated, then

the vector ST has a single entry p1 and n− 1 entries r1. There are n such payoff

vectors according to which a single player cooperated.

For a single payoff after T rounds we use the time-average of the payoff

vectors:

(3.1) sT =
1

T

T∑
t=1

St.

Observe that

(3.2) sT+1 =
T

T + 1
sT +

1

T + 1
ST+1

and so

(3.3) sT+1 − sT =
1

T + 1
(ST+1 − sT ).

The sequence {sT } lies in the outcome set Ø ⊂ Rn which is a convex hull of

the 2n payoff vectors. The sequence need not converge in Ø but the set Ω of

limit points is always a nonempty, compact, connected subset of Ø, see e.g. [1,

Proposition 2.1].

The approach introduced by Smale in [5] is for each player to use the current

time average sT as data in order to determine his choice in round T + 1. In

this case, the symmetry of the game suggests that it would be sufficient for each

player to keep track of how he is doing and to compare it merely with the time

average of the mean payoff. That is, define π : Rn → R by

π(x1, . . . , xn) =
1

n

n∑
j=1

xj .

For player j the linear map Πj = πj×π : Rn → R2 maps the outcome set Ø onto

the set § ⊂ R2 which is the convex hull of the set of 2n points

(3.4) {(r0, r0), (pn, pn)} ∪ {(pk,mk), (rk,mk) : k = 1, . . . , n− 1}.

Thus, Πj maps sT to a pair (x, y) ∈ R2 with x the j player’s current average

payoff and with y the current average population mean.

Notice that from (2.5) and convexity it follows that (r0, r0) is the unique

point of § with y coordinate less than or equal to r0 and (pn, pn) is the unique

point of § with y coordinate greater than or equal to pn. Hence, these two points

are extreme points of §.
We will call {(pk,mk) : k = 1, . . . , n} the cooperation points and {(rk,mk) :

k = 0, . . . , n− 1} the defection points of §.
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Figure 1. A separation line

Definition 3.1. For a line ` in R2 with equation y = lx+ b we call the map

L : R2 → R given by (x, y) 7→ y − lx − b the associated affine map. We call `

a separation line for the game if each cooperation point is on or above ` and

each defection point is on or below `, i.e. L is non-negative on the cooperation

points and non-positive on the defection points.

The concept of a separation line is depicted on Figure 1.

Proposition 3.2. If a line ` with equation y = lx + b is a separation line,

then 0 ≤ l ≤ 1 and if n > 2 then 0 < l.

Proof. By the Intermediate Value Theorem, a separation line intersects

the intervals [(p1,m1), (r0, r0)] and [(pn, pn), (rn−1,mn−1)]. Hence, the steep-

est possible separation line connects (r0, r0) and (pn, pn) with slope 1. On the

other hand, the slope must be at least that of the line connecting (p1,m1) with

(rn−1,mn−1). This line has positive slope if n > 2 and slope 0 if n = 2. �

We will call the line through (r0, r0) and (pn, pn) the diagonal line or just

the diagonal. It is the line with equation y = x and is the unique separation line

with slope equal to 1.

If a line ` with equation y = lx+b passes through the point (pn, pn) then it is

a separation line if and only if l ∈ [l0, 1], when l0 = max
1≤k<n

(pn −mk)/(pn − pk).

By (2.4), we have l0 < 1.

All our results are based on the following.
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Proposition 3.3. Assume that X is a limit point of the sequence {sT }, i.e.

X ∈ Ω ⊂ Ø. Let ` be a line in R2 with finite slope.

(a) Assume that every defection point lies on or below `. If from some time

onward, player j defects whenever Πj(s
T ) lies above `, then Πj(X) lies

on or below `.

(b) Assume that every cooperation point lies on or above `. If from some time

onward, player j cooperates whenever Πj(s
T ) lies below `, then Πj(X)

lies on or above `.

Proof. Assume that y = lx + b is the equation of ` and that L is the

associated affine map. Let M be a positive number greater than the maximum

of L on §.
(a) Assume that after some time T0 ≥ 1 player j defects when L(Πj(s

T )) > 0.

Let M0 = T0 ·M . We show that for all T ≥ T0, L(Πj(s
T )) ≤M0/T . We proceed

by induction. Observe that the result holds for T = T0.

If L(Πj(s
T )) > 0 then player j defects on the next round and so L(Πj(S

T+1))

≤ 0 . Hence, because L is an affine map, (3.2) implies that

L(Πj(s
T+1)) =

T

T + 1
L(Πj(s

T )) +
1

T + 1
L(Πj(S

T+1))(3.5)

≤ T

T + 1
L(Πj(s

T )) ≤ T

T + 1
M0/T = M0/(T + 1),

by induction hypothesis.

On the other hand, if L(Πj(s
T )) ≤ 0

L(Πj(s
T+1)) =

T

T + 1
L(Πj(s

T )) +
1

T + 1
L(Πj(S

T+1))(3.6)

≤ 1

T + 1
L(Πj(S

T+1)) ≤ 1

T + 1
M ≤M0/(T + 1).

It follows that lim sup{L(Πj(s
T ))} ≤ 0 and so any limit point lies on or below `.

(b) The proof is completely analogous and left to the reader. It is convenient

to use −L instead of L. �

4. Simple Smale plan

Definition 4.1. Let ` be a separation line for the game with positive slope.

The simple Smale plan for player j defects on round T +1 when Πj(s
T ) is above

` and cooperates when Πj(s
T ) is on or below `.

We use the term “plan” because a strategy includes a choice of initial play

as well as a plan responding to previous outcomes. Observe that the demand

that the slope be positive is automatically satisfied if n > 2 by Proposition 3.2.

We will say that a player eventually uses a simple Smale plan when there is

a fixed simple Smale plan which is used by the player from some time onward.
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Theorem 4.2. Let Ω be the set of limit points of the sequence {sT }. If player

j eventually uses the simple Smale plan with separation line `, then Πj(Ω) ⊂ `.

Proof. This immediately follows from Proposition 3.3. �

Corollary 4.3. For j = 1, . . . , n let `j be a separation line with positive

slope and assume that at least one has slope less than 1. There exists a unique

point X ∈ Ø such that if each player j eventually uses the simple Smale plan

associated with `j, then the sequence {sT } converges in Ø to X. If each `j
passes through (pn, pn), then X = (pn, . . . , pn) and so we obtain convergence to

the position of complete cooperation.

Proof. Since line `j has positive slope we can write its equation as y =

lj(x−aj). Now let (x1, . . . , xn) be an arbitrary limit point of the sequence {sT }.
If player j uses the `j strategy, then with x = π(x1, . . . , xn) Theorem 4.2 implies

that (xj , x) = Πj(x1, . . . , xn) lies on `j and so x = lj(xj − aj).
If this holds for all j then (lj)

−1x = xj − aj . Let a = π(a1, . . . , an) and let

l̂ be the harmonic mean of the lj ’s, i.e. l̂ = [π((l1)−1, . . . , (ln)−1)]−1. It is clear

that x = l̂(x−a). Since not all the lj = 1, Proposition 3.2 implies that 0 < l̂ < 1

and so the line y = l̂(x − a) intersects the line y = x at a unique point (x, x).

That is, the mean, x, is determined by the lines `j . Since x = lj(xj − aj), all of

the xj ’s are determined as well.

Thus, the limit point X = (x1, . . . , xn) is uniquely determined by the equa-

tions x = l̂(x− a) and x = lj(xj − aj) for j = 1, . . . , n.

Since the sequence {sT } has a unique limit point, compactness implies con-

vergence.

Now assume that (pn, pn) ∈ `j for all j. Hence, (lj)
−1pn = pn − aj for all j

and so, averaging, we have pn = l̂(pn − a). Uniqueness in the above argument

implies x = pn. The point X = (pn, . . . , pn) is the unique point of Ø with

π(X) = pn. �

Remark 4.4. We can characterize the limit point (x1, . . . , xn) as follows. It

is the unique point such that there exists y ∈ R so that Xk = (xk, y) ∈ `k and

X = (1/n)
n∑

k=1

Xk is on the diagonal line with y = x.

Definition 4.5. Let ` be a separation line with positive slope. We call simple

Smale plan a good simple Smale plan when it is associated with a separation line `

which passes through (pn, pn) and which has slope l satisfying (n− 1)/n < l < 1.

That is, the equation of a separation line for a good simple Smale plan can

be written pn − y = l(pn − x) with (n− 1)/n < l < 1.

It follows from Corollary 4.3 that, if each player eventually uses a good simple

Smale plan, then we achieve convergence to complete cooperation. Smale calls
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this stability. However, we are also interested in what happens when only some

of the players are good.

Suppose that, for j = 1, . . . , k, player j uses a good simple Smale plan as-

sociated with separation line `j having slope lj . Suppose further that X =

(x1, . . . , xk, zk+1, . . . , zn) is a limit point for {sT }. We assume that 1 ≤ k ≤ n−1.

We will call the players j with j = k + 1, . . . , n the dissenting players. Define

(4.1)

x =
1

k

k∑
j=1

xj , z =
1

n− k

n∑
j=k+1

zj ,

y =
1

n

[ k∑
j=1

xj +

n∑
j=k+1

zj

]
=

1

n
[kx+ (n− k)z],

l̂ =

[
1

k

k∑
j=1

(lj)
−1
]−1

.

Thus, x is the mean payoff among the good players, z is the mean payoff among

the dissenters and y is the mean for the entire population.

From Theorem 4.2 it follows that (xj , y) = Πj(X) ∈ `j and so pn − y =

lj(pn − xj) for j = 1, . . . , k. Dividing by lj and averaging as before we obtain

pn − y = l̂(pn − x). Hence,

(4.2)
1

n
[k(pn − x) + (n− k)(pn − z)] = l̂(pn − x).

We can rewrite this as

(4.3)

(n− k)(pn − z) = (nl̂ − k)(pn − x),

z = x+
n(1− l̂)
n− k

(pn − x).

Now assume that k ≤ n−2 and suppose that zk+1 ≥ pn and so pn−zk+1 ≤ 0.

Define

(4.4) z̃ =
1

n− k − 1

n∑
j=k+2

zj .

So, we have

(4.5)
1

n
[k(pn − x) + (n− k − 1)(pn − z̃)] ≥ l̂(pn − x).

We can rewrite this as

(4.6) z̃ ≤ x− 1− n(1− l̂)
n− k − 1

(pn − x).

Now we apply all this.

Theorem 4.6. With 1 ≤ k ≤ n−1, assume that players j = 1, . . . , k eventu-

ally play good simple Smale plans. For a limit point X=(x1, . . . , xk, zk+1, . . . , zn)

let x be the mean payoff among the good players and let z be the mean payoff
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among the dissenting players. If z ≥ pn, then X = (pn, . . . , pn) the complete

cooperation point. Otherwise, x < z < pn. In particular, if k = n − 1 then

zn ≥ pn only when X = (pn, . . . , pn). Now assume that k ≤ n− 2. If zk+1 ≥ pn
and z̃ is the mean payoff among the remaining dissenting players, then either

X = (pn, . . . , pn) or x > z̃.

Proof. Because the strategies are assumed to be good simple Smale plans,

it follows that 1 > l̂ > (n− 1)/n. Hence, nl̂ − k > 0. It follows from (4.3)

that if z ≥ pn, then x ≥ pn. So y ≥ pn and this implies X is the cooperation

point. From the second equation in (4.3) we see that the dissenters on average do

better than the good players but not as well as if they switched to cooperation

and achieved the pn payoff.

If there is a single dissenter, player n then z = zn and so zn ≥ pn only when

X = (pn, . . . , pn).

The second result follows from (4.6) because 1− n(1− l̂) > 0. �

Thus, if even one player uses a good simple Smale plan and the dissenting

players do not allow the group to reach the cooperation point, then on average

they do worse than the pn payoff although they do better than the good players.

With z < pn it may still happen that some among the dissenters can reach

a payoff of pn or greater. However, if this happens then the remaining dissenters

on average do worse than the good players and so it pays for some of them

to switch to a good simple Smale plan. That is, at least one of the remaining

dissenters would do better by switching to a good simple Smale plan.

The case of a dissenter obtaining a payoff greater than pn can happen. It

seems to require exploiting naive behavior by the other dissenters. Here is an

extreme case.

Example 4.7. With n ≥ 3, if, from some time on, player k for k = 1, . . . , n−2

always cooperates, and player n always defects, then player n always receives

a payoff between rn−2 and rn−1 regardless of the behavior of player n − 1, e.g.

even if player n−1 uses a good simple Smale strategy. In particular, if rn−2 > pn,

then player n always receives a payoff greater than pn.

If, in addition, player n− 1 eventually uses a simple Smale strategy then we

obtain convergence to a unique point X regardless of the early plays.

Proof. The strategies All-C and All-D, always cooperating and always de-

fecting, respectively, trivially include Smale plans. If players 1, . . . , n − 2 al-

ways use All-C and player n always uses All-D, then every outcome ST ∈ Ø

is either V0 = (pn−2, . . . , pn−2, rn−2, rn−2) or V1 = (pn−1, . . . , pn−1, pn−1, rn−1),

depending whether player n − 1 defects or cooperates. It follows that every

average point sT lies on the segment between them, which we parameterize by

Va = V0 + a(V1 − V0) for 0 ≤ a ≤ 1. If the strategies All-C and All-D are only
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adopted after some time T0, the effect of the initial terms on the average sequence

{sT } tends to 0 as T →∞ and so in any case, the limit set Ω is contained in the

segment [V0, V1]. So for any X ∈ Ω, πn(X) ≥ rn−2.

The line δ through Πn−1([V0, V1]) = [(rn−2,mn−2), (pn−1,mn−1)] has nega-

tive slope. As a separation line ` has positive slope it follows that δ∩` is a single

point. Thus, Π−1n−1(`) is a hyperplane in Rn which intersects [V0, V1] in a unique

point X. By Theorem 4.2 Ω = {X} and so we have convergence to X. �

In the above example, suppose `l is a separation line through (pn, pn) with

equation y − pn = l(x − pn) so that l ≤ 1. We then let Xl = Val
denote

the intersection point with the line δ. The value al is obtained by solving the

equation π(Va)− pn = l(πn−1(Va)− pn).

In the special case l = 1, `1 is the diagonal with equation y = x and so a1
satisfies

mn−2 + a1(mn−1 −mn−2) = rn−2 + a1(pn−1 − rn−2).

That is, a1 equals

rn−2 −mn−2

(mn−1 −mn−2) + (rn−2 − pn−1)
=

rn−2 −mn−2

(rn−2 −mn−2) + (mn−1 − pn−1)
.

Thus, πn(X1) = rn−2+a1(rn−1−rn−2) ≥ pn when a1 ·rn−1+(1−a1)·rn−2 ≥ pn.

If l < 1, then `l intersects δ between Va1
and V1. So, if l < 1, then al > a1.

Because πn(Va) is increasing in a, we see that

(4.7) l < 1 ⇒ πn(Xl) > πn(X1).

With n = 3, (p1, r0, p2, p3, r1, r2) = (0, 2, 4, 6, 7, 8) provides an example with

r1 > p3, since 3(m0,m1,m2,m3) = (6, 14, 16, 18). Thus, if player 1 always

cooperates and player 3 always defects, then player 3 receives a payoff of at least

7 > 6 regardless of the behavior of player 2.

Even without the rn−2 > pn assumption, it can happen that a dissenter

obtains greater than pn even when one of the other players uses a good, simple,

Smale plan.

Example 4.8. Assume that for n ≥ 3, (p1, r0, p2, r1, . . .) = (0, 1, 2, 3, . . .) as

in Example 2.1. If, eventually, player k for k = 1, . . . , n − 2 always cooperates,

player n − 1 uses a good, simple Smale plan and player n always defects, then

there is a unique limit point X = (x1, . . . , xn) with xn > pn = 2n− 2.

Proof. In this case, we have

πj(Va) = 2n− 6 + 2a = 2n− 3 + (2a− 3) for j = 1, . . . , n− 2,

πn−1(Va) = 2n− 3− a, πn(Va) = 2n− 3 + 2a,

π(Va) = 2n− 3 +
1

n
[a(2n− 3)− 3(n− 2)].
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Equating πn−1(Va) = π(Va) to solve for a1 we obtain a1 = (n− 2)/(n− 1).

Hence,

(4.8) πn(X1) = 2n− 3 + 2a1 = 2n− 2 +
n− 3

n− 1
.

Since pn = 2n − 2, (4.8) and (4.7) imply πn(Xl) > πn(X1) ≥ pn with the

latter inequality strict if n > 3. Recall that for a good, simple Smale plan, the

separation line passes through (pn, pn) and has slope less than 1. �

Remark 4.9. In the above example with n = 3 we easily see that if player

2 uses the simple Smale plan with separation line the diagonal, i.e. l = 1, then

a1 = 1/2 and the payoff vector is X1 = (1, 2.5, 4) when player 1 uses All-C

and player 3 uses All-D. In general, if player 2 uses the diagonal simple Smale

plan, then no player can obtain a payoff greater than 4 = p3, the cooperative

payoff. For, if X = (x1, x2, x3) is a limit point, then Π2(X) = (x2, x) lies on

the diagonal by Theorem 4.2 and so x2 = x. This implies that x = (x1 +

x3)/2. Observe that Π1(X) = (x1, x) ∈ Π1(Ø) = §′ which is the convex hull

of {(1, 1), (0, 2), (3, 2), (2, 3), (5, 3), (4, 4)}. It follows that x1 ≥ 2x − 4. Thus,

x3 = 2x− x1 ≤ 4.
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