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A GRADIENT FLOW

GENERATED BY A NONLOCAL MODEL

OF A NEURAL FIELD IN AN UNBOUNDED DOMAIN

Severino Horacio da Silva — Antônio Luiz Pereira

Abstract. In this paper we consider the nonlocal evolution equation

∂u(x, t)

∂t
+ u(x, t) =

∫
RN

J(x− y)f(u(y, t))ρ(y) dy + h(x).

We show that this equation defines a continuous flow in both the space

Cb(RN ) of bounded continuous functions and the space Cρ(RN ) of con-

tinuous functions u such that u · ρ is bounded, where ρ is a convenient
“weight function”. We show the existence of an absorbing ball for the flow

in Cb(RN ) and the existence of a global compact attractor for the flow in

Cρ(RN ), under additional conditions on the nonlinearity. We then exhibit
a continuous Lyapunov function which is well defined in the whole phase

space and continuous in the Cρ(RN ) topology, allowing the characteriza-

tion of the attractor as the unstable set of the equilibrium point set. We
also illustrate our result with a concrete example.

1. Introduction

We consider here the nonlocal evolution equation

(1.1)
∂u(x, t)

∂t
+ u(x, t) =

∫
RN

J(x− y)f(u(y, t))ρ(y) dy + h(x),
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where f is a continuous real function, J : RN → R is a nonnegative integrable

function, ρ : RN → R is a symmetric nonnegative bounded “weight” function

with
∫
RN ρ(x)d(x) < ∞ and h is a bounded continuous function. Additional

hypotheses will be added when needed in the sequel. We can rewrite equation

(1.1) as

∂u(x, t)

∂t
+ u(x, t) = J∗ρ(f ◦ u)(x, t) + h(x), h ≥ 0,

where the ∗ρ above denotes convolution product with respect to the measure

dµ(y) = ρ(y) dy, that is

(1.2) J∗ρ(v)(x) :=

∫
RN

J(x− y)v(y) dµ(y) =

∫
RN

J(x− y)v(y)ρ(y) dy.

Equation (1.1) is a variation of the equation derived by Wilson and Cowan [24],

to model neuronal activity. There are also other variations of this model in the

literature (see, for example, [1], [3], [6], [10], [13]).

The function u(x, t) denotes the mean membrane potential of a patch of

tissue located at position x ∈ RN at time t ≥ 0. The connection function J(x)

determines the coupling between the elements at position x with the element

at position y. The (usually nonnegative nondecreasing function) f(u) gives the

neural firing rate, or average rate at which spikes are generated, corresponding

to an activity level u. The function h denotes an external stimulus applied to

the entire neural field. Let us denote by S(x, t) = f(u(x, t)) the firing rate of

a neuron at position x at time t. The neurons at a point x are said to be active

if S(x, t) > 0 (see [1], [2], [22]).

There is already a vast literature on the analysis of similar neural field mod-

els, see [1]–[3], [5]–[9], [11]–[13], [16]–[18], [20], [22]. However, their asymptotic

behavior have not been fully analyzed in the case of unbounded domains. In

particular, the “Lyapunov functional” appearing in the literature is not well de-

fined in the whole phase space (see, for example, [10, 13, 18]). One advantage

of our model is that we will be able to define a continuous Lyapunov functional

which is well defined in the whole phase space (see (4.1) in Section 4).

This paper is organized as follows. In Section 2, we consider the flow ge-

nerated by (1.1) in the phase space of continuous bounded functions. In Sub-

section 2.1, we prove that the Cauchy problem for (1.1) is well posed in this

phase space with globally defined solutions, and, in Subsection 2.2, we prove the

existence of an absorbing set for the flow generated by (1.1). In Section 3, we

consider the problem (1.1) in the phase space Cρ(RN ) ≡ {u : RN → R con-

tinuous with ‖u‖ρ := sup
x∈RN

{|u(x)|ρ(x)} < ∞}, where ρ is a convenient “weight

function”. In this section, to obtain well-posedness, we impose more stringent

conditions on the nonlinearity than in the previous section (see Subsection 3.1).

On the other hand, we obtain stronger results, including existence of a compact
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global attractor for the corresponding flow. Our proof uses adaptations of the

technique used in [5], replacing the compact embedding H1([−l, l]) ↪→ L2([−l, l])
by the compact embedding C1(RN ) ↪→ Cρ(RN ) (see also [9, 10, 21] for related

work). In Section 4, motivated by the energy functional from [2], [7], [10], [13],

[18], [25], we exhibit a continuous Lyapunov functional for the flow generated by

(1.1), well defined in the whole phase space Cρ(RN ), and use it to prove that the

flow is gradient in the sense of [14]. Finally, in Section 5, we present a concrete

example illustrating our results.

2. The flow in the space Cb(RN )

In this section, we consider the problem (1.1) in the phase space

Cb(RN ) ≡
{
u : RN → R continuous with ‖u‖∞ := sup

x∈RN
{|u(x)|} <∞

}
.

After establishing well-posedness, we prove that a ball of appropriate radius is

an absorbing set for the corresponding flow.

2.1. Well-posedness. The following estimate will be useful in the sequel.

The proof is straightforward and left to the reader.

Lemma 2.1. If u ∈ Cb(RN ) then ‖J∗ρu‖∞ ≤ ‖J‖L1(RN )‖ρ‖∞‖u‖∞, where

J∗ρu is given by (1.2).

Definition 2.2. If E and F are normed spaces, we say that a function

F : E → F is locally Lipschitz continuous (or simply locally Lipschitz) if, for any

x0 ∈ E, there exists a constant C and a ball B = {x ∈ E : ‖x − x0‖ < b} such

that, if x and y belong to B then ‖F (x)− F (y)‖ ≤ C‖x− y‖. We say that F is

Lipschitz continuous on bounded sets if the ball B in the previous definition can

be chosen as any bounded ball in E.

Remark 2.3. The two notions in Definition 2.2 are equivalent if the normed

space E is locally compact.

Proposition 2.4. If f is continuous and h ∈ Cb(RN ), then F : Cb(RN ) →
Cb(RN ) given by

F (u) = −u+ J∗ρ(f ◦ u) + h,

is well defined. If f is locally Lipschitz, then F is Lipschitz in bounded sets.

Proof. The first assertion is immediate. Now, from the triangle inequality

and Lemma 2.1, it follows that

‖F (u)− F (v)‖∞ ≤ ‖v − u‖∞ + ‖J∗ρ(f ◦ u)− J∗ρ(f ◦ v)‖∞
≤ ‖v − u‖∞ + ‖J‖L1(RN )‖ρ‖∞‖(f ◦ u)− (f ◦ v)‖∞.
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If ‖u‖∞, ‖v‖∞ ≤ R then

|(f ◦ u)(x)− (f ◦ v)(x)| ≤ kR|u(x)− v(x)|,

where kR is a Lipschitz constant for f in the interval [−R,R]. It follows that

‖F (u)− F (v)‖∞ ≤ (1 + kR‖J‖L1(RN )‖ρ‖∞)‖u− v‖∞.

which concludes the proof. �

Theorem 2.5. If f is locally Lipschitz and satisfies the dissipative condition

(2.1) |f(x)| ≤ η|x|+K, for some constants η,K and any x ∈ R,

the Cauchy problem for (1.1) is well posed in Cb(RN ) with globally defined solu-

tions.

Proof. It follows from Proposition 2.4 and well-known results (see [19]

or [15], Theorems 3.3.3 and 3.3.4). �

2.2. Existence of an absorbing set. In this section, we denote by T (t)

the flow generated by (1.1) in Cb(RN ). Under some additional hypotheses on

the nonlinearity, we prove here the existence of an absorbing bounded ball B ⊂
Cb(RN ) for T (t). We recall that a set B ⊂ Cb(RN ) is an absorbing set for the

flow T (t) if, for any bounded set C ⊂ Cb(RN ), there is a t1 = t1(C) > 0 such

that T (t)C ⊂ B for any t ≥ t1 (see [23]).

Lemma 2.6. Suppose that f is locally Lipschitz and satisfies the dissipative

condition (2.1), with η‖J‖L1(RN )‖ρ‖∞ < 1. Then, if η‖J‖L1(RN )‖ρ‖∞ < δ < 1,

the ball in Cb(RN ), centered at the origin with radius

R =
‖J‖L1(RN )‖ρ‖∞K + ‖h‖∞
δ − ‖J‖L1(RN )‖ρ‖∞η

,

is an absorbing set for the flow T (t).

Proof. Let u(x, t) be the solution of (1.1)) with initial condition u( · , 0) =

u0. Then, by the variation of constants formula,

u(x, t) = e−tu0(x) +

∫ t

0

es−t[J∗ρ(f ◦ u)(x, s) + h(x)] ds.

From (2.1), there exists a constant K such that |f(x)| ≤ η|x|+K for any x ∈ R.

Hence, using Lemma 2.1 and (2.1), we obtain

|u(x, t)| ≤ e−t|u0(x)|+
∫ t

0

es−t[|J∗ρ(f ◦ u)(x, s)|+ |h(x)|] ds

≤ e−t‖u0‖∞ +

∫ t

0

es−t[‖J∗ρ(f ◦ u)( · , s)‖∞ + ‖h‖∞] ds

≤ e−t‖u0‖∞ +

∫ t

0

es−t[‖J‖L1(RN )‖ρ‖∞‖(f ◦ u)( · , s)‖∞ + ‖h‖∞] ds
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≤ e−t‖u0‖∞ +

∫ t

0

es−t[‖J‖L1(RN )‖ρ‖∞η‖u( · , s)‖∞

+ ‖J‖L1(RN )‖ρ‖∞K + ‖h‖∞] ds.

Suppose

‖u( · , s)‖∞ ≥
1

δ − ‖J‖L1(RN )‖ρ‖∞η
(
‖J‖L1(RN )‖ρ‖∞K + ‖h‖∞

)
,

for 0 ≤ t ≤ T . Then, for t ∈ [0, T ], we obtain

et|u(x, t)| ≤ ‖u0‖∞ + δ

∫ t

0

es‖u( · , s)‖∞ ds for any x ∈ RN .

Taking the supremum on the left hand side, it follows that

et‖u(x, · )‖∞ ≤ ‖u0‖∞ + δ

∫ t

0

es‖u( · , s)‖∞ ds.

From Gronwall’s inequality, it then follows that et‖u( · , t)‖∞ ≤ ‖u0‖∞eδt and

therefore

(2.2) ‖u( · , t)‖∞ ≤ ‖u0‖∞e(δ−1)t for t ∈ [0, T ].

It follows that there exists

T0 ≤
1

(1− δ)
ln
‖J‖L1(RN )‖ρ‖∞K + ‖h‖∞
‖u0‖∞(δ − ‖J‖L1(RN )‖ρ‖∞η)

such that

‖u( · , T0)‖∞ ≤
‖J‖L1(RN )‖ρ‖∞K + ‖h‖∞
δ − ‖J‖L1(RN )‖ρ‖∞η

.

Also, we must have

‖u( · , t)‖∞ ≤
‖J‖L1(RN )‖ρ‖∞K + ‖h‖∞
δ − ‖J‖L1(RN )‖ρ‖∞η

for any t ≥ T0, since ‖u( · , t)‖∞ decreases (exponentially) if the opposite inequali-

ty holds, by (2.2). �

Remark 2.7. From (2.2), it follows that the ball B(0, R′) is positively in-

variant under the flow T (t) if R′ ≥ R.

3. The flow in the space Cρ(RN )

In this section, we consider the problem (1.1) in the phase space

Cρ(RN ) ≡
{
u : RN → R continuous with ‖u‖ρ := sup

x∈RN
{|u(x)|ρ(x)} <∞

}
.

We will need to impose more stringent conditions on the nonlinearity than in

the previous section, to obtain well-posedness. On the other hand, we will ob-

tain stronger results, including existence of a compact global attractor for the

corresponding flow.
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3.1. Well-posedness. The following result is an analogue of Lemma 2.1.

The proof is again straightforward and left to the reader.

Lemma 3.1. If u ∈ Cρ(RN ) then ‖J∗ρu‖ρ ≤ ‖J‖L1(RN )‖ρ‖∞‖u‖ρ.

Proposition 3.2. If f is globally Lipschitz and h ∈ Cρ(RN ), then the map

F : Cρ(RN )→ Cρ(RN ) given by

F (u) = −u+ J∗ρ(f ◦ u) + h,

is well defined and globally Lipschitz.

Proof. Suppose |f(x)−f(y)| ≤ k|x−y| for any x, y ∈ R. Then, in particular,

|f(x)| ≤ k|x| + M , where M = f(0), for x ∈ R. It follows that ‖f ◦ u‖ρ ≤
k‖u‖ρ +M‖ρ‖∞. From Lemma 3.1, we then obtain

‖F (u)‖ρ ≤ ‖u‖ρ + ‖J∗ρ(f ◦ u)‖ρ + ‖h‖ρ
≤ ‖u‖ρ + ‖J‖L1(RN )‖ρ‖∞‖f ◦ u‖ρ + ‖h‖ρ
≤ ‖u‖ρ + ‖J‖L1(RN )‖ρ‖∞(k‖u‖ρ +M‖ρ‖∞) + ‖h‖ρ,

so F is well defined. Furthermore,

‖F (u)− F (v)‖ρ ≤ ‖u− v‖ρ + ‖J∗ρ(f ◦ u)− J∗ρ(f ◦ v)‖ρ
≤ ‖u− v‖ρ + ‖J‖L1(RN )‖ρ‖∞‖(f ◦ u)− (f ◦ v)‖ρ
≤ ‖u− v‖ρ + ‖J‖L1(RN )‖ρ‖∞k‖u− v‖ρ
= (1 + k‖J‖L1(RN )‖ρ‖∞)‖u− v‖ρ

Therefore F is globally Lipschitz in Cρ(RN ). �

Theorem 3.3. If f is globally Lipschitz, the Cauchy problem for (1.1) is well

posed in Cρ(RN ) with globally defined solutions.

Proof. It follows from Proposition 3.2 and well-known results (see [4], [19],

or [15], Theorems 3.3.3 and 3.3.4). �

3.2. Existence of an absorbing set. In this section, we denote by T (t)

the flow generated by (1.1) in Cρ(RN ). Under some additional hypotheses on

the nonlinearity, we prove the existence of a bounded ball B ⊂ Cρ(RN ) which is

an absorbing set for T (t).

Lemma 3.4. Suppose that f is globally Lipschitz and satisfies the dissipative

condition (2.1), with ‖J‖L1(RN )‖ρ‖∞η < 1. Then, if ‖J‖L1(RN )‖ρ‖∞η < δ < 1,

the ball in Cρ(RN ) centered at the origin with radius

R =
‖J‖L1(RN )‖ρ‖∞K + ‖h‖ρ
δ − ‖J‖L1(RN )‖ρ‖∞η

is an absorbing set for the flow T (t).
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Proof. Let u(x, t) be the solution of (1.1) with initial condition u( · , 0) = u0.

Then, by the variation of constants formula,

u(x, t) = e−tu0(x) +

∫ t

0

es−t[J∗ρ(f ◦ u)(x, s) + h(x)] ds.

From (2.1) and Lemma 3.1, we obtain

|u(x, t)ρ(x)| ≤ e−t|u0(x)ρ(x)|+
∫ t

0

es−t[|J∗ρ(f ◦ u)(x, s)ρ(x)|+ |h(x)ρ(x)|] ds

≤ e−t‖u0‖ρ +

∫ t

0

es−t[‖J∗ρ(f ◦ u)( · , s)‖ρ + ‖h‖ρ] ds

≤ e−t‖u0‖ρ +

∫ t

0

es−t[‖J‖L1(RN )‖ρ‖∞‖(f ◦ u)( · , s)‖ρ + ‖h‖ρ] ds

≤ e−t‖u0‖ρ +

∫ t

0

es−t[‖J‖L1(RN )‖ρ‖∞η‖u( · , s)‖ρ

+ ‖J‖L1(RN )‖ρ‖∞K + ‖h‖ρ] ds.

Suppose

‖u( · , s)‖∞ ≥
‖J‖L1(RN )‖ρ‖∞K + ‖h‖ρ
δ − ‖J‖L1(RN )‖ρ‖∞η

for 0 ≤ t ≤ T . Then, for t ∈ [0, T ], we obtain

et|u(x, t)ρ(x)| ≤ ‖u0‖ρ + δ

∫ t

0

es‖u( · , s)‖ρ ds for any x ∈ RN .

Taking the supremum on the left hand side, it follows that

et‖u(x, · )‖ρ ≤ ‖u0‖ρ + δ

∫ t

0

es‖u(·, s)‖ρ ds.

From Gronwall’s inequality, et‖u( · , t)‖ρ ≤ ‖u0‖ρeδt and hence

(3.1) ‖u( · , t)‖∞ ≤ ‖u0‖∞e(δ−1)t for t ∈ [0, T ].

Therefore, there exists

T0 ≤
1

1− δ
ln
(
‖J‖L1(RN )‖ρ‖∞K + ‖h‖∞‖u0‖∞(δ − ‖J‖L1(RN )‖ρ‖∞η)

)
such that

‖u( · , T0)‖ρ ≤
‖J‖L1(RN )‖ρ‖∞K + ‖h‖ρ
δ − ‖J‖L1(RN )‖ρ‖∞η

.

Also, we must have

‖u( · , T0)‖ρ ≤
‖J‖L1(RN )‖ρ‖∞K + ‖h‖ρ
δ − ‖J‖L1(RN )‖ρ‖∞η

for any t ≥ T0, since ‖u( · , t)‖ρ decreases (exponentially) if the opposite inequal-

ity holds by (3.1). �

Remark 3.5. From (3.1), it follows that the ball Bρ(0, R
′) of radius R′ in

Cρ(RN ) is positively invariant under the flow T (t) if R′ ≥ R.
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3.3. Existence of a global attractor. We denote below by C1
b (RN ) the

subspace of functions in Cb(RN ) with bounded derivatives.

Lemma 3.6. The inclusion map i : C1
b (RN )→ Cρ(RN ) is compact.

Proof. Let C be a bounded set in C1
b (RN ). For any l > 0, let ϕ : RN → [0, 1]

be a smooth function satisfying

ϕ(x) =

0 if ‖x‖ ≥ l,
1 if ‖x‖ ≤ l/2.

Let C0(Bl) denote the space of continuous functions defined in the ball of RN

with radius l and center at the origin, that vanish at the boundary. Consider the

subset Cl of functions in C0(Bl) defined by Cl := {ϕu|Bl with u ∈ C}. Then Cl
is a bounded subset of C1

b (Bl) and, therefore, a precompact subset of C0(Bl),

by the Arzelá–Ascoli theorem.

Let now E1 be the subset of Cρ(RN ) given by Gl := {E(u) with u ∈ Cl},
where E(u) is the extension by zero outside Bl. Since E is continuous as an

operator from C0(Bl) into Cρ(RN ), it follows that Cl is a compact subset of

Cρ(RN ). Let now Gcl := {(1−ϕ)u with u ∈ C}. Let R be such that ‖u‖∞ ≤ R,

for any u ∈ C. Then, for any ε > 0, we may find l such that 0 < ρ(x) < ε/R,

if ‖x‖ ≥ l/2. Then, it follows that ‖u‖ρ ≤ ε, for any u ∈ Gcl , that is, Gcl is

contained in the ball of radius ε around the origin.

Since Gl is precompact, it can be covered by a finite number of balls of

radius ε. Since any function u in C can be written as u = u1 + u2, with u1 =

ϕu ∈ Gl and u2 = (1 − ϕ)u ∈ Gcl , it follows that C can be covered by a finite

number of balls with radius 2ε, for any ε > 0. Thus C is precompact as a subset

of Cρ(RN ). �

Lemma 3.7. In addition to the hypotheses of Lemma 3.4, suppose that f : R→
R is bounded and h has bounded derivative. Let C be a bounded set in Cρ(RN )

Then, for any η > 0, there exists tη such that T (tη)C has a finite covering by

balls with radius smaller than η.

Proof. Let u(x, t) be the solution of (1.1) with initial condition u0 ∈ C.

We may suppose that C is contained in the ball BR of radius R, centered at the

origin. By the variation of constants formula,

T (t)u0(x) = e−tu0(x) +

∫ t

0

es−t[J∗ρ(f ◦ u)(x, s) + h(x)] ds.

Write (T1(t)u0)(x) = e−tu0(x) and

(T2(t)u0)(x) =

∫ t

0

e−(t−s)[J∗ρ(f ◦ u)(x, s) + h(x)] ds.



A Nonlocal Model of a Neural Field 591

Let η > 0 be given. Then there exists t(η) > 0, uniform for u0 ∈ C, such that

if t ≥ t(η) then ‖T1(t)u0‖ρ ≤ η/2. In fact, |(T1(t)u0)(x)|ρ(x) = e−t|u0(x)|ρ(x).

Thus ‖T1(t)u0‖ρ = e−t‖u0‖ρ. Hence, for t > tη = ln (2R/η), ‖T1(t)u0‖ρ ≤ η/2

for any u0 ∈ C, that is, T1(t)C is contained in the ball of radius η/2 around the

origin.

We now show that T2(t)Cρ(RN ) lies in a bounded ball of C1
b (RN ). In fact,

using Lemma 2.1 we have, for any u0 ∈ Cρ(RN ),

‖T2(t)u0‖∞ ≤
∫ t

0

es−t[‖J∗ρ(f ◦ u)( · , s)‖∞ + ‖h‖∞] ds

≤
∫ t

0

es−t[‖J‖L1(RN )‖ρ‖∞‖(f ◦ u)( · , s)‖∞ + ‖h‖∞] ds

≤ (M‖J‖L1(RN )‖ρ‖∞ + ‖h‖∞)

∫ t

0

es−t ds

≤M‖J‖L1(RN )‖ρ‖∞ + ‖h‖∞,

where M = ‖f‖∞ <∞, and∥∥∥∥ ∂∂xT2(t)u0

∥∥∥∥
∞
≤
∫ t

0

es−t[‖J ′∗ρ(f ◦ u)( · , s)‖∞ + ‖h′‖∞] ds

≤
∫ t

0

es−t[‖J ′ ∗ ρ‖∞‖(f ◦ u)( · , s)‖∞ + ‖h′‖∞] ds

≤ (M‖J ′‖L1(RN )‖ρ‖∞ + ‖h′‖∞)

∫ t

0

es−t ds

≤M‖J ′‖L1(RN )‖ρ‖∞ + ‖h′‖∞

Then, for t ≥ 0 and any u0 ∈ Cρ(RN ),
∥∥ ∂
∂xT2(t)u0

∥∥
ρ

is bounded by a constant

independent of t and u. Therefore, by Lemma 3.6, it follows that {T2(t)}Cρ(RN ),

is compact as a subset of Cρ(RN ) and, therefore, it can be covered by a finite

number of balls with radius η/2. Since T (t)C = T1(t)C+T2(t)C, we obtain that

T (t)C can be covered by a finite number of balls of radius η, as claimed. �

In what follows we denote by ω(Bρ(0, R)) the ω-limit set of the ball Bρ(0, R).

Then, as a consequence from Lemma 3.7, we have the following result:

Theorem 3.8. Assume the same hypotheses as in Lemma 3.7. Then A =

ω(Bρ(0, R)), is a global attractor for the flow T (t) generated by (1.1) in Cρ(RN ),

which is contained in the ball Bρ(0, R).

Proof. From Lemma 3.7, it follows that, for any η > 0, there exists tη > 0

such that T (tη)Bρ(0, R) can be covered by a finite number of ball of radius η.

Since Bρ(0, R) is positively invariant (see Remark 3.5) we have, for any t ≥ tη,

T (t)Bρ(0, R) = T (tη)T (t− tη)Bρ(0, R) ⊂ T (tη)Bρ(0, R)
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and thus ⋃
t≥tη

T (t)Bρ(0, R) ⊂ T (tη)Bρ(0, R)

can also be covered by a finite number of balls with radius η. Therefore

A := ω(Bρ(0, R)) =
⋂
t0≥0

⋃
t≥t0

T (t)Bρ(0, R) =
⋂
t0≥0

T (t)Bρ(0, R),

can be covered by a finite number of balls of arbitrarily small radius and is closed,

so it is a compact set. From the positive invariance of Bρ(0, R) (Remark 3.5),

it is clear that A ⊂ Bρ(0, R).

It remains to prove that A attracts bounded sets of Cρ(RN ). It is enough to

prove that it attracts the ball Bρ(0, R). Suppose, for contradiction, that there

exist ε > 0 and sequences tn → ∞, xn ∈ Bρ(0, R), with d(T (tn)(xn),A) > ε.

Now, the set {T (tn)(xn) : n ≥ n0} is contained in T (tn0
)Bρ(0, R). Thus, for

any η > 0, it can be covered by balls with radius η if n0 is big enough. Since

the remainder of the sequence is a finite set, the same happens with the whole

sequence. It follows that the sequence {T (tn)(xn) : n ∈ N} is a precompact set

and so, passing to a subsequence, it converges to a point x0 ∈ Bρ(0, R). But

then x0 must belong to A = ω(Bρ(0, R)) and we reach a contradiction. This

concludes the proof. �

4. Existence of a Lyapunov functional

Energy-like Lyapunov functional for models of neural fields are well known in

the literature (see for example, [2], [7]–[10], [13], [18], [25]). However, when deal-

ing with unbounded domains, these functionals are frequently not well defined

in the whole phase space, since they can assume the value ∞ at some points

(see, for example, [10], [18]). In this section, under appropriate assumptions on

f , we exhibit a continuous Lyapunov functional for the flow of (1.1), which is

well defined in the whole phase space Cρ(RN ), and use it to prove that this flow

has the gradient property, in the sense of [14].

Suppose that f is strictly increasing. Motivated by the energy functionals

appearing in [2], [13], [18], [25], we define the functional F : Cρ(RN )→ R by

F (u) =

∫
RN

[
− 1

2
f(u(x))

∫
RN

J(x− y)f(u(y))ρ(y) dy

+

∫ f(u(x))

0

f−1(r) dr − hf(u(x))

]
ρ(x) dx.

(4.1)
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Equivalently, with dµ(x) = ρ(x) dx, we can rewrite (4.1) as

F (u) =

∫
RN

[
− 1

2
f(u(x))

∫
RN

J(x− y)f(u(y)) dµ(y)

+

∫ f(u(x))

0

f−1(r) dr − hf(u(x))

]
dµ(x).

We can then prove the following result:

Proposition 4.1. Assume that f : R → R is continuous, strictly increas-

ing and bounded. Then, if ρ ∈ L1(RN ), the functional given in (4.1) satisfies

|F (u)| <∞ for all u ∈ Cρ(RN ).

Proof. We start by noting that F (u) = F1(u) + F2(u)− F3(u), where

F1(u) = −1

2

∫
RN

∫
RN

f(u(x))J(x− y)f(u(y))ρ(y)ρ(x) dy dx,

F2(u) =

∫
RN

[ ∫ f(u(x))

0

f−1(r) dr

]
ρ(x) dx,

F3(u) =

∫
RN

h(x)f(u(x))ρ(x) dx.

Let

(4.2) G1(x, y) := f(u(x))J(x− y)f(u(y))ρ(y)ρ(x)

denote the integrand of F1(u). Then, since M = ‖f ◦ u‖∞ <∞, we obtain

|G1(x, y)| ≤M2J(x− y)ρ(y)ρ(x)

and, therefore,

|F1(u)| ≤ 1

2

∫
RN

∫
RN

M2J(x− y)ρ(y)ρ(x) dy dx

≤ 1

2
M2‖J‖L1(RN )‖ρ‖∞

∫
RN

ρ(x) dx(4.3)

≤ 1

2
M2‖J‖L1(RN )‖ρ‖∞‖ρ‖L1(RN ),

Let now

(4.4) G2(x) :=

∫ f(u(x))

0

f−1(r) dr ρ(x)

denote the integrand of F2(u). Then,

|G2(x)| ≤
∫ M

0

|f−1(r)| dr ρ(x)

and

(4.5) |F2(u)| ≤
∫
RN

[ ∫ M

0

|f−1(r)| dr
]
ρ(x) dx ≤

∫
RN
Lρ(x) dx ≤ L‖ρ‖L1(RN ),
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where L is the integral of the continuous function f−1 in the (finite) interval

[0,M ]. Finally, let

(4.6) G3(x) := h(x)f(u(x))ρ(x)

denote the integrand of F3(u). Then |G3(x)| ≤M‖h‖∞ρ(x) and

(4.7) |F3(u)| ≤
∫
RN

M‖h‖∞ρ(x) dx ≤M‖h‖∞‖ρ‖L1(RN ). �

Theorem 4.2. Suppose f satisfies the same hypotheses as in Proposition 4.1.

Then the functional given in (4.1) is continuous in the topology of Cρ(RN ).

Proof. Write F (u) = F1(u) + F2(u) − F3(u) as in the proof of Proposi-

tion 4.1. Let un be a sequence of functions converging to u in Cρ(RN ). Let also

G1(x, y), G2(x), G3(x) be as in (4.2), (4.4), (4.6) and Gn1 (x, y), Gn2 (x), Gn3 (x) as

in (4.2), (4.4), (4.6) with u replaced by un. Then

F1(un) = −1

2

∫
RN

∫
RN

Gn1 (x, y) dy dx,

F2(un) =

∫
RN

Gn2 (x) dx, F3(un) =

∫
RN

Gn3 (x) dx.

By (4.2), (4.4), (4.6) and (4.3), (4.5), (4.7); the integrands Gn1 (x, y), Gn2 (x),

Gn3 (x) are all bounded by integrable functions independent of n. Also, from the

pointwise convergence of un to u and the continuity of the functions f, ρ and h,

it follows that Gn1 (x, y)→ G1(x, y), Gn2 (x)→ G2(x) and Gn3 (x)→ G3(x), for all

x, y ∈ RN . Therefore F (un) → F (u) by the Lebesgue Dominated Convergence

Theorem. This completes the proof. �

Theorem 4.3. Suppose that f satisfies the hypotheses of Theorem 3.3, Propo-

sition 4.1, and that |f ′(x)| ≤ cρ2(x) for all x ∈ RN and some positive constant c.

Let u( · , t) be a solution of (1.1). Then F (u( · , t)) is differentiable with respect

to t and

dF

dt
= −

∫
RN

[−u(x, t) + J∗ρ(f ◦ u)(x, t) + h]2f ′(u(x, t)) dµ(x) ≤ 0.

Proof. Let

ϕ(x, s) = −1

2
f(u(x, s))

∫
RN

J(x− y)f(u(y, s))ρ(y) dy

+

∫ f(u(x,s))

0

f−1(r) dr − h(x)f(u(x, s).

Using the hypotheses on f and the fact that |f ′(x)| ≤ cρ2(x), it is easy to see

that ‖∂ϕ( · , s)/∂s‖L1(RN ,dµ(x)) <∞, for all s ∈ R+. Hence, derivating under the
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integral sign, we obtain

d

dt
F (u( · , t)) =

∫
RN

[
− 1

2

∂f(u(x, t))

∂t

∫
RN

J(x− y)f(u(y, t)) dµ(y)

− 1

2
f(u(x, t))

∫
RN

J(x− y)
∂f(u(y, t))

∂t
dµ(y)

+ f−1(f(u(x, t)))
∂f(u(x, t))

∂t
− h∂f(u(x, t))

∂t

]
dµ(x)

= −1

2

∫
RN

∫
RN

J(x− y)f(u(y, t))
∂f(u(x, t))

∂t
dµ(y) dµ(x)

− 1

2

∫
RN

∫
RN

J(x− y)f(u(x, t))
∂f(u(y, t))

∂t
dµ(y) dµ(x)

+

∫
RN

[u(x, t)− h]
∂f(u(x, t))

∂t
dµ(x).

Since∫
RN

∫
RN

J(x− y)f(u(y, t))
∂f(u(x, t))

∂t
dµ(y) dµ(x)

=

∫
RN

∫
RN

J(x− y)f(u(x, t))
∂f(u(y, t))

∂t
dµ(y) dµ(x),

it follows that

d

dt
F (u( · , t)) = −

∫
RN

∫
RN

J(x− y)f(u(y, t))
∂f(u(x, t))

∂t
dµ(y) dµ(x)

+

∫
RN

[u(x, t)− h]
∂f(u(x, t))

∂t
dµ(x)

= −
∫
RN

[
− u(x, t)

+

∫
RN

J(x− y)f(u(y, t)) dµ(y) + h

]
∂f(u(x, t))

∂t
dµ(x)

= −
∫
RN

[−u(x, t) + J∗ρ(f ◦ u)(x, t) + h]
∂f(u(x, t))

∂t
dµ(x)

= −
∫
RN

[−u(x, t) + J∗ρ(f ◦ u)(x, t) + h]f ′(u(x, t))
∂u(x, t)

∂t
dµ(x)

= −
∫
RN

[−u(x, t) + J∗ρ(f ◦ u)(x, t) + h]2f ′(u(x, t)) dµ(x).

Using the fact that f is strictly increasing the result follows. �

Remark 4.4. From Theorem 4.3 follows that, if F (T (t)u0) = F (u0) for

t ∈ R, then u0 is an equilibrium point for T (t).

4.1. Gradient property. We recall that a semigroup, T (t), is gradient if

each bounded positive orbit is precompact and there exists a continuous Lya-

punov functional for T (t) (see [14]).
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Proposition 4.5. Assume the same hypotheses as in Theorems 4.3 and 3.8.

Then the flow generated by equation (1.1) is gradient.

Proof. The precompactness of the orbits follows from existence of the global

attractor. From Proposition 4.1, Theorems 4.2, 4.3 and Remark 4.4 it follows

that the functional given in (4.1) is a continuous Lyapunov functional. �

As a consequence of Proposition 4.5 we have the convergence of the solutions

of (1.1) to the equilibrium point set of T (t) (see [14, Lemma 3.8.2]).

Corollary 4.6. For any u ∈ Cρ(R) the ω-limit set ω(u) of u under T (t)

belongs to E. Analogously, the α-limit set α(u) of u under T (t) belongs to E.

Also as a consequence of Proposition 4.5 we have that the global attrac-

tor given in Theorem 3.8 allows the following characterization (see [14, Theo-

rem 3.8.5]).

Theorem 4.7. Under the same hypotheses as in Theorem 4.3, the attractor

A is the unstable set of the equilibrium point set of T (t), that is, A = Wu(E),

where E = {u ∈ Bρ(0, R) : u(x) = J∗ρ(f ◦ u)(x) + h}.

Proof. Let u ∈ A. Then, there exists a complete orbit through u which

is contained in A. Since A is compact, the α-limit set, α(u), of u under T (t)

is nonempty. By Corollary 4.6 it belongs to E and, therefore, u ∈ Wu(E).

Conversely, suppose that u ∈ Wu(E) and let Eδ be the δ-neighbourhood of E.

Then, for any δ > 0, there exists t such that T (−t)u ∈ Eδ, for any t ≥ t. Thus,

u ∈ T (t)(Eδ), for any t ≥ t. It follows that u is arbitrarily close to A, so it must

belong to A. �

5. A concrete example

To illustrate our results, we consider the one-dimensional case of (1.1) with

f(x) = tanh(x),

J(x) =

e−1/(1−x
2) if |x| < 1,

0 if |x| ≥ 1,

ρ(x) = (1 + x2)−1, and h a real bounded function with bounded derivative, that

is, we consider the equation

(5.1)
∂u(t, x)

∂t
= −u(t, x) +

∫
R
e−1/(1−(x−y)

2) tanhu(t, y)(1 + y2)−1 dy + h(x).

It is easy to see that the functions J and ρ satisfy all the hypotheses assumed in

the introduction, that is, J and ρ are even nonnegative functions, J is integrable

and ρ is integrable and bounded, with ‖J‖L1(R) ≤ 2/e and ‖ρ‖∞ = 1. Also, the

function f is bounded by 1 and globally Lipschitz with Lipschitz constant equal

to 1. Therefore, it satisfies the condition (2.1) with η = 0 and K = 1. Thus,
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the hypotheses of Theorem 3.8 are all satisfied and the flow generated by (5.1)

admits a global attractor contained in the ball of radius R = 2/e + ‖h‖ρ. We

claim that the hypotheses of Theorem 4.3 are also satisfied. In fact, the function

f is clearly continuous and strictly increasing. Also

f ′(x)

ρ2(x)
=

4(1 + x2)2

(ex + e−x)2
→ 0 as |x| → ∞,

so f ′(x) ≤ cρ2(x) for some constant c. Therefore the hypotheses of Theorem 4.3

also hold, as claimed, and the results of Section 4.1 are valid for the flow gener-

ated by equation (5.1).

Remark 5.1. For f(x) = (1 + e−x)−1 and J(x) = ρ(x) = (1 + x2)−1/π2 the

hypotheses of our results are also easily verified.
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Universidade Federal de Campina Grande (UFCG)
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