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EQUIVALENCE BETWEEN

UNIFORM L2?

(Ω) A-PRIORI BOUNDS

AND UNIFORM L∞(Ω) A-PRIORI BOUNDS

FOR SUBCRITICAL ELLIPTIC EQUATIONS

Alfonso Castro — Nsoki Mavinga — Rosa Pardo

Abstract. We provide sufficient conditions for a uniform L2? (Ω) bound

to imply a uniform L∞(Ω) bound for positive classical solutions to a class
of subcritical elliptic problems in bounded C2 domains in RN . We also

establish an equivalent result for sequences of boundary value problems.

1. Introduction

We consider the existence of L∞(Ω) a priori bounds for classical positive

solutions to the boundary value problem

(1.1) −∆u = f(u), in Ω, u = 0, on ∂Ω,
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where Ω ⊂ RN , N > 2, is a bounded domain with C2 boundary ∂Ω. We provide

sufficient conditions on f for L2∗(Ω) a priori bounds to imply L∞(Ω) a priori

bounds, where 2∗ = 2N/(N − 2) is the critical Sobolev exponent. The converse

is obviously true without any additional hypotheses.

The existence of a priori bounds for (1.1) has a rich history. In chronological

order, [18], [14], [17], [4], [15], [11], [10] and [2] are some of the main contributors

to such a development. We refer the reader to [6] where their roles are discussed.

The ideas for the proof of our main Theorem are similar to those used in

[6, Theorem 1.1]. In [6] we give sufficient conditions on the nonlinearity to

have L∞(Ω) a priori bounds, while here we prove the equivalence between the

existence of L∞(Ω) a priori bounds and the existence of L2?

(Ω) a priori bounds

for subcritical elliptic equations. Unlike the proof in [6], here we do not use

Pohozaev or moving planes arguments.

Our main result is the following theorem.

Theorem 1.1. Assume that the nonlinearity f : R+ → R is a locally Lip-

schitzian function that satisfies:

(H1) There exists a constant C0 > 0 such that

lim inf
s→∞

1

f(s)
min

[s/2,s]
f ≥ C0.

(H2) There exists a constant C1 > 0 such that

lim sup
s→∞

1

f(s)
max
[0,s]

f ≤ C1.

(F) lim
s→+∞

f(s)

s2?−1
= 0; that is, f is subcritical.

Then the following conditions are equivalent :

(a) there exists a uniform constant C (depending only on Ω and f) such

that, for every positive classical solution u of (1.1),

‖u‖L∞(Ω) ≤ C,

(b) there exists a uniform constant C (depending only on Ω and f) such that

for every positive classical solution u of (1.1)

(1.2)

∫
Ω

|f(u)|2N/(N+2) dx ≤ C,

(c) there exists a uniform constant C (depending only on Ω and f) such

that, for every positive classical solution u of (1.1),

(1.3) ‖u‖L2∗ (Ω) ≤ C.

In [7] and [8] the associated bifurcation problem for the nonlinearity f(λ, s) =

λs + g(s) with g subcritical is studied. Sufficient conditions guaranteeing that
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either for any λ < λ1 there exists at least a positive solution, or that there exists

a λ∗ < 0 and a continuum (λ, uλ), λ∗ < λ < λ1, of positive solutions such that

‖∇uλ‖L2(Ω) →∞, as λ→ λ∗,

are provided. See [8, Theorem 2]. In the case Ω is convex, for any λ < λ1

there exists at least a positive solution, see [7, Theorem 1.2]. In [9] the concept

of regions with convex-starlike boundary is introduced and sufficient conditions

for the existence of a priori bounds in such regions are established. In [16] the

existence of a priori bounds for elliptic systems is provided.

In this paper, we also provide sufficient conditions for the equivalence of

the existence of L2?

(Ω) a priori bound with that of L∞(Ω) a priori bound for

sequences of boundary value problems. In fact, we prove the following theorem.

Theorem 1.2. Consider the following sequence of BVPs

(1.3)k −∆v = gk(v) in Ω, v = 0 on ∂Ω,

with gk : R+ → R locally Lipschitzian. We assume that the following hypotheses

are satisfied

(H1)k There exists a uniform constant C1 > 0, such that

lim inf
s→+∞

1

gk(s)
min

[s/2,s]
gk ≥ C1.

(H2)k There exists a uniform constant C2 > 0 such that

lim sup
s→+∞

1

gk(s)
max
[0,s]

gk ≤ C2.

Let {vk} be a sequence of classical positive solutions to (1.3)k for k ∈ N. If

(F)k lim
k→+∞

gk(‖vk‖)/‖vk‖2
?−1 = 0,

then, the following two conditions are equivalent :

(a) there exists a uniform constant C, depending only on Ω and the sequence

{gk}, but independent of k, such that for every vk > 0, classical solution

to (1.3)k

lim sup
k→∞

‖vk‖L∞(Ω) ≤ C;

(b) there exists a uniform constant C, depending only on Ω and the sequence

{gk}, but independent of k, such that for every vk > 0, classical solution

to (1.3)k

(1.4) lim sup
k→∞

∫
Ω

|gk(vk)|2N/(N+2) dx ≤ C.

(c) there exists a uniform constant C (depending only on Ω and the sequence

{gk}) such that for every positive classical solution vk of (1.3)k

(1.5) ‖vk‖L2∗ (Ω) ≤ C.
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Hypothesis (H1)k, and (H2)k, are not sufficient for the existence of an L∞

a priori bound. Atkinson and Pelletier in [1] show that for fε(s) = s2?−1−ε

and Ω a ball in R3, there exists x0 ∈ Ω and a sequence of solutions uε such

that lim
ε→0

uε = 0 in C1(Ω \ {x0}) and lim
ε→0

uε(x0) = +∞. See also Han [13], for

non-spherical domains.

Furthermore, hypotheses (H1)k, (H2)k, and (F)k, are not sufficient for the

existence of an L∞ a priori bound. In fact, in Section 4 we construct a sequence

of BVP satisfying (H1)k, (H2)k, and (F)k, and a sequence of solutions vk such

that lim
k→∞

‖vk‖∞ = +∞. Our example also shows the non-uniqueness of positive

solutions.

2. Proof of Theorems 1.1 and 1.2

In this section, we state and prove our main results that hold for general

bounded domains, including the non-convex case. We provide a sufficient condi-

tion for a uniform L2?

(Ω) bound to imply a uniform L∞(Ω) bound for classical

positive solutions of the subcritical elliptic equation (1.1). We also give sufficient

conditions such that the L∞(Ω) bound of a sequence of classical positive solu-

tions of a sequence of BVPs (1.3)k is equivalent to the uniform L2?

(Ω) bound

of the sequence of reaction functions. The arguments rely on the estimation of

the radius R of a ball where the function u exceeds half of its L∞ bound, see

Figure 1.

All throughout this paper, we assume that Ω ⊂ RN is a bounded domain

with C2 boundary, and C denotes several constants independent of u, where

u > 0 is any classical solution to (1.1).

Figure 1. A solution, its L∞ norm, and the estimate of the radius R such
that u(x) ≥ ‖u‖∞/2 for all x ∈ B(x0, R), where x0 is such that u(x0) =

‖u‖∞.
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Remark 2.1. By (1.2), elliptic regularity and the Sobolev embeddings imply

that

(2.1) ‖u‖H1
0 (Ω) ≤

(∫
Ω

|∇u|2 dx
)1/2

≤ C.

Hence, for any classical solutions to (1.1), we have

(2.2)

∫
Ω

uf(u) dx = ‖u‖2H1
0 (Ω) ≤ C.

Proof of Theorem 1.1. Since Ω is bounded (a) implies (b) and (c). From

elliptic regularity and condition (1.2), we deduce that ‖u‖W 2,2N/(N+2) ≤ C. It

follows using twice the Sobolev embedding that a uniform bound in W 2,2N/(N+2)

implies a uniform bound in H1(Ω) and a uniform bound in L2?

(Ω), that is,

(2.3) ‖u‖L2∗ (Ω) ≤ C,

for all classical positive solution u of equation (1.1). Therefore, (b) implies (c).

Now, assume that (c) holds. It follows from the subcriticality condition (F)

that |f(s)|2N/(N+2) ≤ s2∗ for all s large enough. Thus, for any classical solution

to (1.1), we have∫
Ω

|f(u)|2N/(N+2) dx ≤
∫

Ω

|u|2N/(N−2) dx+ C < C.

Thus (b) and (c) are equivalent.

Next, we concentrate our attention in proving that (b) implies (a). Since

2N/(N + 2) = 1 + 1/(2? − 1), the hypothesis (1.2) can be written

(2.4)

∫
Ω

|f(u)|1+1/(2?−1) dx ≤ C.

Therefore,

(2.5)

∫
Ω

|f(u(x))|q dx ≤
∫

Ω

|f(u(x))|1+1/(2?−1)|f(u(x))|q−1−1(2?−1) dx

≤ C‖f(u( · ))‖q−1−1/(2?−1)
∞ ,

for any q > N/2.

From the elliptic regularity (see [3] and [12, Lemma 9.17]), it follows that

(2.6) ‖u‖W 2,q(Ω) ≤ C‖∆u‖Lq(Ω) ≤ C ‖f(u( · ))‖1−1/q−1/((2?−1)q)
∞ .

Let us restrict q ∈ (N/2, N). From the Sobolev embeddings, for 1/q∗ = 1/q−1/N

with q∗ > N we can write

(2.7) ‖u‖W 1,q∗ (Ω) ≤ C‖u‖W 2,q(Ω) ≤ C‖f(u( · ))‖1−1/q−1/((2?−1)q)
∞ .

From Morrey’s Theorem, (see [3, Theorem 9.12 and Corollary 9.14]), there exists

a constant C (depending only on Ω, q and N) such that, for all x1, x2 ∈ Ω,

(2.8) |u(x1)− u(x2)| ≤ C|x1 − x2|1−N/q
∗
‖u‖W 1,q∗ (Ω).
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Therefore, for all x ∈ B(x1, R) ⊂ Ω,

(2.9) |u(x)− u(x1)| ≤ CR2−N/q‖u‖W 2,q(Ω).

Now, we shall argue by contradiction. Suppose that there exists a sequence

{uk} of classical positive solutions of (1.1) such that

(2.10) lim
k→∞

‖uk‖ = +∞, where ‖uk‖ := ‖uk‖∞.

Let xk ∈ Ω be such that uk(xk) = max
Ω

uk. Let us choose Rk such that Bk =

B(xk, Rk) ⊂ Ω, and

uk(x) ≥ 1

2
‖uk‖ for any x ∈ B(xk, Rk).

and there exists yk ∈ ∂B(xk, Rk) such that

(2.11) uk(yk) =
1

2
‖uk‖.

Let us denote by

mk := min
[‖uk‖/2,‖uk‖]

f, Mk := max
[0,‖uk‖]

f.

Therefore, we obtain

(2.12) mk ≤ f(uk(x)) if x ∈ Bk, f(uk(x)
)
≤Mk for all x ∈ Ω.

Then, reasoning as in (2.5), we obtain∫
Ω

∣∣f(uk)∣∣q dx ≤ C M
q−1−1/(2?−1)
k .(2.13)

From the elliptic regularity, see (2.6), we deduce

(2.14) ‖uk‖W 2,q(Ω) ≤ CM
1−1/q−1/((2?−1)q)
k .

Therefore, from Morrey’s Theorem, see (2.9), for any x ∈ B(xk, Rk)

(2.15) |uk(x)− uk(xk)| ≤ C(Rk)2−N/qM
1−1/q−1/((2?−1)q)
k .

Taking x = yk in the above inequality and from (2.11) we obtain

(2.16) C (Rk)2−N/qM
1−1/q−1/((2?−1)q)
k ≥ |uk(yk)− uk(xk)| = 1

2
‖uk‖,

which implies

(2.17) (Rk)2−N/q ≥ 1

2C

‖uk‖
M

1−1/q−1/((2?−1)q)
k

,

or equivalently,

(2.18) Rk ≥
(

1

2C

‖uk‖
M

1−1/q−1/((2?−1)q
k )

)1/(2−N/q)

.
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Consequently, ∫
B(xk,Rk)

u2∗

k ≥
(

1

2
‖uk‖

)2∗

ω(Rk)N ,

where ω = ωN is the volume of the unit ball in RN .
Due to B(xk, Rk) ⊂ Ω, substituting inequality (2.18), taking into account

hypothesis (H2), and rearranging terms, we obtain

‖uk‖2
∗

L2∗ (Ω) =

∫
Ω

u2∗

k ≥
(

1

2
‖uk‖

)2∗

ω

(
1

2C

‖uk‖
M

1−1/q−1/((2?−1)q)
k

)N/(2−N/q)
≥
(

1

2
‖uk‖

)2∗

ω

(
1

2C

‖uk‖
[f(‖uk‖)]1−1/q−1/((2?−1)q)

)1/(2/N−1/q)

=C‖uk‖2
?−1

(
[‖uk‖]2/N−1/q ‖uk‖

[f(‖uk‖)]1−1/q−1/((2?−1)q)

)1/(2/N−1/q)

=C
‖uk‖2

?−1

f(‖uk‖)
( ‖uk‖1+2/N−1/q

[f(‖uk‖)]1−2/N−1/(2?−1)q

)1/(2/N−1/q)

≥C ‖uk‖
2?−1

f(‖uk‖)

(
‖uk‖(N+2)[1/N−1/((N+2)q)]

[f(‖uk‖)](N−2)[1/N−1/((N+2)q)]

)1/(2/N−1/q)

.

Finally, from (2.10) and the hypothesis (F) we deduce∫
Ω

u2∗

k ≥ C
‖uk‖2

?−1

f(‖uk‖)

(
‖uk‖2

∗−1

f(‖uk‖)

)(N−2)[1/N−1/((N+2)q)](2/N−1/q)

=

(
‖uk‖2

∗−1

f(‖uk‖)

)1+(N−2)[1/N−1/((N+2)q)]/(2/N−1/q)

→∞ as k →∞,

which contradicts (2.3). Thus (b) implies (a). �

Remark 2.2. One can easily see that condition (1.4) implies that there exists

a uniform constant C4 > 0 such that

(2.19) lim sup
k→∞

∫
Ω

vk gk(vk) dx ≤ C4,

for all classical positive solutions {vk} to (1.3)k.

Proof of Theorem 1.2. Clearly, condition (a) implies (b) and (c). By

the elliptic regularity and condition (1.4), we have that ‖vk‖W 2,2N/(N+2) ≤ C.

Therefore, ‖vk‖H1(Ω) ≤ C. Hence, by the Sobolev embedding, we deduce that

(2.20) ‖vk‖L2∗ (Ω) ≤ C for all k.

Using similar arguments as in Theorem 1.1 and condition (F)k, one can show that

(b) and (c) are equivalent. We shall concentrate our attention in proving that (b)

implies (a). All throughout this proof C denotes several constants independent

of k.
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Observe that 1 + 1/(2∗ − 1) = 2N/(N + 2). From hypothesis (b), see (1.4),

there exists a fixed constant C > 0, (independent of k) such that∫
Ω

|gk(vk(x))|q dx ≤
∫

Ω

|gk(vk(x))|1+1/(2?−1)|gk(vk(x))|q−1−1/(2?−1) dx(2.21)

≤ C‖gk(vk( · ))‖q−1−1/(2?−1)
∞ ,

for k big enough, and for any q > N/2. Therefore, from the elliptic regularity,

see [12, Lemma 9.17]

(2.22) ‖vk‖W 2,q(Ω) ≤ C‖∆vk‖Lq(Ω) ≤ C ‖gk(vk( · ))‖ 1−1/q−1/((2?−1)q)
∞ ,

for k big enough.

Let us restrict q ∈ (N/2, N). From Sobolev embeddings, for 1/q∗ = 1/q−1/N

with q∗ > N we can write

(2.23) ‖vk‖W 1,q∗ (Ω) ≤ C‖vk‖W 2,q(Ω) ≤ C ‖gk(vk( · ))‖1−1/q−1/((2?−1)q)
∞ ,

for k big enough. From Morrey’s Theorem, (see [3, Theorem 9.12 and Corol-

lary 9.14]), there exists a constant C only dependent on Ω, q and N such that

(2.24) |vk(x1)− vk(x2)| ≤ C|x1 − x2|1−N/q
∗
‖vk‖W 1,q∗ (Ω),

for all x1, x2 ∈ Ω and for any k. Therefore, for all x ∈ B(x1, R) ⊂ Ω

(2.25) |vk(x)− vk(x1)| ≤ C R2−N/q‖vk‖W 2,q(Ω),

for any k.

From now on, we argue by contradiction. Let {vk} be a sequence of classical

positive solutions to (1.3)k and assume that

(2.26) lim
k→∞

‖vk‖ = +∞, where ‖vk‖ := ‖vk‖∞.

Let xk ∈ Ω be such that vk(xk) = max
Ω

vk. Let us choose Rk such that Bk :=

B(xk, Rk) ⊂ Ω, and

vk(x) ≥ 1

2
‖vk‖ for any x ∈ Bk.

and there exists yk ∈ ∂Bk such that

(2.27) vk(yk) =
1

2
‖vk‖.

Let us denote by

mk := min
[‖vk‖/2,‖vk‖]

gk, Mk := max
[0,‖vk‖]

gk.

Therefore, we obtain

(2.28) mk ≤ gk(vk(x)) if x ∈ Bk, gk(vk(x)) ≤Mk for all x ∈ Ω.
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Then, reasoning as in (2.21), we obtain

(2.29)

∫
Ω

|gk(vk)|q dx ≤ CM q−1−1/(2?−1)
k .

From the elliptic regularity, see (2.22), we deduce

(2.30) ‖vk‖W 2,q(Ω) ≤ CM
1−1/q−1/((2?−1)q)
k .

Therefore, from Morrey’s Theorem, see (2.25), for any x ∈ Bk,

(2.31) |vk(x)− vk(xk)| ≤ C(Rk)2−N/qM
1−1/q−1/((2?−1)q)
k .

Particularizing x = yk in the above inequality and from (2.27) we obtain

(2.32) C(Rk)2−N/qM
1−1/q−1/((2?−1)q)
k ≥ |vk(yk)− vk(xk)| = 1

2
‖vk‖,

which implies

(2.33) (Rk)2−N/q ≥ 1

2C

‖vk‖
M

1−1/q−1/((2?−1)q)
k

,

or equivalently

(2.34) Rk ≥
(

1

2C

‖vk‖
M

1−1/q−1/((2?−1)q)
k

)1/(2−N/q)

.

Consequently, taking into account (2.28),∫
Bk

vk|gk(vk)| dx ≥ 1

2
‖vk‖mkω(Rk)N ,

where ω = ωN is the volume of the unit ball in RN , see Figure 2 (b).

Due to Bk ⊂ Ω , substituting inequality (2.34), and rearranging terms, we

obtain∫
Ω

vk|gk(vk)| dx ≥ 1

2
‖vk‖mkω

(
1

2C

‖vk‖
M

1−1/q−1/((2?−1)q)
k

)N/(2−N/q)
= Cmk

(
[‖vk‖]2/N−1/q ‖vk‖

M
1−1/q−1/((2?−1)q)
k

)1/(2/N−1/q)

= Cmk

(
‖vk‖1+2/N−1/q

M
1−1/q−1/((2?−1)q)
k

)1/(2/N−1/q)

= C
mk

Mk

(
‖vk‖1+2/N−1/q

M
1−2/N−1/((2?−1)q)
k

)1/(2/N−1/q)

At this moment, let us observe that from hypothesis (H1)k and (H2)k

(2.35)
mk

Mk
≥ C, for all k big enough.
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Hence, taking again into account hypothesis (H2)k, and rearranging exponents,

we can assert that∫
Ω

vk|gk(vk)| dx ≥ C
(
‖vk‖1+2/N−1/q

M
1−2/N−1/((2?−1)q)
k

)1/(2/N−1/q)

(2.36)

≥ C
(

‖vk‖1+2/N−1/q

[gk(‖vk‖)]1−2/N−1/((2?−1)q)
)1/(2/N−1/q)

≥ C
(

‖vk‖(N+2)[1/N−1/((N+2)q)]

[gk(‖vk‖)](N−2)[1/N−1/((N+2)q)]

)1/(2/N−1/q)

.

Finally, from hypothesis (F)k we deduce∫
Ω

vk|gk(vk)| dx ≥ C
(
‖vk‖2

∗−1

gk(‖vk‖)

)(N−2)[1/N−1/((N+2)q)]/(2/N−1/q)

→∞,

as k →∞, which contradicts (2.19). �

3. Radial problems with almost critical exponent

In this section, we build an example of a sequence of functions {gk} growing

subcritically, and satisfying the hypotheses (H1)k, (H2)k, and (F)k, such that

the corresponding sequence of BVP

(3.1)

∆wk + gk(wk) = 0 in |x| ≤ 1,

wk(x) = 0 for |x| = 1.

has an unbounded (in the L∞(Ω)-norm) sequence {wk} of positive solutions.

As a consequence of Theorem 1.2, this sequence {wk} is also unbounded in the

L2∗(Ω)-norm.

Let N ≥ 3 be an integer. For each positive integer k > 2 let

gk(s) =



0 for s < 0,

s(N+2)/(N−2) for s ∈ [0, k],

k(N+2)/(N−2) for s ∈ [k, k(N+2)/(N−2)],

k(N+2)/(N−2) + (s− k(N+2)/(N−2))(N+1)/(N−2)

for all s > k(N+2)/(N−2).

For the sake of simplicity in notation, we write gk := g.

Let uk := u denote the solution to

(3.2)

u′′ +
N − 1

r
u′ + g(u) = 0 for r ∈ (0, 1],

u(0) = kN/(N−2) for u′(0) = 0.
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Let r1 = sup{r > 0 : uk(s) ≥ k on [0, r]}. Since g ≥ 0, u is decreasing,

consequently for r ∈ [0, r1], k ≤ u(r) ≤ kN/(N−2), and

−rN−1u′(r) =

∫ r

0

sN−1g(u(s)) ds(3.3)

=

∫ r

0

sN−1k(N+2)/(N−2) ds =
k(N+2)/(N−2)

N
rN ,

so

(3.4) u′(r) =
k(N+2)/(N−2)

N
r.

Hence

(3.5) u(r) = kN/(N−2) − k(N+2)/(N−2)

2N
r2, for r ∈ [0, r1].

Thus, u(r) ≥ kN/(N−2)/2, for all 0 ≤ r ≤ r0 :=
√
N
/
k1/(N−2), and u(r0) =

kN/(N−2)/2.

By well established arguments based on the Pohozaev identity, see [5], we

have

(3.6) P (r) := rNE(r) +
N − 2

2
rN−1 u(r)u′(r) =

∫ r

0

sN−1 Γ
(
u(s)

)
ds,

where

E(r) =
1

2
(u′(r))2+G(u(r)), Γ(s) = NG(s)−N − 2

2
sg(s), G(s) =

∫ s

0

g(t) dt.

For s ∈ [k, kN/(N−2)],

(3.7) Γ(s) = −N + 2

2
k2N/(N−2) +

N + 2

2
s k(N+2)/(N−2) ≥ 0.

Hence

Γ(u(r)) ≥ N + 2

8
k(2N+2)/(N−2) for all r ≤ r0, k ≥ 4(N−2)/2.

Due to Γ(s) = 0 for all s ≤ k, (3.6) and (3.7), for r ≥ r0,

P (r) ≥ P (r0) ≥ N + 2

8N
k(2N+2)/(N−2) rN0 ≥

N + 2

8
N (N−2)/2 k(N+2)/(N−2).

Due to (3.7), for r ≥ r0, we have

P (r) ≥ P (r0) ≥ N + 2

8
N (N−2)/2k(N+2)/(N−2).

From (3.5) u(r1) = k with

r1 =

√
2N

[(
1

k

)2/(N−2)

−
(

1

k

)4/(N−2)]
=
√

2N

(
1

k

)1/(N−2)

+ o

((
1

k

)1/(N−2))
.
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From the definition of g, −u′(r1) = k(N+2)/(N−2) r1/N (see (3.4)), which implies

P (r1) ≥ rN+2
1 O

(
k2(N+2)/(N−2)

)
− rN1 O

(
k2N/(N−2)

)
≥ O

(
k(N+2)/(N−2)

)
−O

(
kN/(N−2)

)
≥ O

(
k(N+2)/(N−2)

)
.

For r ≥ r1,

−N − 2

2
rN−1 u(r)u′(r) ≥ (N − 2)rN

2N
u(r)u(r)(N+2)/(N−2)(3.8)

=
(N − 2)rN

2N
u(r)2N/(N−2) = rNG(u(r)).

This and Pohozaev’s identity imply

[(u′(r)]2 ≥ O
(
k(N+2)/(N−2)

) 1

rN
or − u′(r) ≥ O

(
k(N+2)/(2(N−2))

) 1

rN/2
.

Integrating on [r1, r] we have

u(r) ≤ k −O
(
k(N+2)/(2(N−2))

)( 1

r
(N−2)/2
1

− 1

r(N−2)/2

)
,

which implies that there exists k0 such that if k ≥ k0 then u(r) = 0 for some

r ∈ (r1, 2r1]. Since (3.8), r1 = r1(k)→ 0 as k →∞.
Let v := vk denote the solution to

(3.9)

v′′ +
N − 1

r
v′ + g(v) = 0, r ∈ (0, 1],

v(0) = k(N+2)/(N−2), v′(0) = 0.

Let r1 = sup{r > 0 : vk(s) ≥ k on [0, r]}. For v(r) ≥ k, i ntegrating (3.4),

we deduce

v(r) = k(N+2)/(N−2) − k(N+2)/(N−2)

2N
r2, for r ∈ [0, r1],(3.10)

v(r1) = k(N+2)/(N−2) − k(N+2)/(N−2)

2N
r2
1 = k,(3.11)

therefore

(3.12) r1 =

√
2N

(
1−

(
1

k

)4/(N−2))
> 1,

therefore v(r) ≥ k for all r ∈ [0, 1]. So, by continuous dependence on initial

conditions, there exists dk ∈
(
kN/(N−2), k(N+2)/(N−2)

)
such that the solution

w = wk to w′′ +
N − 1

r
w′ + gk(w) = 0, r ∈ (0, 1],

w(0) = dk, w′(0) = 0.

satisfies w(r) ≥ 0 for all r ∈ [0, 1], and w(1) = 0. Since k may be taken arbitrarily

large, and as a consequence of Theorem 1.2, we have established the following

result.
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Corollary 3.1. There exists a sequence of functions gk : R→ R and a se-

quence {wk} of positive solutions to (3.1), such that each function gk grows

subcritically and satisfies the hypotheses (H1)k, (H2)k and (F)k of Theorem 1.2,

and the sequence {wk} of positive solutions to (3.1), is unbounded in the L∞(Ω)-

norm. Moreover, this sequence {wk} is also unbounded in the L2∗(Ω)-norm.

Let now v := vk denote the solution to

(3.13)

v′′ +
N − 1

r
v′ + g(v) = 0, r ∈ (0, 1],

v(0) = k, v′(0) = 0.

Since Γ(s) = 0 for all s ≤ k, and the solution is decreasing, by Pohozaev’s

identity

r(v′(r))2 +
N − 2

4N
r v(r)2N/(N−2) +

N − 2

2
v(r)v′(r) = 0, for all r ∈ [0, 1].

Hence, if v(r̂) = 0 for some r̂ ∈ (0, 1], then v′(r̂) = 0 and the uniqueness of

the solution of the IVP (3.13), implies v(r) = 0 for all r ∈ [0, 1]. Since this

contradicts v(0) = k > 0 we conclude that v(r) > 0 for all r ∈ [0, 1]. Therefore,

by continuous dependence on initial conditions, there exists d′k ∈
(
k, kN/(N−2)

)
such that the solution z = zk toz′′ +

N − 1

r
z′ + gk(z) = 0, r ∈ (0, 1],

z(0) = d′k, z′(0) = 0.

satisfies z(r) ≥ 0 for all r ∈ [0, 1], and z(1) = 0.

Corollary 3.2. For any k ∈ N, the BVP (3.1) has at least two positive

solutions.
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