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PERIODIC SOLUTIONS
FOR THE NON-LOCAL OPERATOR (—A + m?)¥ — m?
WITH m >0

VINCENZO AMBROSIO

ABSTRACT. By using variational methods, we investigate the existence of
T-periodic solutions to

[(_AI + m2)s - m2s]u = f(xvu) in (OvT)Nv
u(z + Te;) = u(z) forallz e RN, i =1,...,N,

where s € (0,1), N > 2s, T > 0, m > 0 and f is a continuous func-
tion, T-periodic in the first variable, verifying the Ambrosetti-Rabinowitz
condition, with a polynomial growth at rate p € (1, (N + 2s)/(N — 2s)).

1. Introduction

Recently, considerable attention has been given to fractional Sobolev spaces
and corresponding non-local equations, in particular to the ones driven by the
fractional powers of the Laplacian. In fact, this operator naturally arises in sev-
eral areas of research and finds applications in optimization, finance, the thin ob-
stacle problem, phase transitions, anomalous diffusion, crystal dislocation, flame
propagation, conservation laws, ultra-relativistic limits of quantum mechanics,
quasi-geostrophic flows and water waves. For more details and applications see
[4], [6], [9], [12], [15], [16], [22], [26]-[28], [30] and references therein.
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76 V. AMBROSIO

The purpose of the present paper is to study T-periodic solutions to the
problem

[(—A; +m?)* —m?u = f(x,u) in (0,T)V

(1.1)
u(z +Te;) = u(x) forallz e RN, i=1,...,N,

where s € (0,1), N > 2s, (e;) is the canonical basis in RY and f: RV*! — R is
a function satisfying the following hypotheses:

(f1) f(z,t) is T-periodic in x € RN, that is f(z + Te;,t) = f(z,t).

(f2) f is continuous in RV*1,

(3) f(z,t) = o(t) as t — 0 uniformly in z € RV.

(f4) There exist 1 <p < 2% —1=2N/(N —2s) — 1 and C > 0 such that

|f(z,t)| < C(1+|t|P) for any x € RY and t € R.
(f5) There exist g > 2 and rg > 0 such that
0 < uF(x,t) <tf(z,t) forz e RN and [t| > ro.
Here F(x,t) fo flx,7)dr.

(t6) tf(x,t) >0 for all x € RN and t € R.

We notice that (f2) and (f5) imply the existence of two constants a,b > 0 such
that

F(z,t) >alt|* —b for allz e RV, t € R.

Then, since p > 2, F(x,t) grows at a superquadratic rate and by (f5), f(x,t)
grows at a superlinear rate as |t| — oo. Here, the operator (—A,+m?)* is defined
through the spectral decomposition, by using the powers of the eigenvalues of
—A + m? with periodic boundary conditions.

Let u € C3°(RY), that is u is infinitely differentiable in RY and T-periodic
in each variable. Then u has a Fourier series expansion

zwk T
Z Cp —F— , T e RN,
kezN
where
2w 1
w=— and ¢, =— w(z)e “krde, kezV,
T g VTN /(O,T)N )

are the Fourier coefficients of u. The operator (—A, +m?)* is defined by setting

(A, +m?)*u = Z cp(W?k? +m?)*

For
wk-x elwk T
u = Cr and v = dy, ,
O O
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we have that
Qu,v) = Y (W[k|* + m?) iy
kezZN
can be extended by density to a quadratic form on the Hilbert space

ezwk-m
HS +=qu= Ck e L*(0,T)N : (Wk? +m?)* e < oo}
et { Z VTN REXZ:N

endowed with the norm

|u

2= 3 WK ) el
kezZN
When m =1 we set H7. = HJ 1.

In RY the physical interest of the non-local operator (—A +m?)*® is manifest
in the case s = 1/2: it is the Hamiltonian for a (free) relativistic particle of mass
m; see for instance [2], [19]-][22]. In particular, such operator is deeply connected
with the Stochastic Process Theory: in fact it is an infinitesimal generator of a
Lévy process called the a-stable process; see [4], [14] and [25].

Problems similar to (1.1) have been also studied in the local setting. The
typical example is given by

Lu = f(z,u) in Q,

1.2
(1.2) u=20 on 0f),

where L is uniformly elliptic,  is a smooth bounded domain in RY and f is a
continuous function satisfying the assumptions (£3)—(f5). It is well-known that
(1.2) possesses a weak solution which can be obtained as a critical point of a
corresponding functional by means of minimax methods; see for instance [1],
[23], [24], [29] and [31].

The aim of the following paper is to study (1.2) in the periodic setting, when
we replace L by (—A+m?)*—m?2*, m > 0and s € (0,1). We remark that problem
(1.1) with s = 1/2 has been investigated by the same author in [3]. In this paper,
we extend the results in [3] to the more general operator (—A + m?)* — m?s,
with s € (0,1).

Our first result is the following:

THEOREM 1.1. Letm > 0 and f: RN*Y — R be a function satisfying assump-

tions (f1)~(f6). Then there ezists a solution u € Hj, 1 to (1.1). In particular, u
belongs to CO([0, T)N) for some a € (0,1).

To study problem (1.1) we will give an alternative formulation of the operator
(—A + m?)® with periodic boundary conditions, which consists in realizing it
as an operator that maps a Dirichlet boundary condition to a Neumann-type
condition via an extension problem on the half-cylinder (0, 7)Y x (0, 00); see [3]
for the case s = 1/2. We recall that this argument is an adaptation of the idea
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originally introduced in [11] to study the fractional Laplacian in RY (see also
[7], [8]) and subsequently extended to the case of the fractional Laplacian on a
bounded domain [10], [13].

As explained in more detail in Section 3, for u € H}, , one considers the
problem

—div(y! =2 Vv) + m2y'=2%0 =0 in Sr := (0, 7)Y x (0,0),
V{z;=0} = V|{x;=T} on 0,87 = B(O,T)N X [07 OQ),
v(z,0) = u(x) on °Sy = (0,T)N x {0},

from where the operator (—A, + m?)* is obtained as

ov
o 1-2s Y'Y _ o 2\s
;lg%y ay (z,y) = Ks(—Ay + m*)°u(x)

in weak sense and ks = 2 72°T'(1 — 5)/I'(s). Thus, in order to study (1.1), we

will exploit this fact to investigate the following problem:

—div(y!=2Vo) + m?y' =250 =0 in Sy := (0, 7)Y x (0,00),

(1.3) V|{;=0} = V|{w;=T} on 98y := (0, T)N x [0, 00),
% — i m®o+ fz0)]  on @Sy = (0,T)N x {0},
where
gtz =l S ()

is the conormal exterior derivative of v.
Solutions to (1.3) are obtained as critical points of the functional 7, associ-
ated to (1.1)

m2s/€5

2 . —
X:’L,T 2

1
Tn() = 5110

|’U(-’O)|%2(O)T)N —HS/ F(.’E,?}) dx
98

defined on the space X7, 1, which is the closure of the set of smooth and T-
periodic (in ) functions in ]R_IXH with respect to the norm

2. ::// y 72 (Vo + m20?) dx dy.
St

]
m,T

More precisely, we will prove that, for any fixed m > 0, J,, satisfies the hypothe-
ses of the Linking Theorem due to Rabinowitz [24].

When m is sufficiently small, we are able to obtain estimates on critical levels
., of the functionals 7, independently of m. In this way, we can pass to the
limit as m — 0 in (1.3) and we deduce the existence of a nontrivial solution to
the problem

<_Am)8u = f(xvu) in (OvT)Nv

(1.4)
u(x +Te;)) =u(x) forallz e RN, i=1,...,N.
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This result can be stated as follows:

THEOREM 1.2. Under the same assumptions on f as in Theorem 1.1, problem
(1.4) admits a nontrivial solution u € H5 N C%([0, T]V).

The paper is organized as follows: in Section 2 we collect some preliminary
results which we will use later to study problem (1.1); in Section 3 we show
that problem (1.1) can be realized in a local manner through the nonlinear
problem (1.3); in Section 4 we verify that, for any fixed m > 0, the functional 7,
satisfies the linking hypotheses; in Section 5 we study the regularity of solutions
of problem (1.1); in the last section we show that we can find a nontrivial Holder
continuous solution to (1.4) by passing to the limit in (1.1) as m — 0.

2. Preliminaries

In this section we introduce some notation and facts which will be frequently
used in the sequel of the paper. We denote the upper half-space in RN*1! by

RV = {(z,y) e RV .2 e RN, y > 0}.

Let St = (0,T)N x (0,00) be the half-cylinder in RY ™ with the basis 0°Sy =
(0, 7)N x {0} and we denote by 9SS = 3(0,T)N x [0, +00) its lateral boundary.
With |[|v|[zr(s,) We always denote the norm of v € L"(S7) and with |u|gr o7y~
the L"(0,T)" norm of u € L"(0,T)N.

Let s € (0,1) and m > 0. Let A C RY be a domain. We denote by
L?(A x Ry ,y'=2%) the space of all measurable functions v defined on A x R

such that
// y' 2% da dy < oco.
AxRy

We say that v € H} (A x Ry, y'=2%) if v and its weak gradient Vv belongs to
L?(A x Ry ,y'=2%). The norm of v in H} (A x Ry, y'=2%) is given by

J[ v mt drdy < o
AXRy
It is clear that H} (A x R, ,y'~2%) is a Hilbert space with the inner product
// y' T2 (VoVz + mPvz) do dy.
AXR4
When m = 1, we set H'(A x Ry, y'72%) = H} (A x Ry, y'=2%).

We denote by C3°(RY) the space of functions u € C>(RY) such that u is
T-periodic in each variable, that is

u(x +e;T) =u(z) forallz e RN, i=1,... N.
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Let u € C*(RY). Then we know that

ezwk-z
u(z) = Ck for all z € RY,
PR
where
2T 1
w=— and ckzi/ w@)e T dr kezl,
T VTN Jo,m)~ (=)

are the Fourier coefficients of u. We define the fractional Sobolev space Hy, 1 as
the closure of C*(R™) under the norm

2 217,12 2 2

By T Z (w?lk|* +m*)%|cx]”.
kezN

When m = 1, we set H} = Hf 7 and |- |z, = |-

functional space X7, 1 defined as the completion of

|u

m: .- Now we introduce the

CP(RYTY) = {v e C¥RY) tv(z + T, y) = v(z,y)
for every (z,y) € Rf“, i= 1,...,N}

under the H} (Sr,y'~2*)-norm

;{{fn ::// y 2 (| Vol? + m2v?) dx dy.

T Sr

]

Ifm=1, weset X7 =X] r and || - [[xs. = |[ - [|x; .-
Now let us prove that it is possible to define a trace operator from X7, . to
the fractional space Hy, ;.

THEOREM 2.1. There exists a bounded linear operator Tr: X7 o — H} -
such that:

(a) Tr(v) = v|pos, for allv e CPRYTHN X1
(b) There exists C = C(s) > 0 such that

C|Tr(v)

s, o < ||vllxs for every v € X7, 1.

m, T

(¢) Tr is surjective.

PRrOOF. Let v € C5°(RY ™) be such that [vlx: . < oo. Then v can be
expressed as

ezwk-w

VTN’

v(@y) = Y erly)
kezZN
where

efzwk-m

Ck(y) = /(\OyT)N ’U(Jj, y) W dxr and C € Hnl,L(R+,y172S).
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We notice that, by using Parseval’s identity, we have

(2.1) lv]|Z

L= [ ek )+ )]

kezZN

Let us show that there exists a positive constant Cs depending only on s such
that

Cs|Tr(v )

sop S ”UHS%R,T for any v € C°(RY ™) such that |jv]|x

< 400,

s
m,T
or equivalently,

(22) Co Y (Wk[P +m?)*|e(0))

kezN

—+oo
<5 [ R )W) + W)
keznN 70

By the Fundamental Theorem of Calculus, we have

e (0)] < Jex(y)] + \ / o

hence, by (lal + [b])? < 2(|al* + [b?),

(2.3) (O < 2le(w)]? + 2\ / T ) de

for any k € ZY. Now, observe that, by the Holder inequality,

(2.4) /Oy EAGIE = (/0 12| (>|2dt)1/2(/0yt23_1dt>1/2
(o) " (£)"

Putting together (2.3) and (2.4), we obtain

02 < 2 2 ﬁ +Oot1_2s’t2dt
e ()1 < 2fex ()" + = ; e (87 dt |,

2s

and multiplying both sides by y'~2%, we get

—+oo
25y laOF <2 HamP L ([ i oR)

Let aj, = (w?|k|? + m?)~ /2. Integrating (2.5) over y € (0,ay), we deduce

2—2s

a ag _os
26) FislaOP <2 [y Fa)Pdy
S 0

; ( / " Zdy> ( / - t”5|cz<t>|2dt>
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oo yi=2 2 ai e 1-281 7 (4\|2
<2 [yl ([ a g oRa)
+oo a2 +oo
:2/ t1’25\ck(t)|2dt+2—’“ (/ t128|c§€(t)|2dt).
0 $ 0

Multiplying both sides of (2.6) by a;* = (w?|k|? + m?), we have

211.12 2\s Foo
W ek (0))% < 2(w?|k* + m2)/ 12 e ()| dt
_ 0

1 M 1-25( 7 ()2
+ — tr—® t)|° dt
2s </0 ek (2) >

for any k € ZY. Summing over Z", we deduce

(27) 5—5- Z W k[? +m?)* |, (0)]?
keZN
+oo
<>y [2(w2|k|2+m2)/ 125 e (0))? dt
kezZN 0

v ([T e )]
<max{ }2/ 1720 [(WPR]? ) e (8] + | (1)) d

kezN
Taking into account (2.1) and (2.7), we get (2.2). Therefore there exists a trace
operator Tr: X7, - — Hy 5. Now we prove that Tr is surjective. Let

wk-x

e
U= Z cr ——= € Hy, .
keZN ™
Define
23 @)= 3 abnly) e
2.8 v(z,y) = ckOi(y )
kezZN ™

where 0, (y) = 0(\/w?|k[> + m?y) and 0(y) € H' (R, y*~2°) solves the following
ODE:

=0 in R,

0(0)=1 and 6H(c0)=
It is known (see [17]) that 0(y) = (2/T(s))(y/2)°*Ks(y), where K is the Bessel
function of second kind with order s, and as K, = (s/y)Ks; — Ks_1, we get

L o0 —2s/|p/ 1-2sp/ - 75]‘_‘(1*8)
HS.—/O y (10 (w)1? + 160(y)? )dyffi}lg%y 250/ (1)) = 212 o

Then it is clear that v is smooth for y > 0, v is T-periodic in x and satisfies

—div(y' Vo) + m?*y' 7?0 =0 in Sp.
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Now, we show that Tr(v) =u. From standard properties of K, we know that
0(y) »1asy — 0and 0 < O(y) < A for any y > 0. Then, as u € Hj, 1, we
have

(o) —ulfy = S @R[+ m?) |20k (y) — 12 > 0 asy — 0.
kezN

Finally, we prove that v € X7, 7. By Parseval’s identity, we get

(2.9) 1e

b= [ 0O ) dody
= 3l [y R + 0P dy
kezZN
=3 lal [y )
kezZN

(10 (/EIRE T 2y) 1 + [0/ TR+ 2y) ) dy
B SRR, Ll kAT

(wW2[k[2 + m2)(1-25)/2

- / Ty )P + 16w dy

=K, Z (W2 k* + m?)*|ex|? = kslu
kezZN

HQ.]I;L,T' D

THEOREM 2.2. Let N > 2s. Then Tr(X], 1) is continuously embedded in
L0, T)N for any 1 < q < 2%, Moreover, Tr(X3, 1) is compactly embedded in
L0, T)N for any 1< q < 2¢.

ProoF. By Theorem 2.1, we know that there exists a continuous embed-
ding from X7, , to H, ;. Let us show that H} ;. is continuously embedded in
L0, T)N for any ¢ < 2% and compactly in L9(0,T)" for any ¢ < 2.

By Proposition 2.1 in [5], we know that there exists a constant CQg > 0 such
that

1/2
(2.10) ul 2t gy < ng( 3 wzs|k28|0k|2)
[k|>1

for any u € C3°(RY) such that (1/T") f(o Ty~ u(z)dx = 0. As a consequence,
fixed 2 < ¢ < 2&, we have

1/2
(2.11) |U‘Lq(07T)N < C( Z \ck\Q(w2|k|2 +m2)s>
kezZN

for any u € Hj, 7, that is Hj, 7 is continuously embedded in L4(0, T)N for any
2 < g < 2%, Now, we proceed as the proof of Theorem 4 in [3] to prove that
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HE, o € LU0, T)N for any 2 < ¢ < 24, Fix ¢ € [2,2}). Then, by (2.11) and the
interpolation inequality, we obtain

1-6
(2.12) [ul ago,ryny < C|U|9L2<0,T)N( Z e |2 (w? k|2 + m2)s> 7
kezZN
for some real positive number 0 € (0,1).
Now, taking into account (2.12), it is enough to prove that H, . € L*(0, N
to infer that Hj, 7 is compactly embedded in L9(0, T)N for every ¢ € [2,2"). Let
us assume that u/ — 0 in H;, 7. Then

(2.13) lim [c)|?(w?|k|* +m?)* =0 forall k € ZV,
Jj—o00

(2.14) Z |2 (W?|E> +m?)* <O forall j €N.
kezN

Fix &€ > 0. Then there exists v. > 0 such that (w?|k|? +m?)~% < ¢ for |k| > ve.
By (2.14), we have

doldlr= > ldl+ Y lel

kezZN [k|<ve |k|>ve
=D P+ D e PPk + m?)* (w2 k[ + m?) =
|k|<v |k|>ve
< Z |l + Ce.
|k\§y5

Using (2.13), we deduce that }_; ., cl]? < e for j large. Thus w/ — 0 in
L2(0,T)N. O

We conclude this section with some elementary results on the nonlinearity f.
More precisely, by using the assumptions (2)—(f4), one can deduce some bounds
from above and below for f and its primitive F'. This part is quite standard
and the proofs of the two subsequent lemmas can be found, for instance, in [1]
and [24].

LeEMMA 2.3. Let f: [0, 7]V x R — R satisfy conditions (f1)—(f3). Then, for
any € > 0, there exists Cc > 0 such that

(2.15) |f (2, )] < 2e|t|+ (p+1)CL|t|P for allt € R and all x € [0,T]V,
(2.16)  |F(x,t)| <elt|* +C |t for allt € R and all x € [0,T]V.

LEMMA 2.4. Assume that f: [0,T]Y x R — R satisfies conditions (f1)—(f4).
Then, there exist two constants ag > 0 and ay > 0 such that

F(x,t) > a3|t|" —as for allt € R and all x € [0, T)".
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3. Extension problem

In this section we show that to study (1.1) it is equivalent to investigate the
solutions of a problem in a half-cylinder with a Neumann nonlinear boundary
condition. We start with

THEOREM 3.1. Let w € H}, 1. Then there exists a unique v € X7, 1 such
that

—div(y*=2Vo) + m?y'=2%v =0 in Sr,

(3.1) V|{z;=0} = V|{z,=T} on 0rSr,
v(-,0)=u on 9°Sy,
and
. 125 OV 2\s . —s
(32) - ili%y @(I, y) - K/S(iAm +m ) ’LL(SC) mn HmyTa
where
6zwk~x |Ck|2 }
H . =u= c : < 00
m { 2 VTN @R )

is the dual of Hy, 1.

PROOF. Let u = > cpe* /TN € C3°(RY). Consider the following

kezZN
problem:
: 2 . s —
(3.3) min {|v] o v eXhp, Tr(v) = u}.
By Theorem 2.2, we can find a minimizer to (3.3). Since || - [|Z. .. 1s strictly

convex, such minimizer is unique and we denote it by v. As a consequence, for
any ¢ € X;, 7 such that Tr(¢) =0,

(3.4) //s y' =3 (VoVe + m?ve) de dy = 0,

that is v is a weak solution to (3.1). Since the function defined in (2.8) is
a solution to (3.1), by the uniqueness of minimizer, we deduce that v is given by

ezwk~7;

VTN’

v(z,y) = Y ebrly)

kezZN

where 0 (y) = 0(\/w?|k|?2 + m2y). In particular, by (2.9), we have

lollzs,, = Vslules, -
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Then

2
—yl %(ny) — Ks(=A +m?)’u

—s
Hm,T

1 2 s|?
= 2 ey o [V R )y @R 4 m?)

keZN W2‘k|2 +

2

> @ kI + m?)%enf2| [ K] + m2)y] "0 ) + ks
kezZN

and, by using u € Hj, 7, —yt=250(y) — ks as y — 0 and 0 < —rgy' =250 (y) <
B; for any y > 0 (see [17]), we deduce (3.2). O

Therefore, for any given u € H, 7, we can find a unique function v = Ext(u)
in X7, 7, which will be called the extension of u, such that

(a) v is smooth for y > 0, T-periodic in « and v solves (3.1).
(b) [[vllxs, , < l2llxs, . for any 2z € X5, 7 such that Tr(z) = u.

)

)

(©) [lvllxs, , = VEslulms, .-
(d) We have

. _9s OV , N
lim =y~ S @.9) = (A + ) ule) i

Now, modifying the proof of Lemma 2.2 in [13], we deduce
THEOREM 3.2. Let g € H;ST Then, there is a unique solution to the prob-
lem:
find u € B}, 1 such that (—A +m?)u = g.

Moreover, u is the trace of v € X, 1, where v is the unique solution to (1.3),
that is for every ¢ € X7, 1 it holds

/ / Y12 (VoY + mPod) de dy = kelg, To(@))o e
s, m, T "y,

,T

Taking into account the previous results we can reformulate the non-local
problem (1.1) in a local way as explained below.
Let g € H * and consider the following two problems:

(=Az +m*)*u=g in (0,T)V,

(3.5)
u(z + Te;) = u(x) forz € RY
and
—div(y' =% Vo) + m?*y' =20 =0 in Sr,
(3.6) U){z;=0} = V|{z;=T} on 918,

ov
W = g(l’) on aOST
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DEFINITION 3.3. We say that u € Hy, 1 is a weak solution to (3.5) if u = Tr(v)
and v is a weak solution to (3.6).

REMARK 3.4. Later, with abuse of notation, we will denote by v(-,0) the
trace Tr(v) of a function v € Xj, 7.

We conclude this section giving the proof of the following sharp trace in-
equality:

THEOREM 3.5. For any v € X7, 1 we have

(3.7 ks Tr(v)

]%Ifn’T < o] gifn’T

and the equality is attained if and only if v = Ext(Tr(v)). In particular,

(3-8) |lv|

giin,T - Hsm28|Tr(’U)\i2(o,T)N =0
< v(z,y) =C0O(my) for some C € R.
PROOF. By properties (b) and (c), for any v € X;

ks|Tr(v)

2. = |ExtTx(v)]

ggf';n,T S ||U| gg:n,T7

and the equality holds if and only if v = Ext Tr(v).

Now, we prove (3.8). We denote by ¢ the Fourier coefficients of Tr(v). If
v(z,y) = COn(y) := CH(my) for some C € R, as 0(0) = 1, we have

Il

+oo
L O [y, WP ()P dy
? 0

“+o0o
_ CzTNmzs/O yl—QS(|9/(y)|2 + m2\9(y)|2) dy
= C?TNm? gk, = m2SHS|Tr(U)\%2(o,T)N'

Now, assume that ||v||. T nsm25|Tr(v)|%2(O my~ = 0. By (b) and (c),

(3.9) 1Ext Tr(v)l[% . < Il = wsm® | Tr(v) 220 1)~
< Tl | = BT,

that is
o3, = |ExtTr(0) [y, = mam® [ Te() a0 1x-

Let us note that ||v]|2. L = |[Ext Tr(v)||%- . implies v = Ext(Tr(v)). In parti-
cular, from 7 7

kst** | Te()| F2 o 7y = [[Ext Tr(v))]

?ﬁfﬂyT = k| Tr(v) ]%Ifnj

we obtain that ¢y = 0 for any k # 0, so we get

v = Ext(Tr(v)) = Z (VW2 k2 + m2y)e™ = cof(my). O
keZN
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4. Periodic solutions in the cylinder Sp

In this section we prove the existence of a solution to (1.1). As shown in the
previous section, we know that the study of (1.1) is equivalent to investigate the
existence of weak solutions to

—div(y!=2Vo) + m?y' =250 =0 in Sy := (0, 7)Y x (0,00),

(41) 'U|{;vi:0} = U\{xi:T} on 6LST = 6(0,T)N X [0, OO),
% = ks[m*v + f(z,v))] on °Sy = (0,T)N x {0}.

For simplicity, we will assume that ks = 1. Then, we will look for the critical
points of

m2s

r~ 9 ‘U(~,0)‘iz(o,T)N /E)UST F(z,v)dr

1
Tn(0) = 5110

2
X3,
defined for v € X7, ;. More precisely, we will prove that 7, satisfies the as-

sumptions of the Linking Theorem [24]:

THEOREM 4.1. Let (X,]||-||) be a real Banach space with X =Y & Z, where
Y is finite dimensional. Let J € C1(X,R) be a functional satisfying the following
conditions:

(a) J satisfies the Palais—Smale condition.

(b) There exist n,p > 0 such that J(v) > p for allv € Z such that ||v]| = n.

(c) There exist z € O0B1NZ, R > n and R' > 0 such that J < 0 on 9A,
where

A={v=y+rz:yeY, ||yl <R and 0 <r < R},
IA ={v=y+rz:yeY, |ly||=R orre{0,R}}.

Then J possesses a critical value ¢ > p which can be characterized as

:= inf J
¢ := inf max J(v(v)),

where T' := {7 € C(A,X) : v =1d on 6 A}.

Due to the assumptions on f, it is easy to prove that 7, is well-defined on
X5, and T € CH(X5, 1, R). Moreover, by (3.7), we notice that the quadratic
part of 7, is nonnegative, that is

(4.2) ||U||§2§;L1T —m**[o(- 7O)|%2(0,T)N > 0.

Let us note that

Ko = 0 © {0 Kr: [ o@0)dr =0} = Vo 920
0,7)N
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where dim Y7, » < oo and Zj, 1 is the orthogonal complement of Y7, , with
respect to the inner product in X7, . In order to prove that Jn verifies the
linking hypotheses we need the following results.

LEMMA 4.2. J,, <0 on an,r
PRrROOF. It follows directly from (3.8) and assumption (f6). O
LEMMA 4.3. There exist p > 0 and n > 0 such that
Im(v) Zp  forv € Zy, ¢ such that [|v]|xs, . =n.
ProOOF. Firstly we show that there exists a constant C' > 0 such that

(4.3) ]

= m*[v(-,0)[Z2i0qyv = Cllv]

2 2
s s
X X

for any v € Z;, 7. Assume, by contradiction, that there exists a sequence (vj) C
Ly, 1 such that

) 1
o3l . = m*[0; (O, < Il -

Let z; = v;/||vjl|xs .. Then [|zj[|x: = = 1, so we can assume that z; — 2 in
Xour and z;(+,0) = 2(+,0) in L?(0,T)N for some z € Z3, 1 (Z5, p is weakly

closed). Hence, for any j € N

s 1
1—m®|z( 'a0)|2L2(o,T)N < 5’

so we get |z;( "0)|i2(O,T)N — 1/m?® that is [2(+,0)|p20 v = 1/m*.
On the other hand,

0 < |lz]

2 2 2 s 2 2 2
Xs .o m *l2(+, 0)|z20,myn < hjrgg}f||z]| X "1z 0)L20,myv =0

implies that z = cf(my) by (3.8). But z € Z;, 1, so ¢ = 0 and this is a contra-
diction because of [2(-,0)|p2¢0, )~ = 1/m* > 0.
Taking into account (4.3), (2.16) and Theorem 2.2, we have

Tnl®) 2 Cllols, | — <ol 0 Baryn — Celo(- O e
€
> (- £ )ik, , - CloliE?,

for any v € Z3, 1. Choosing € € (0,mC), we can find p > 0 and n > 0 such that

inf { T (v) : v € Z3, 1 and |[v]

K g =N} 2 P O
LEMMA 4.4. There exist R > 1, R >0 and z € Ly, 1 such that

max Im(v) <0 and max TIm(v) < 00,

m,T m,T

where A, 7 = {v=y+rz:|lyllxs . <R andre0,R]}.
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PrROOF. From Lemma 4.2 we know that 7,, <0 on an’T. Let us consider

N 1
w = sin(wx;) ——.
[Tt 4

Note that w € Z;, 1 (since foT sin(wz) dx = 0) and
N-1 T
[[w] |3 . zN( H / sin?(wz) dx>w2
’ i=1 70
T s}
) (/ cos? (wz) das) </ Yy & 2>
0 0 (y+1)
N T o)
. _ dy
+ / sin?(wz) dx) </ Y2 >
<Z]'1 0 0 (y+ 1)

o (I ) ([T )

So there exist C,Cy, C3 > 0 (independent of m) such that

(4.4) Cy < ||w]

2 2
T <Cot+m 03'

Set z = w/||w| xs =1
By the Hdélder inequality, we can observe that if v =y +7r2 € Y} &Rz

|’U( T 0) iM(O,T)N > C|U( T 0)|l£2(0’T)N

xs, .- 1t is clear that z € Z7, , and ||z]

w/2
= C(/ (c+712)? dx) > O (m** TN 4 r?)H/2,

Then, for any v =y +rz € Y;, r ®Ryz,

Tn) = 2N~ " 1 O — [ Fla)de
m - 2 Xff‘n,,T 2 ’ L2(OaT)N BOST ’
<™ A(- 0 BTN
= ? - |’U(-, )|LM(O’T)N +
2

(4.5) < % — C"(m2ATN 4+ r2)#/2 4 BTN
(4.6) < (m*ETN 4% — O (m* AT + 7'2)“/2 + BTN
(4.7) =, , — Ellollg,  +F.

Recall that g > 2. By (4.5), there exists R > 0 such that
Im(y+1r2) <0 forany r> Randy € Y;, 1.

Let » € [0,R]. By (4.6), we can find R' > 0 such that J,,(y + rz) < 0 for
llyllxs .. > R'. By (4.7), we deduce that there exists a constant § > 0 such that

m, T —

Im(v) <6 for any v € AJ, 7. O
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Finally, we show that 7, satisfies the Palais-Smale condition:
LEMMA 4.5. Let c € R. Let (vj) C X[, 7 be a sequence such that
(4.8) TIm(vj) = ¢ and T (v;) = 0.

Then there exist a subsequence (v;,) C (v;) and v € X 1 such that v;, — v

o S
mn XWT.

PrROOF. We start proving that (v;) is bounded in X3, ;. Fix 8 € (1/p,1/2).
By Lemma 2.3 with ¢ = 1, we get

(4.9) ’ / (Bf(z,vj)v; — F(x,v;)) dz
9°8rn{|v;|<ro}
<(28+Drg + Cilp+2)rE TN =14

and

(4.10) ‘/ F(z,v;)dz
908 n{|v;|<ro}

Taking into account Lemma 2.4, (£5), (4.2), (4.8)-(4.10), we have for j large
enough

< (r§+ ClrgH)TN = 1.

c+ 1 +lvillxs, . > Tm(vy) = BT (v5),v5)

(3-2) s

+ ) Br ey = P v de

% —mP0i(50) 220y ]

> / [8f (2, v;)v; — F(x,v;)| da
998
_ / Bf(z,v;)0; — Fla,v;)] da
QOSTQ{"Un|ZT0}
+ / [8F (,v5)0; — Flw,v;)] da
AOSrN{|v,|<ro}
>ws-1) [ Fla,v;)dz — 1
BOSTQH’UJ'IETQ}
> (u8 1) [ Fau)do— (B~ iz
008+

(4.11) =(us —1) /808 F(z,v;)dz —1

> (pup—1) [a3|vj( i 0)|L[L,u(o’T)N - a4TN] -t
(4.12) > (uB — 1) [as|v; (- ,O)|‘j.j2(O,T)NT_N(“_Q)/2 —asTN] — .
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Hence, by (4.11) and (4.12), we deduce that

101%s. . = 2Tm(v5) + m**[v; (-, 0)[F2 0,7y + 2/ F(x,v;) dx

908
< C1+ C2(Cs + 1+ ||y
< Cs + Crl|vy|

wo0) " Ca(Cs + 1+ (sl )

s
X

that is (v;) is bounded in X; 7.

By Theorem 2.1, we can assume, up to a subsequence, that
v; =0 in X7, 7,
(4.13) v;j(+,0) = v(-,0) in LPTH0, )V,
v;j(+,0) = v(-,0) ae. in (0,7)~
as j — oo and there exists h € LPT1(0, 7)Y such that
(4.14) lvj(z,0)| < h(x) ae. inze (0,T)V, forall j € N.

Taking into account (£2), (f4), (4.13), (4.14) and the Dominated Convergence
Theorem, we get

(4.15) / f(z,vj)v; doe — f(z,v)vda
Sy 2987

and

(4.16) / f(z,vj)vde — flz,v)vdx
3087‘ 8OST

as j — oo. Due to (4.8) and boundedness of (v;);en in X$, 7, we deduce that
(I, (vj),vj) — 0, that is

@1l -G s — [ f e de 0
m,T BOST
as j — oo. By (4.13), (4.15) and (4.17) we have
@) ol > Oy - [ faods
: 898y
Moreover, by (4.8) and v € X}, 7, we have (J,,(v;),v) — 0 as j — oo, that is
(4.19) (vj,v)xs . — m**(vj, V) p20,m)y — / f(z,vj)vdz — 0.
' 0Sr

Taking into account (4.13), (4.14), (4.16) and (4.19), we obtain

(4.20) [|v]

gﬁf” T m*[v(- 70)\%2(0,T)N —/ f(z,v)vde.
’ 89S

Thus, (4.18) and (4.20) imply that

(4.21) o1, = llel3s s j— oo.
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Since X7 . is a Hilbert space, we have

%ifn,T + [|v]

llv; — vl g&fﬂyT = |[vj] g&fnj - 2<“J’7“>an,T
and, due to v; — v in X7, 7 and (4.21), we can conclude that v; — v in X7, 7,

as j — oo. O

ProoF oF THEOREM 1.1. Taking into account Lemmas 4.2-4.5, by Theorem
4.1, we deduce that for any fixed m > 0, there exists of a function v, € X7, 1
such that J, (vm) = am, T (vm) = 0, where

4.22 m = inf m
(4.22) om = If  max Tm(7(v))
and T, = {7 € C(A}, 1, X5, 1) : v = Id on DA}, 1 }. O

REMARK 4.6. Let us observe that an easy consequence of Theorem 1.1 is the
existence of infinitely many distinct T-periodic solutions to (1.1). To prove it,
one can proceed as in the proof of [24, Corollary 6.44].

5. Regularity of solutions to (1.1)

In this section we study the regularity of weak solutions to problem (1.1).

LEMMA 5.1. Let v € X7 1 be a weak solution to

—div(y'=%Vv) + m?*y' =20 =0 in Sr,

(5.1) Y|{z;=0} = V|{z,=T} on 0L.Sr,
0
e = P+ [(,0) on 05

Then v(-,0) € LI(0, T)N for all ¢ < co.

PROOF. We proceed as in the proof of Lemma 7 in [3]. Since v is a critical
point for Jp,, we know that

(5.2) // y' 72 (VoVn + m?on) dx, dy = / m**vn + f(z,v)n) dx
St 00 (Sr

for all n € X7, Let w = vviﬁ € Xj, 7, where vg = min{|v[, K}, K > 1 and
£ > 0. Taking n = w in (5.2), we deduce that

(5.3) // Y202 (Vo] + mP0?) da dy + // 28y" 2022 |Vo|? dz dy
St DT
=m? vzvff dx + / Sz, v)vv?f dz,

3087‘ 8OST

where D r = {(x,y) € Sr : |v(z,y)| < K}.
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It is easy to see that

Gy [[ v TP dsdy
St
= // yl_zsvff\VvP dx dy + // (268 + 62)y1_25v§(ﬂ|vm2 dz dy.
Sr Dk, 1
Then, putting together (5.3) and (5.4), we get
Xy // 1= 25 |V vV )|2 +m2v211§(ﬁ] dz dy
= // yl 22 [[Vo]? + m*v?] dx dy
St
+ // 23 (1 + 6) y1728v§f|V’u|2 dz dy
Dy T 2
<cg {// yl_%vf{ﬁ (Vo> + m*v?] dx dy
St

+ // 26y1_23vff|V1}|2 dx dy}
Dk, T

:cﬁ/ (m%v%zﬁ + f(z, v)vvff) dz,
98y

(55 ol

where ¢cg =1+ /2. By Lemma 2.3 with ¢ = 1, we deduce that
m25v2vff + f(x,v)uv?f < (m* + 2)@21)%(5 +(p+ 1)Cl|v|p_lv2vi(5

on 3°Sy. Now, we prove that [v[P~! < 14+h on 9°Sr for some h € LN/25(0, T)N
Firstly, we observe that

0Pt = X<y [P Xqups 1y 0P T S T xqusylolPT on 878y

If (p —1)N < 4s then

/ X{jol> 13 [NV dg < / X{Jv|>13|0)* dz < 00
9S8 99Sr

while if 4s < (p—1)N we have that (p—1)N/(2s) € [2,2N /(N — 2s)]. Therefore,
there exist a constant ¢ = m?* 42 + (p+ 1)C; and a function h € LN/25(0, T)N
h > 0 and independent of K and f, such that

(5.6) mQSvQU? + f(x,v)m;K < (c+ h)? 25 on 9°Sy.

Taking into account (5.5) and (5.6), we have

P12, < cﬁ/ (c+ h)v%ff dz,
T 89St
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and, by the Monotone Convergence Theorem (vg is increasing with respect to
K), we have as K — o0

67 PR < e / W20+ dg 4 ¢y / Blo2E+D g
T 98, 50

St

Fix M >0 and let A; = {h < M} and Ay = {h > M}. Then

(5.8) / hlo(-,0)[2F+D dg
998

< Mv( '70)|B+1|%2(07T)N +e(M)]v(- a0)|’8+1|izﬁ (0,T)N?

where
2s/N
E(M):</ hN/Qsdx) -0 as M — oc.
Ay

Taking into account (5.7), (5.8), we get

(5.9) [l

< cale+ MIlu(-,0) 7 B gy +oe (M)l QP

By Theorem 2.2, we know that there exists a constant C’;,i >0 such that

X}

(5.10) (- O 2 e < CE I,

Then, choosing M large enough so that e(M)cgC3, = < 1/2, by (5.9) and (5.10),

we obtain

G0 0P,

oy < 205 ea(e MDI0(-,0)7F o 7y

Then we can start a bootstrap argument: since v(-,0) € L2N/(N=25) we can
apply (5.11) with 8; +1 = N/(N — 2s) to deduce that
v(_70) c L(61+1)2N/(N_23)(0’T)N _ LZNQ/(N_%)Z(O,T)N.
Applying (5.11) again, after k iterations we find v(-,0) € LQNk/(N_QS)k(O,T)N,
and so v(-,0) € L4(0,T)" for all q € [2,00). O
THEOREM 5.2. Let v € X7, 1 be a weak solution to

—div(y'=2Vo) + m?y' =250 =0 in Sr,

(5.12) U|{z;=0} = V|{z;=T} on 01 Sr,
v 0e .
oul-2s = Ks[m™ v+ f(z,v)] on 0°Sr.

Let us assume that v is extended by periodicity to the whole Rf“. Thenv(-,0) €
CO(RN) for some o € (0,1).

PROOF. It is clear that v € H} (A x Ry, y'=2%) for any bounded domain
A C RM. By Lemma 5.1 here and Proposition 3.5 in [18], the statement follows.[]



96 V. AMBROSIO

6. Passage to the limit as m — 0

In this last section, we give the proof of Theorem 1.2. We verify that it is
possible to take the limit in (1.3) as m — 0 so that we deduce the existence
of a nontrivial weak solution to (1.4). In particular, we will prove that such
solution is Holder continuous. We remark that in Section 4 we proved that for
any m > 0 there exists v, € X7, 7 such that

(61) jm(vm) =q,, and jrln(vm) =0,

where «,,, is defined in (4.22). In order to attain our aim, we estimate from
above and below the critical levels of the functional 7, independently of m.

Let us assume that 0 < m < my = 1/2022,17 where Cy; is the Sobolev
constant which appears in (2.10). We start proving that there exists a positive
constant ¢ independent of m such that

(6.2) am <0 for all 0 < m < my.
Due to (4.4) and m < mg, we know that

C1 <]

%0 < CatmiCh.
Moreover (see Lemma 4.4), we have for any v =y +rz € Y; » ©R; 2

(6.3) (- 0oy = T N2 0( 0) [ gy

/2
= T_N(“_z)/2</ (c+712)? dm)
(0,1~

N 2 n/2
> PN(-2)/2 (czTN N <T> ’;)
2/ llzllgs,

1 (T/2)N
m%s ’ Cy + m%Cg

2 T—N(;L—Q)/Q mln{ } (mQSCQTN 4 ,,,,2);1,/2

= Cllv|

I
s
XwL,T

for some C' = C(my, T, N,s) > 0. Then, for any v =y +rz € Y; » ®R;z and
0 <m < mgy we get

1 m2s
: m\V) =5 X8 T To YU YIL2(0,T)N T )
64)  Tu() =5 loliE;, — T lo(-,0)1 F(a,v)de
' 908
1
=5 ||U||§2§;T - A|U( i) O) l[}:H(O?T)N + BTN

2 Iz
[0l , = Cllllg,  +D <8,

where A, B,C, D, > 0 are independent of m.
Now we prove that there exists A > 0 independent of m such that

(6.5) am > A forall 0 <m < myg.
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Let v € Z;, r and € > 0. We denote by ¢, the Fourier coefficients of the trace
of v. By (2.10) and (3.7) (with ks = 1),

1/2
(6.6) |vlaomy~ < 025( Z w25|k25|0k|2) < Cyslvle
[k[=1

T S 025”’0 X

for any ¢ € [2,2%]. By Lemma 2.3 and (6.6), we can see that for every 0 < m <

// 1225 (1w + m2v?) da dy

’UQd.’IJ— F(E’Udl'
||
89S

Mo

2 %S

m 1
ol - (5 +a)|v<-7o>|%z<o,T>N = Gl O s

2 m
[ _c, (2 +5)] I
> (3 Che)nli,, -

Choosing 0 < ¢ < 1/(4022§), we have that b := 1/4 — C’Qan > 0. Let p :=
(b/(2C7))Y/ =1, Then, for every v € Z;, 7 such that ||v][x: . = p,

w\»—*

Y

+1
By — CCo ol

P+1
S

j(v)>b270/pp+l—é b\ 1)7->\
m = bp b =3 20{) =!I A.

Therefore, taking into account (6.2) and (6.5), we deduce that
(6.7) A< a, <4§ forevery 0 <m < myg.

Now, we estimate the H} (Sr,y'~?*)-norm of v, in order to pass to the
limit in (1.3) as m — 0. Fix 8 € (1/p,1/2). By (6.1) and (6.7), we have for any
m € (0,mg)

6 Z jm(vm) - B<\71;1(’Um)7vm>

69 =(5-5) ol

X o M2 v (- 70)'%2(0,T)N]
+ / [BF (@, 0m)om — F(a, vm)] da
o0St

2/ [/Bf(xavm)vm - F(xavm)] dx
9OST

(6.9) > (B —1) /BOS Fla, ) dz — F

> (1 = 1) [aslom () oy — 0aT™]
(610) Z (Mﬂ - 1) [a3|vm( ] 0)|i2(07T)NT_N(M_2)/2 - a/4TN] - E
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By (6.10), we deduce that the trace of v, is bounded in L%(0,T)™
(6.11) [Um (-, 0)[L2(0,myv < K(5) for every m € (0,my).
Taking into account (6.1), (6.7), (6.9) and (6.11), we deduce

(6.12) vamné(smyl*?ﬂ < HU”LH?&;’T

=2J (V) +m|vm(~,0)|%2(07T)N +2/ F(z,vy,)dx
9S8

<26+ g K(5)+ C(8) = K'(6).

Now, let ¢* be the Fourier coefficients of the trace of v,,. By (3.7), we can see
that

(6.13) K'(0) > o3, = lom(-.0)

) S

m, T —
kezZN

which, together with (6.11), implies that

(6.14) [vm (-, 0)

s, < K"(8) for every m € (0,mo),

that is Tr(v,,) is bounded in HE..
Finally, we estimate the L2 (Sr,y'~2*)-norm of v,, uniformly in m. Fix
a>0andlet v € C’%‘J(Rf“) be such that ||v,,]

and y € [0, a], we have

xs, . < 00. For any z € [0, TN

v(z,y) = v(z,0) + /Oy Oyv(z,t) dt.

Due to (a + b)? < 2a% + 2b? for all a,b > 0, we obtain

y 2
o) < 20w 0P +2( [ 0y0te. 0 at)
0

and, applying the Holder inequality, we deduce

2s

(6.15) lo(z, )2 < 2[|v(m,0)|2 + </Oy tl—%ayv(x,m?dt) yQJ

1-2s

Multiplying both sides by y , we have

y
(6.16)  y'**|v(z,y)]> < 2[y12s|v(x,0)|2 + (/O t125|8yv(x,t)|2dt) 23{9]
Integrating (6.16) over (0,T)" x (0, «), we have

(6.17) ||v|‘%2((0,T)N><(0,a),y1*25)
2-2s 2

2 « 9
< 1— s lv( -,0)|L2(O,T)N + 9 ||3yv||L2(ST7y1723).
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By density, the above inequality holds for any v € X7, 7. Then, by (6.17), (6.11)
and (6.12), for any 0 < m < myg, we have

) 012725
||Um||L2((0,T)Nx(o,a),y1*25) < 1—

< C(a, 8)K(0)* + C'(a, s)K'(6).

2
«
5 [vpm (- 7O)|%2(0,T)N + 2% H3y717n||%2(5T’y1725)

As a consequence, we can extract a subsequence, that for simplicity we will
denote again with (v,,), and a function v such that

eve LIQOC(STayl_QS) and Vv € LQ(ST,y1_2S);

® Up —U in LIQOC(STayl_QS) as m — 07

e Vo, = Vo in L*(Sr,y' %) as m — 0;

O (+,0) = v(+,0) in H§ and vy, (+,0) = v(-,0) in L7(0, 7)Y as m — 0,
for any ¢ € [2,2N /(N — 2s)).

Now we prove that v is a weak solution to

—div(y'=2*Vo) =0 in Sr := (0,7)" x (0, 00),
(6.18) Ul{ei=0} = V{z=r} o0 OrSr = 9(0,T)" x [0, 00),

T({f:s — f(av)  on 88y = (0,T)N x {0}.

Fix ¢ € X%. We know that v, satisfies

(6.19) // Y 72 (Vo Vi + m2u,n) de dy = / (M50, + f(2, vm)|n dz
ST BOST

for every n € X}, 7. Now, we consider § € C*°([0, 00)) defined as follows:

§=1 fo<y<1,
(6.20) 0<¢<1 if1<y<2,
£€=0 if y > 2.

We set r(y) = €(y/R) for R > 1. Then choosing n = ¢&r € X;, 1 in (6.19) and
taking the limit as m — 0, we have

(6.21) //ST Yy BV (pér) de dy = / fz,v)pdx.

Sy

Taking the limit as R — oo, we deduce that v verifies

// y' VoV dedy - / f@,v)pdr =0 forall p € X7.
Sr %S
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Now let us prove that v # 0. Let £ € C*°([0,00)) as in (6.20), note that v €
X, r- Then

0= (T (vm), &v) = // y' 72 (Vo V(Ev) + m2v,&v) da dy
St
—m? U dT — / flz,vp)vde
0S8t 89S

and, taking the limit as m — 0, we get

(6.22) 0= // y' "2 VoV (&) da dy —/ f(z,v)vde.

Due to (6.1), (6.7), (T),(vm), vm) = 0 and F > 0, we have

(6.23) 2X < 2T (vm) + M [0 (-, 0)[F2 (0 1y + 2 F(z,vp,)dz
998
= |lvm] §<T = m*|op (- 70)|%2(O)T)N + / f(z,vm) v, da.
9S8

Taking the limit in (6.23) as m — 0, we obtain

(6.24) 22 < / f(z,v)vde.
8

Hence, (6.22) and (6.24) give

0<2x< / flz,v)vde = // y' "BV (€v) dz dy,
8OST ST

that is v is not a trivial solution to (6.18).

Finally, we show that v € C%%([0, T]"), for some a € (0,1). We start proving
that v(-,0) € L4(0,T)" for any ¢ < oo. We proceed as in the proof of Lemma 5.1
and we use estimate (6.14). Let w,, = vmviﬁK, where vy, k = min{|v,,|, K},

K > 1 and 8 > 0. Then, replacing vaf by vmvsz in (5.5), we can see that

(6.25)  [jumvl |

2. S cﬁ/ [mzsvfnvff_K + f(:c,vm)vmvffK] dz,
" ((UrDR ’

where ¢g =1+ /2 > 1. Using Lemma 2.3 with € = 1, we get

mQSU%vng + f(=, vm)vmvff’K < (m* + 2)1;72711)7275}( + @+ 1)Cl|vm|p*1v21)if’K.

Since v, converges strongly in LN®=1/(2s)(0, T)N (because of N(p—1)/(2s)
< 25,), we can assume that, up to subsequences, there exists a function z in
LN®=1/9) (0, T)N such that |v,,(z,0)] < z(z) in (0,T)N for every m < my.
Therefore, there exist a constant ¢ = m32* + 2 + (p + 1)C; and a function h :=
14+ 2°~1 € LN/9)(0,T)N, h > 0 and independent of K, m and 8 such that

(6.26) m2sv72nvff7K + f(x,vm)vmvff)K <(c+ h)vfnvfﬁK on 9°Sr.
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As a consequence

(6.27) |omv,

boage [ erhpdlcde
g (0,1)N

Taking the limit as K — oo (v, i is increasing with respect to K), we get

3005/
T 0,7)N

s

(6.28) |[[om

[V |? 5+1)dx+05/ v, |2PHY de.
(0,1)N

For any M > 0, let A; = {h < M} and A = {h > M}. Then

(6.29) / Ao (-, 0)[2P*D dg
(0,1)N

< M||vm(-,0)P+1 2L2(O,T)N +5(M)H”m('70)‘6+1@2§(0 )N’

where
2s/N
5(M)=(/ hN/(QS)dx) —0 as M — oo.
Az
Taking into account (6.28), (6.29), we have

(6.30) [[loml** 3, ,

< cgle+ M) om0 o o gyn + coe(MD) Jom (-, O 7o 1

Now, by (2.10), we know that for every w € C3°(RY) with mean zero, there

exists pg := Cys > 0 such that

1/2
(6.31) |w‘L25(O,T)N < M0< Z w25|k|256k|2) 7

|k|#0
where by, are the Fourier coefficients of w. Therefore, if w € C3*(RY) and

7,
W= — w(x) dx,

by the Holder inequality, we have

(6.32) |w < |lw — w| + ||

L2t 0,7y~ L2t (0,7~

1/2
< Mo(Z w28|k|28|bk2) 18] gy
|k|#0

1/2
<o X WP IR) -+ pufufagys
|10
< polwlfys  + palw]7
= T L (0,T)N7

2t o,T)N
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where pp = TW=2/2 > 0. Taking into account (6.30), (6.32) and (3.7), we
deduce that

(6.33) [1om (O s gy = Hallom (- O a0,y

< piollom (-, 0) 7 s < prolllom| "1 [s

m,T
< polep(e+ M)|[vm (-, 0)[" 20y~

e (Mo (O L]

T

Choosing M large enough so that cgpoe(M) < 1/2, by (6.33), we obtain

(6:34) Nom (- 0I5 1) < 2locs(c+ M) + ] llom (- 01 oo -
Let us notice that, by (6.14) and H3. ¢ L2(0,T)Y, we get
(6.35) [vm (-, 0)|L22 (O.1)¥ < KW((S),

for any m < mg. By applying (6.34) with § +1 = N/(IN — 2s) (that is g =
2s/(N —2s)) and by using (6.35), we have that

valN/(N_Qs)‘iﬁ(O’T)N < 2[025/(]\7723)“0(6_’_ M) + Ml}K”/(é)QN/(N_QS)7
and taking the limit as m — 0, we deduce v(-,0) € L2N?/(N—25)° (0, T)N.

By (6.34), we find, after k iterations, that v(-,0) in Lsz/(N*QS)k(QT)N
for all k € N. Then v(-,0) € L1(0,T)Y for all ¢ € [2,00), and by invoking
Proposition 3.5 in [18], we conclude that v € C%<([0, T]YV), for some « € (0, 1).
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