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ON THE STRUCTURE OF THE SOLUTION SET

OF ABSTRACT INCLUSIONS WITH INFINITE DELAY

IN A BANACH SPACE

Lahcene Guedda

Abstract. In this paper we study the topological structure of the solu-

tion set of abstract inclusions, not necessarily linear, with infinite delay
on a Banach space defined axiomatically. By using the techniques of the

theory of condensing maps and multivalued analysis tools, we prove that

the solution set is a compact Rδ-set. Our approach makes possible to give
a unified scheme in the investigation of the structure of the solution set of

certain classes of differential inclusions with infinite delay.

1. Introduction

When an existence result is proved for the Cauchy problem for a class of

systems where the solutions are not unique, it is natural to discuss for this

class the topological structure of the solution set. For this reason in recent

years much work has been done in that direction. It was Aronszajn [2], who

first proved that the solution set of the Cauchy problem x′(t) = f(t, x(t)) for

almost every t ∈ [0, T ], x(0) = x0, where f( · , · ) is a bounded, continuous

function on [0, T ] × Rn, is an Rδ-set. This result was extended to differential

inclusions by Himmelberg–Van Vleck [22] and De Blasi–Myjak [12] for differential

inclusions in Rn and by Bothe [5], M. Cichoń–Kubiaczyk [8], Deimling–Rao [14],
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Conti–Obukhovskĭı–Zecca [10], and Papageorgiou [27] for differential inclusions

in Banach spaces. For more literature and some recent developments on the

topic see [16], [20] and the references cited therein.

In [17], existence and continuous dependence results are presented, and the

Rδ-structure of the solution set is claimed for a semilinear differential inclusion

with infinite delay in a Banach space.

We aim in this paper to study the topological structure of the solution set of

abstract inclusions, not necessarily linear, with infinite delay in a Banach space.

More precisely, let σ be a real number and T > 0 be a fixed time. By

C([σ, T +σ];E) we denote the space of continuous functions defined on [σ, T +σ]

with values in a Banach space (E, ‖ · ‖), endowed with the uniform convergence

norm and by L1([σ, T + σ];E) we denote the space of all Bochner summable

functions endowed with the usual norm. For any function z : (−∞, σ + T ]→ E

and for every t ∈ [σ, σ + T ], zt represents the function from (−∞, 0] into E

defined by zt(θ) = z(t+ θ); −∞ < θ ≤ 0. Let B be a Banach space of functions

mapping (−∞; 0] into E endowed with a norm ‖ · ‖B and satisfying the following

axioms:

If z : (−∞, σ + T ] → E is continuous on [σ, σ + T ] and zσ ∈ B, then, for every

t ∈ [σ, σ + T ], we have

(B1) zt ∈ B;

(B2) ‖zt‖B ≤ K(t−σ) sup
σ≤s≤t

‖z(s)‖+N(t−σ)‖zσ‖B, where K,N : [0,+∞)→

[0,+∞) are independent of z, K is positive and continuous, and N is

locally bounded;

(B3) the function t 7→ zt is continuous;

(B4) ‖z(t)‖E ≤ l‖zt‖B, where l > 0 is a constant independent of z.

A space satisfying (B1)–(B4) was first introduced by Hale and Kato [21]

and has been considered as a phase space in the theory of retarded functional

equations (see [9], [26], [28]). Let us give two examples of Banach spaces B
satisfying axioms (B1)–(B4), see for example [23] and [24, p. 20].

Let g(θ), θ ∈ (−∞, 0], be a positive continuous function such that g(θ)→∞
as θ → −∞.

The space UCg. The space UCg is a set of continuous functions φ such

that φ/g is bounded and uniformly continuous in (−∞, 0]. Set

‖φ‖B = sup {‖φ(θ)‖/g(θ) : θ ∈ (−∞, 0]}.

UCg is a Banach space satisfying axioms (B1)–(B4).
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The space Lg. The space Lg is the set of strongly measurable functions φ

such that ‖φ‖/g is integrable over (−∞, 0]. Set

‖φ‖B = ‖φ(0)‖+

∫ 0

−∞
‖φ(θ)‖/g(θ) dθ.

Lg is a Banach space satisfying axioms (B1)–(B4).

Let us denote by the symbol C((−∞, σ+T ];E) the space consisting of func-

tions z : (−∞, T + σ] → E such that zσ ∈ B and the restriction z|[σ,T+σ] is

continuous, endowed with the norm

‖z‖C = ‖zσ‖B +
∥∥z|[σ,T+σ]

∥∥
C([σ,T+σ];E)

.

It is easy to see that C((−∞, σ+T ];E) endowed with the norm ‖·‖C is a Banach

space.

Let us consider abstract inclusions with infinite delay on B described in the

form

(1.1)

z ∈ S ◦ selF (z) on [σ, σ + T ],

zσ = ϕ,

where ϕ ∈ B, F : [σ, T + σ] × B → 2E is a compact convex valued multimap

satisfying upper Carathéodory and χ regularity conditions, where χ denotes

the Hausdorff measure of noncompactness in E, the symbol selF denotes the

superposition operator generated by F , i.e. for any z ∈ C((−∞, σ + T ];E),

selF (z) =
{
f ∈ L1([σ, T + σ];E) : f(s) ∈ F (s, zs) for a.e. s ∈ [σ, T + σ]

}
,

finally, S : L1([σ, T + σ];E)→ C([σ, T + σ];E) is an abstract operator satisfying

S(f)(σ) = ϕ(0) for all f ∈ L1([σ, T + σ];E). By S ◦ selF (z) we mean the set

{S(f)( · ); f ∈ selF (z)}.

Definition 1.1. A function z ∈ C((−∞, σ + T ];E) is a solution of (1.1) if

zσ = ϕ and there exists f ∈ selF (z) such that z|[σ,T+σ] = S(f).

Definition 1.2. For z ∈ C((−∞, σ + T ];E) with zσ = ϕ, if there exist b,

σ < b ≤ T , and f ∈ selF (z) such that z|[σ,b+σ] = S(f)|[σ,b+σ], then we say that

ẑ = z|(−∞, b+σ] is a local solution of (1.1).

We aim in this paper to give an answer to the following problem:

Suppose that the solution set of inclusion (1.1) is nonempty and bounded in

C((−∞, σ + T ];E) and suppose that each local solution has an extension to all

(−∞, σ + T ]. Under which conditions on the operator S this set is a compact

Rδ-set in C((−∞, σ + T ];E)?

Giving an answer to this problem it makes possible to present a unified

scheme in the investigation of the structure of the solution set for certain classes
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of differential inclusions with infinite delay and to generalize and improve all

theorems of Aronszajn-type to such classes of differential inclusions without or

with finite delay, as shows the following illustration:

Consider the Cauchy problem for differential inclusions with infinite delay of

the form

(1.2)

z′(t) ∈ A(t, z(t)) + F (t, zt) for t ∈ [σ, T + σ],

zσ = ϕ.

In this situation as an operator S we take the solution operator of the quasi-linear

problem

(1.3)

z′(t) ∈ A(t, z(t)) + f(t) for t ∈ [σ, T + σ],

z(σ) = ϕ(0),

i.e., for every f ∈ L1([σ, T + σ]; E), the value S(f) stands for the (unique)

solution of problem (1.3). Then, problem (1.2) can be written asy ∈ S ◦ selF (y),

yσ = ϕ.

Finally, let us mention that after a convenient formulation of problem (1.1), our

presented scheme of the proof in this paper is inspired from [5], [8], [10] and [25,

Theorem 5.3.1].

2. Preliminaries

Let us recall some notations (see, e.g. [1], [13], [19], [25]). A Hausdorff

topological space Λ is said to be contractible if the identity map iΛ : Λ → Λ is

null homotopic, i.e. there exist a continuous h : [0, 1] × Λ → Λ and x0 ∈ Λ such

that h(0, x) = x and h(1, x) = x0 for all x ∈ Λ. A subset of a metric space is

an Rδ-set if it is the intersection of a decreasing sequence of nonempty compact

contractible sets.

Let X,Y be two topological vector spaces. We denote by P(Y ) the family of

all nonempty subsets of Y and by K(Y ) (resp. Kv(Y )), we denote the collection

of all nonempty compact (resp. nonempty compact convex) subsets of Y .

A multivalued map F : X → P(Y ) is said to be:

(i) upper semicontinuous (u.s.c.), if F−1(O) = {x ∈ X : F (x) ⊂ O} is an

open subset of X for every open O ⊂ Y ;

(ii) lower semicontinuous (l.s.c.), if F−1(Q) = {x ∈ X : F (x) ⊂ Q} is

a closed subset of X for every closed Q ⊂ Y ;

(iii) continuous, if it is both upper and lower semicontinuous;

(iv) closed, if its graph ΓF = {(x, y) ∈ X × Y : y ∈ F (x)} is a closed subset

of X × Y .
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From [25, Example 1.1.6, Theorem 1.1.7 ] one can easily show the following

simple result:

Lemma 2.1. If Y is a Banach space and M⊂ C([a, b];Y ) is a compact set,

then the map

M( · ) : [a, b]→ K(Y ), t 7→ M(t)

is continuous and the set M([a, b]) ⊂ Y is compact.

Let E be a Banach space and (Y,≤) be a partially ordered set. A map

Ψ: P(E)→ Y is called a measure of noncompactness in E if Ψ(Ω) = Ψ(co Ω) for

every Ω ⊂ P(E), where co Ω denotes the closed convex hull of Ω. The measure

of noncompactness Ψ is called:

(i) nonsingular, if for every a ∈ E, Ω ∈ P(E), Ψ({a} ∪ Ω) = Ψ(Ω);

(ii) monotone, if Ω0,Ω1 ∈ P(E) and Ω0 ⊆ Ω1 imply Ψ(Ω0) ≤ Ψ(Ω1).

If Y is a cone in a Banach space we will say that

(iii) Ψ is regular, if Ψ(Ω) = 0 is equivalent to the relative compactness of Ω.

One of most important examples of a measure of noncompactness possessing

all these properties is the Hausdorff measure of noncompactness, defined by

χ(Ω) = inf {ε > 0 : Ω has a finite ε-net in E}.

The sequential measure of noncompactness χ̃ : P(E) → R+ generated by χ

is given by

χ̃(Ω) = sup
D∈∆(Ω)

χ(D),

where ∆(Ω) is the collection of all denumerable subsets of Ω.

Lemma 2.2. We have χ̃(Ω) ≤ χ(Ω) ≤ 2χ̃(Ω).

Let Ψ be a measure of noncompactness in E. A multimap G : Z → K(E),

where Z ⊂ E is a closed subset, is called Ψ-condensing if for every bounded set

Ω ⊂ Z, the relation Ψ(G(Ω)) ≥ Ψ(Ω) implies the relative compactness of Ω. For

more details, see for example [3, 25].

By the symbol L1([a, b];E) we denote the space of all Bochner summable

functions.

A multifunction z : [a, b]→ K(E) is said to be:

(i) strongly measurable, if there exists a sequence {zn}∞n=1 of step multifunc-

tions such that Haus(z(t) − zn(t)) → 0 as n → ∞ for µ-a.e. t ∈ [a, b],

where µ denotes a Lebesgue measure on [a, b] and Haus denotes the

Hausdorff metric on K(E). Every strongly measurable multivalued map

z admits a strongly measurable selection, i.e. there exists f : [a, b]→ E

measurable with f(t) ∈ z(t) for almost every t ∈ [a, b];

(ii) integrable, if it has a Bochner summable selection f ∈ L1([a, b];E);
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(iii) integrably bounded, if in L1([a, b];R+) there exists a summable function

q( · ) such that ‖z(t)‖ = sup{‖y‖ : y ∈ z(t)} ≤ q(t) for almost every

t ∈ [a, b].

For more details, see for example [13], [19], [25].

A sequence {fn}∞n=1 ⊂ L1([a, b];E) is semicompact if:

(i) it is integrably bounded: ‖fn(t)‖ ≤ q(t) for almost every t ∈ [a, b] and

for every n ≥ 1, where q( · ) ∈ L1([a, b];R+);

(ii) the set {fn(t)}∞n=1 is relatively compact for almost every t ∈ [a, b].

Lemma 2.3 ([15]). Any semicompact sequence in L1([a, b];E) is weakly com-

pact in L1([a, b];E).

3. Formulation of the problem, statement of the result

Throughout this paper B is considered as a Banach space of functions map-

ping (−∞; 0] into E endowed with a norm ‖ · ‖B and satisfying axioms (B1)–(B4).

Let σ be a real number, T > 0 a fixed time and E an arbitrary Banach space.

We denote by ΣFϕ ⊂ C((−∞, σ + T ];E) the solution set of (1.1).

3.1. Hypotheses. We impose the following hypotheses.

The map S : L1([σ, T + σ];E)→ C([σ, T + σ];E) satisfies the following con-

ditions:

(S0) for all f ∈ L1([σ, T + σ];E), S(f)(σ) = ϕ(0);

(S1) there exists M > 0 such that for all f, g ∈ L1([σ, T + σ];E),

‖S(f)(t)− S(g)(t)‖ ≤M‖S(f)(s)− S(g)(s)‖+M

∫ t

s

‖f(γ)− g(γ)‖ dγ,

for σ ≤ s ≤ t ≤ T + σ;

(S2) for any compact K ⊂ E and sequence {fn}∞n=1 ⊂ L1([σ, T + σ];E) such

that {fn(t)}∞n=1 ⊂ K for almost every t ∈ [σ, T+σ], the weak convergence

f0 →
w
fn implies S(fn)→ Sf0 in C([σ, T + σ];E).

The multimap F : [σ, σ + T ]×B → Kv(E) satisfies the following conditions:

(F1) the multimap F : ( · , u)→ Kv(E) has a strongly measurable selector for

every u ∈ B;

(F2) the multimap F : (t, · )→ Kv(E) is u.s.c. for almost every t ∈ [σ, σ+T ];

(F3) there exists a function α ∈ L1([σ, σ + T ];R+) such that for every u ∈ B,

‖F (t, u)‖ ≤ α(t)(1 + ‖u‖) a.e. t ∈ [σ, σ + T ];

(F4) there exists a function κ( · ) ∈ L1([σ, σ + T ];R+) such that for every

bounded Ω ⊂ B,

χ(F (t,Ω)) ≤ κ(t) sup
−∞<θ≤0

χ(Ω(θ)),

for almost every t ∈ [σ, σ + T ], where Ω(θ) = {u(θ) : u ∈ Ω}.



Solution Set of Abstract Inclusions 573

3.2. Main result. We can now state the main result of this paper.

Theorem 3.1. Suppose that under conditions (S0)–(S2) and (F1)–(F4), the

following are valid:

(I1) the set ΣFϕ is nonempty and bounded;

(I2) each local solution of (1.1) has an extension to all (−∞, T + σ].

Then ΣFϕ is a compact Rδ-subset of C((−∞, σ + T ];E).

Remark 3.2. Note that if the set ΣFϕ is nonempty then it is necessarily

bounded thanks to (F3) and (S0)–(S1). Indeed, let x ∈ ΣFϕ . Then xσ = ϕ and

x( · ) = S(f)( · ) on [σ, T + σ] for some f ∈ selF (x). By using axiom (B3) and

conditions (S0), (S1) and (F3), for any t ∈ [σ, T + σ], we have the following

estimate:

‖x(t)‖ = ‖S(f)(t)‖ ≤ max
t∈[σ,T+σ]

‖S(0)(t)‖+M

∫ t

σ

‖f(s)‖ ds

≤ max
t∈[σ,T+σ]

‖S(0)(t)‖+M

∫ t

σ

α(s)(1 + ‖xs‖) ds

≤ ω2 + ω1

∫ t

σ

α(s) max
θ∈[σ,s]

‖x(θ)‖ ds,

where

ω1 = M max
t∈[σ,T+σ]

K(t− σ);

ω2 = max
t∈[σ,T+σ]

‖S(0)(t)‖+M‖α‖L1

(
1 + ‖ϕ‖B sup

t∈[σ,T+σ]

N(t− σ)
)
.

Since the last expression does not decrease, we have

max
s∈[σ,t]

‖x(s)‖ ≤ ω2 + ω1

∫ t

σ

α(s) max
θ∈[σ,s]

‖x(θ)‖ ds.

Applying the Gronwall–Bellmann inequality to the function t 7→ max
s∈[σ,t]

‖x(s)‖,

t ∈ [σ, T + σ], we obtain

max
s∈[σ,t]

‖x(s)‖ ≤ ω2 exp

(
ω1

∫ t

σ

α(s) ds

)
.

Therefore

‖x‖C ≤ ‖ϕ‖B + ω2 exp

(
ω1

∫ T+σ

σ

α(s) ds

)
.

As a consequence, for (I1) one can assume that
∑F
ϕ is only nonempty.

Remark 3.3. In Section 4, we describe some concrete situations where the

conditions of Theorem 3.1 are verified.
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Before giving the proof of Theorem 3.1, we need some auxiliary notation and

we prove some auxiliary results.

In the space C([σ, T + σ], E), let us define the set

D(ϕ, T ) = {x ∈ C([σ, T + σ];E]) : x(σ) = ϕ(0)}.

It is clear that D(ϕ, T ) is a closed convex subset in C([σ, T + σ];E).

For every x ∈ D(ϕ, T ), let us define the function x[ϕ] ∈ C((−∞, T+σ];E) by

x[ϕ](t) =

ϕ(t− σ) if −∞ < t < σ,

x(t) if σ ≤ t ≤ T + σ.

Then

(3.1) x[ϕ]t(θ) =

ϕ(t− σ + θ) if −∞ < θ < σ − t,
x(t+ θ) if σ − t ≤ θ ≤ 0.

The function x[ϕ]
∣∣
[σ,T+σ]

= x( · ) is continuous and x[ϕ]σ = ϕ, hence by axiom

(B1), x[ϕ]t ∈ B for all t ∈ [σ, T + σ].

Let the map % : [σ, T + σ]×D(ϕ, T )→ B be defined by

(3.2) %(t, x) = x[ϕ]t.

It is known (see [18, Section 3]) that, for every x ∈ D(ϕ, T ), the map %( · , x) : [σ,

T + σ] → B is continuous and the map %(t, · ) : D(ϕ, T ) → B is Lipschitz conti-

nuous uniformly with respect to t ∈ [σ, T + σ].

Let us consider the superposition operator selF : D(ϕ, T ) → P(L1([σ, T +

σ];E)), defined as

(3.3) selF (x) = selF (x[ϕ]) =
{
f ∈ L1([σ, T + σ];E) :

f(s) ∈ F (s, %(s, x)) = F (s, x[ϕ]s) for a.e. s ∈ [σ, T + σ]
}
.

The superposition operator selF is well-defined (see [18, Remark 3]). Moreover,

using the uniform Lipschitz continuity of %(t, · ) and [25, Lemma 5.1.1], we obtain

the following property of weak closeness of selF (see also [18, Lemma 4]).

Lemma 3.4. If the sequences {xn}∞n=1⊂D(ϕ, T ), {fn}∞n=1⊂L1([σ, T +σ], E)

with fn ∈ selF (xn), n ≥ 1, are such that xn → x0, fn
w−→ f0, then f0 ∈ selF (x0).

In D(ϕ, T ), let us consider the following problem:

(3.4) x ∈ S ◦ selF (x).

Denote by ΣFϕ(0) ⊂ D(ϕ, T ) the solution set of (3.4).

Lemma 3.5. We have ΣFϕ =
{
x[ϕ] : x ∈ ΣFϕ(0)

}
and ΣFϕ(0) = ΣFϕ

∣∣
[σ,σ+T ]

.
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Proof. It is enough to observe that by condition (S0), the mutimap S ◦
selF ( · ) maps D(ϕ, T ) into itself and

ΣFϕ(0) = Fix(S ◦ selF ) = Fix(S ◦ selF )
∣∣
[σ,σ+T ]

= ΣFϕ
∣∣
[σ,σ+T ]

. �

Corollary 3.6. From conditions (I1)–(I2) of Theorem 3.1, it results that

the set ΣFϕ(0) is nonempty bounded. Moreover, each local solution of (3.4) has

an extension to all [σ, T + σ], i.e. if x ∈ D(ϕ, T ) satisfies x|[σ,b+σ] ∈ S ◦
selF (x)|[σ,b+σ], for some σ < b ≤ T , then x has an extension to all [σ, T + σ].

The scheme of our proof of Theorem 3.1 is as follows: first, we prove that

ΣFϕ(0) is a compact Rδ-set in D(ϕ, T ), then, by using a simple result (see Lem-

ma 3.23), we deduce that ΣFϕ is a compact Rδ-set in C((−∞, σ + T ];E).

The next two lemmas give some properties of the operator S which will be

needed in the sequel.

Lemma 3.7. If S satisfies conditions (S0) and (S1), then S satisfies

(1S1) for all f, g ∈ L1([σ, T + σ];E),

‖S(f)(t)− S(g)(t)‖ ≤M
∫ t

σ

‖f(θ)− g(θ)‖dθ, σ ≤ t ≤ T + σ;

(2S1) for all g0, g1, g2 ∈ L1([σ, T + σ], E) if Sg1 = Sg2, then

(3.5) S(1[σ,θ]g1 + 1[θ,T+σ]g0) = S(1[σ,θ]g2 + 1[θ,T+σ]g0),

for all θ ∈ [σ, T + σ], where 1[a,b] denotes the characteristic function of

the interval [a, b].

Proof. Taking s = σ in (S1) and using (S0), we deduce (1S1). It remains

to show (2S1). Let θ ∈ [σ, T + σ]. Remark that from (S1) it follows immediately

that

(3.6) S(1[σ,θ]g1 + 1[θ,T+σ]g0)(t) = S(g1)(t) for all t ∈ [σ, θ].

Indeed, for t ∈ [σ, θ], using (S1) and (S0), we have∥∥S(1[σ,θ]g1 + 1[θ,T+σ]g0)(t)− S(g1)(t)
∥∥

≤M
∥∥S(1[σ,θ]g1 + 1[θ,T+σ]g0)(σ)− S(g1)(σ)

∥∥
+M

∫ t

σ

∥∥1[σ,θ](τ)g1(τ) + 1[θ,T+σ](τ)g0(τ)− g1(τ)
∥∥ dτ

≤M‖ϕ(0)− ϕ(0)‖+

∫ t

σ

‖g1(τ)− g1(τ)‖ dτ = 0.

By symmetry, we also have

(3.7) S(1[σ,θ]g2 + 1[θ,T+σ]g0)(t) = S(g2)(t) for all t ∈ [σ, θ].
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Since S(g1) = S(g2), from (3.6) and (3.7), it results that for all t ∈ [σ, θ],

(3.8) S(1[σ,θ]g1 + 1[θ,T+σ]g0)(t) = S(1[σ,θ]g2 + 1[θ,T+σ]g0)(t).

Now, for t ∈ [θ, T + σ], using again (S1) and bearing in mind (3.8), we have∥∥S(1[σ,θ]g1 + 1[θ,T+σ]g0)(t)− S(1[σ,θ]g2 + 1[θ,T+σ]g0)(t)
∥∥

≤
∥∥St(1[σ,θ]g1 + 1[θ,T+σ]g0)(θ)− S(1[σ,θ]g2 + 1[θ,T+σ]g0)(θ)

∥∥
+

∫ t

θ

∥∥1[σ,θ](τ)g1(τ)+1[θ,T+σ](τ)g0(τ)−1[σ,θ](τ)g2(τ)−1[θ,T+σ](τ)g0(τ)
∥∥ dτ=0.

Hence, for all t ∈ [θ, T + σ],

(3.9) S(1[σ,θ]g1 + 1[θ,T+σ]g0)(t) = S(1[σ,θ]g2 + 1[θ,T+σ]g0)(t).

Condition (2S1) follows from equalities (3.8) and (3.9). �

Lemma 3.8. Assume that the operator S satisfies conditions (1S1) and (S2).

Then:

(a) if the sequence of functions {fn}∞n=1 ⊂ L1([a, b];E) is such that

‖fn(t)‖ ≤ δ(t), for all n = 1, 2, . . . and a.e. t ∈ [σ, T + σ]

and χ({fn}∞n=1) ≤ ζ(t) for a.e. t ∈ [a, b], where δ, ζ ∈ L1
+([σ, T + σ]),

then

χ(S{fn(t)}∞n=1) ≤ 2M

∫ t

σ

ζ(s) ds, for all t ∈ [σ, T + σ];

(b) for every semicomapct sequence {fn}∞n=1 ⊂ L1([σ, T+σ];E) the sequence

{S(fn)}∞n=1 is relatively compact in D(ϕ, T ), and; moreover, if fn
w−→

f0 then S(fn)→ Sf0.

Proof. See, for example, [25, Theorems 4.2.2, 5.1.1]. �

Using standard arguments, we have:

Lemma 3.9. We can assume without loss of generality that F satisfies the

following global estimate:

(F′3) there exists a function α ∈ L1([σ, σ + T ];R+) such that for every u ∈ B,

‖F (t, u)‖ ≤ α(t), for a.e. t ∈ [σ, σ + T ].

Proof. Let p > 0 be chosen such that ‖ΣFϕ(0)‖C([σ,T+σ];E) ≤ p. Note that

the existence of p is ensured by Corollary 3.6. Set

βK = max
t∈[0,T ]

K(t);(3.10)

βN = sup
t∈[0,T ]

N(t).(3.11)
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By axiom (B2), we obtain, for all x ∈ ΣFϕ(0),

‖x[ϕ]t‖ ≤ βK sup
s∈[σ,t+σ]

‖x(s)‖+ βN‖ϕ‖B ≤ pβK + βN‖ϕ‖B.

Set p̃ = pβK+βN‖ϕ‖B. Let F : [σ, T+σ]×B → Kv(E) be a multimap defined as

F (t, u) = F (t, pr(u)),

where pr : B → BB(0, p̃) is the radial projection, i.e.

pr(u) =

u if ‖u‖ ≤ p̃,
p̃u/‖u‖ if ‖u‖ > p̃.

Since pr is a Lipschitz map, it is easily seen that F satisfies conditions (F1),

(F2), (F4), condition (F′3) with α(t) = α(t)(1 + p̃), and ΣFϕ(0) = ΣFϕ(0). �

In what follows, we suppose that the multimap F : [σ, T + σ]× B → Kv(E)

satisfies conditions (F1), (F2), (F4) and (F′3) instead of (F3).

Lemma 3.10. There exists a nonempty compact convex subset X ⊂ D(T, ϕ)

such that X ⊃ ΣFϕ(0) and, for every t ∈ [σ, σ + T ],{
S(f)(t) : f ∈ L1([σ, σ + T ];E) and f(t) ∈ coF (t,X[ϕ]t)

for a.e. t ∈ [σ, σ + T ]
}
⊂ X(t),

where X(t) = {x(t) : x ∈ X}.

Proof. Set X0 = {x ∈ D(ϕ, T ) : ‖x‖ ≤ ξ}, where ξ = max
t∈[σ,T+σ]

‖S(0)(t)‖+

M‖α( · )‖L1([σ,σ+T ];R+), M from condition (S1), and α( · ) from (F′3). It is clear

that X0 is a closed convex subset of D(ϕ, T ), and by means of (1S1) (see

Lemma 3.7), we have X0 ⊃ ΣFϕ(0).

Define Xn = coY n, for n ≥ 1, where Y n is given by

Y n =
{
y ∈ D(ϕ, T ) : y = S(f); f ∈ L1([σ, T + σ];E);

f(t) ∈ coF (t,Xn−1[ϕ]t) for a.e. t ∈ [σ, σ + T ]
}
, n = 1, 2, . . .

As ΣFϕ(0) ⊂ X
n, n ≥ 0, the sets Xn, n ≥ 0, are nonempty convex closed subsets

of D(ϕ, T ). Moreover, by construction, we have that Xn ⊂ Xn−1, n ≥ 1.

Let us define on bounded subsets of D(ϕ, T ) a measure of noncompactness

Ψ as follows,

(3.12) Ψ(Ω) = max
D∈∆(Ω)

sup
t∈[σ,T+σ]

e−L(t−σ)χ(D(t)),

where ∆(Ω) is the collection of all denumerable subsets of Ω, D(t) = {x(t):

x ∈ D}, and L > 0 a constant, chosen so that

(3.13) q = sup
t∈[σ,T+σ]

4M

∫ t

σ

e−L(t−s)κ(s) ds ≤ 1

2
,
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where κ( · ) is from condition (F4). The range for the function Ψ is R+. It is

known (see [25, Example 2.1.4 ]), that Ψ is well-defined monotone and nonsin-

gular measure of noncompactness.

For t ∈ [σ, T +σ], using expression (3.1), we immediately have that, for every

bounded set Ω ⊂ D(ϕ, T ),

sup
−∞≤θ≤0

χ(Ω[ϕ]t(θ)) ≤ sup
−∞<θ≤σ−t

χ(ϕ(t− σ + θ)) + sup
σ−t≤θ≤0

χ(Ω(t+ θ))

= sup
σ≤θ≤t

χ(Ω(θ)).

Hence, by (F4), for every bounded set Ω ⊂ D(ϕ, T ),

(3.14) χ(F (t,Ω[ϕ]t)) ≤ κ(t) sup
σ≤θ≤t

χ(Ω(θ)), for a.e. t ∈ [σ, T + σ].

We claim that Ψ(Xn)
n→∞−−−−→ 0. Remark first that Ψ(Xn) = Ψ(coY n) = Ψ(Y n),

for n ≥ 1. Let the maximum on the left-hand side of inequality (3.12), with

Y n instead of Ω, be achieved for a countable set D′ = {zm}∞m=1 ⊂ Y n. Then,

zm = S(fm), m ≥ 1, where {fm}m ⊂ L1([σ, T + σ];E) is a sequence such that,

for almost every t ∈ [σ, T + σ], fm(t) ∈ coF (t,Xn−1[ϕ]t), for m ≥ 1.

For simplicity, if Ω̃ is a subset of E, we denote also by ∆(Ω̃) the collection of

all denumerable subsets of Ω̃. Using (3.14) and Lemma 2.2, we have, for almost

every t ∈ [σ, T + σ],

χ({fm(t)}∞m=1) ≤ χ(coF (t,Xn−1[ϕ]t) = χ(F (t,Xn−1[ϕ]t))

≤ κ(t) sup
σ≤θ≤t

χ(Xn−1(θ)) ≤ κ(t) sup
σ≤θ≤t

2 sup
D̃∈∆(Xn−1(θ))

χ(D̃)

= 2κ(t) sup
σ≤θ≤t

sup
D∈∆(Xn−1)

χ(D(θ))

≤ 2κ(t) sup
σ≤θ≤t

[
sup

D∈∆(Xn−1)

sup
σ≤θ≤t

χ(D(θ))

]
= 2κ(t) sup

D∈∆(Xn−1)

sup
σ≤θ≤t

χ(D(θ))

≤ 2 eL(t−σ)κ(t) sup
D∈∆(Xn−1)

sup
σ≤θ≤t

e−L(θ−σ)χ(D(θ))

= 2 eL(t−σ)κ(t) Ψ(Xn−1).

Due to Lemma 3.8 (a) and (3.13), we have, for all t ∈ [σ, T + σ],

e−L(t−σ)χ({zm(t)}∞m=1) = e−L(t−σ)χ(S{fm(t)}∞m=1)

≤ 4Me−L(t−σ)

∫ t

σ

eL(s−σ)k(s) dsΨ(Xn−1)

≤ qΨ(Xn−1) ≤ 1

2
Ψ(Xn−1).
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Hence, Ψ(Xn) = Ψ(Y n) ≤ Ψ(Xn−1)/2, for n ≥ 1. Therefore

(3.15) Ψ(Xn)→ 0 when n→∞.

This proves that our claim is true.

Now let us consider the set X̃ =
⋂
n≥0

Xn ⊂ D(ϕ, T ). Because ΣFϕ(0) ⊂ X̃, the

set X̃ is nonempty closed and convex. Moreover, from the monotonicity of Ψ,

we have Ψ(X̃) = 0, hence χ(X̃(t)) = 0, for all t ∈ [σ, T + σ]. Thus by (3.14), we

obtain

(3.16) χ(coF (t, X̃[ϕ]t)) = χ(F (t, X̃[ϕ]t)) = 0, for all t ∈ [σ, T + σ].

The set X ⊂ X̃, X = co Ỹ , where

Ỹ =
{
y ∈ D(ϕ, T ) : y = S(f); f ∈L1([σ, T + σ];E);

f(t) ∈ coF (t, X̃[ϕ]t) for a.e. t ∈ [σ, T + σ]
}
,

is compact. Indeed, consider any arbitrary sequence {ym}∞m=1 ⊂ Ỹ with ym =

S(fm), fm(t) ∈ coF (t, X̃[ϕ]t), for almost every t ∈ [σ, T + σ]. From (3.16),

we have, χ({fm(t)}∞m=1) = 0, for almost every t ∈ [σ, T + σ], and by (F′3),

the sequence {fm}∞m=1 is integrably bounded. Then {fm}∞m=1 is semicompact in

L1([σ, T +σ];E), by Lemma 2.3, we have fm
w−−−−→

m→∞
f0. Applying Lemma 3.8 (b),

we get that

ym = S(fm)
m→∞−−−−→ y0 = S(f0).

Let us show that f0(t) ∈ coF (t, X̃[ϕ]t), for a.e. t ∈ [σ, T+σ]. Thanks to Mazur’s

lemma (see, for example [6]) there exists a double sequence of nonnegative num-

bers {αik}∞i=1 such that Σ∞k=iαik = 1 for all i = 1, 2, . . .; for every i = 1, 2, . . .

there exists a number k0(i) such αik = 0 for all k ≥ k0(i); the sequence {f̃i}∞i=1;

f̃i(t) =

∞∑
k=i

αik fk(t)

converges to f0 with the respect to the norm of the space L1([σ, T + σ];E)

compact. We can extract a subsequence of {f̃i}∞i=1 which converges to f0 almost

everywhere on [σ, T + σ]. For simplicity, we denote this extracted sequence by

{f̃i}∞i=1. We have

fi(t) ∈ coF (t, X̃[ϕ]t), for a.e. t ∈ [σ, T + σ] and for all i ≥ 1.

Then

f̃i(t) ∈ coF (t, X̃[ϕ]t), for a.e. t ∈ [σ, T + σ] and for all i ≥ 1.

Consequently, f0(t) ∈ coF (t, X̃[ϕ]t), for almost every t ∈ [σ, T + σ]. Hence Ỹ is

relatively compact. Therefore X = co Ỹ is compact. By construction, the set X

is the required one. �
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Corollary 3.11. The set ΣFϕ(0) is compact.

Proof. Indeed, taking into account Lemma 3.10, it is enough to show its

closeness. Let {xm}∞m=1 ⊂ ΣFϕ(0) be an arbitrary sequence with xm = S(fm),

fm(t) ∈ F (t, xm[ϕ]t), for almost every t ∈ [σ, T + σ] and xm
m→∞−−−−→ x0. Arguing

as above, one can easily show that the sequence {fm}∞m=1 is semicompact in

L1([σ, T + σ];E), by Lemma 2.3, we have that fm
w−−−−→

m→∞
f0. Lemma 3.8 (b)

together with Lemma 3.4 imply that xm = S(fm)
m→∞−−−−→ x0 = S(f0) with

f0 ∈ selF (x0). Hence x0 ∈ ΣFϕ(0). �

Lemma 3.12. The set X[ϕ]( · ) ={x[ϕ]( · ) : t→x[ϕ]t;x ∈ X}⊂C([σ, T +σ];B)

is compact.

Proof. Let us consider the map ζ defined as

ζ : D(ϕ, T )→ C([σ, T + σ];B), ζ(x) = x[ϕ]( · ).

By axiom (B2), we have

sup
t∈[σ,T+σ]

‖x[ϕ]t − y[ϕ]t‖B ≤ βK sup
t∈[σ,T+σ]

sup
s∈[σ,t]

‖x(s)− y(s)‖

≤ βK‖x( · )− y( · )‖C([σ,T+σ];E),

where βK is from (3.10). As a consequence ζ is continuous. Therefore ζ(X) =

X[ϕ]( · ) is a compact set in C([σ, T + σ];B). �

Corollary 3.13. From Lemma 2.1, it results immediately that the applica-

tion,

X[ϕ]( · ) : [σ, T + σ]→ K(B), t 7→ X[ϕ]t,

is continuous and the set X[ϕ][σ,T+σ] ⊂ B is compact.

Now consider the metric projection P : [σ, T + σ]× B → Kv(B),

P (t, u) = {v ∈ X[ϕ]t : ‖v − u‖ = dist(u,X[ϕ]t)},

where dist(u,X[ϕ]t)} = inf{‖u− ṽ‖, ṽ ∈ X[ϕ]t}. Let F̂ : [σ, T +σ]×B → Kv(E)

be defined by

(3.17) F̂ (t, u) = coF (t, P (t, u)).

Bearing in mind the results of the previous corollary and arguing exactly by

the same reasoning as in the proof of [25, Lemma 5.3.2], one can easily show

that the multimap F̂ satisfies (F1), (F2) and (F4), condition (F′3) is obviously

satisfied by F̂ . Hence taking F̂ instead of F in Lemma 3.5 and Corollary 3.11,

we deduce that under the conditions of Theorem 3.1, the solution set ΣF̂ϕ(0) of

the problem

x ∈ S ◦ selF̂ (x)

is a compact set.
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Lemma 3.14. ΣFϕ(0) = ΣF̂ϕ(0).

Proof. Let x ∈ ΣF̂ϕ(0). Then

x(t) ∈
{
S(g)(t) : g ∈ L1([σ, T + σ];E), g(t) ∈ F̂ (t, x[ϕ]t) a.e. t ∈ [σ, T + σ]

}
=
{
S(g)(t) : g ∈ L1([σ, T + σ], E), g(t) ∈ coF (t, P (t, x[ϕ]t))

for a.e. t ∈ [σ, T + σ]
}

⊆
{
S(g)(t) : g ∈ L1([σ, T + σ], E), g(t) ∈ coF (t,X[ϕ]t)

for a.e. t ∈ [σ, T + σ]
}
⊆ X(t).

Consequently, P (t, x(t)) = {x(t)}. Thus x(t) = S(f)(t), t ∈ [σ, T + σ], with

f(t) ∈ F̂ (t, x[ϕ]t) = coF (t, P (t, x[ϕ]t)) = coF (t, x[ϕ]t) = F (t, x[ϕ]t),

for almost every t ∈ [σ, T+σ]. Thus, x ∈ ΣFϕ(0). Let us prove that ΣFϕ(0) ⊆ ΣF̂ϕ(0).

Let x ∈ ΣFϕ(0). As ΣFϕ(0) ⊂ X, we have, for every t ∈ [σ, T + σ], x[ϕ]t ∈ X[ϕ]t.

Hence, for every t ∈ [σ, T + σ], P (t, x[ϕ]t) = {x[ϕ]t}. As a consequence,

x = S(g), g(t) ∈ F (t, x[ϕ]t) = F (t, P (t, x[ϕ]t)) = F̂ (t, x[ϕ]t),

for almost every t ∈ [σ, T + σ]. Thus, x ∈ ΣF̂ϕ(0). �

Lemma 3.15. There exists a sequence of multimaps {Fn}, Fn : [σ, T+σ]×B →
Kv(E) such that:

(a) each multimap Fn(t, · ) : B → Kv(E) is continuous for almost every t ∈
[σ, σ + T ];

(b) F̂ (t, u) ⊂ . . . ⊂ Fn+1(t, u) ⊂ Fn(t, u) ⊂ coF (t,X[ϕ]t), n ≥ 1;

(c) F̂ (t, u) =
⋂
n≥1

Fn(t, u);

(d) for each n ≥ 1, there exists a selection gn(t, u) ∈ Fn(t, u) such that

gn( · , u) is measurable and gn(t, · ) is locally Lipschitz in the sense that,

for every compact K ⊂ B, there exist c1(K) > 0 and c2(K) > 0, such that

for almost every t ∈ [σ, T + σ] and for all u, v ∈ Kc2(K),

(3.18) ‖gn(t, u)− gn(t, v)‖ ≤ c1(K)α(t)‖u− v‖B,

where Kc2(K) denotes the closure of the c2(K)-neighbourhood of K and

α( · ) is from (F′3).

Since the space B is supposed to be a Banach space, the proof of Lemma 3.15

follows, except for some obvious modifications, the same lines as in the proof of

[25, Lemma 5.3.4] (see also [13, Theorem 7.2], from where this approximation is

taken). We do not give details.

Lemma 3.16. For each n ≥ 1, the set ΣFn

ϕ(0) is compact contractible.
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The proof of this lemma is obtained from five auxiliary lemmas. Note first

that from (a), (b) and (d) of Lemma 3.15, it follows that each Fn, n ≥ 1,

satisfies conditions (F1), (F2), (F′3) and (F4). Hence, according to Lemma 3.5

and Corollary 3.11, under conditions of Theorem 3.1, for each n ≥ 1, the solution

set ΣFn

ϕ(0) of the problem

(3.19) x ∈ S ◦ selFn
(x)

is a compact subset of D(ϕ, T ), where selFn
( · ) is given by (3.3) with Fn instead

of F .

Fix n ≥ 1. Let xn ∈ ΣFn

ϕ(0), with xn = S(fn) for some fn ∈ selFn
(xn). For

each τ ∈ [0, 1), let Dτ (xn, T ) be a set defined by

Dτ (xn, T ) = {x ∈ D(ϕ, T ) : x(t) = xn(t), for all t ∈ [σ, τT + σ]}.

It is clear that for each τ ∈ [0, 1), the set Dτ (xn, T ) is a closed (convex ) subset

of D(ϕ, T ). Let f̂ : [σ, T + σ]× B → E be defined by

f̂(t, u) = 1[σ,τT+σ] fn(t) + 1[τT+σ,T+σ] gn(t, u),

where gn is from Lemma 3.15 (d). It is clear that for any x ∈ Dτ (xn, T ), we have

self̂ (x) = 1[σ,τT+σ]fn( · ) + 1[σ+τT,T+σ]( · ) gn( · , x[ϕ] · ).

Lemma 3.17. For every x ∈ Dτ (xn, T ), we have

(3.20) 1[σ,τT+σ]fn(t) + 1[τT+σ,T+σ]gn(t, x[ϕ]t) ∈ Fn(t, x[ϕ]t),

for almost every t ∈ [σ, T + σ].

Proof. Since x ∈ Dτ (xn, T ), we have x(t) = xn(t), for all t ∈ [σ, τT + σ].

Thus

(3.21) fn(t) ∈ Fn(t, xn[ϕ]t) = Fn(t, x[ϕ]t), for a.e. t ∈ [σ, τT + σ].

Now, from Lemma 3.15 (d), we have

(3.22) gn(t, x[ϕ]t) ∈ Fn(t, x[ϕ]t), for a.e. t ∈ [τT + σ, T + σ].

Expression (3.21) together with (3.22) imply (3.20).

Let Fτn : Dτ (xn, T )→ Dτ (xn, T ) be defined by

Fτn(x) = S ◦ self̂ (x).

Observe that, for every x ∈ Dτ (xn, T ), one can write,

self̂ (x) = 1[σ,τT+σ]fn + 1[σ+τT,T+σ]G
τ
n(x),

with

Gτn(x)(t) =

0 for t ∈ [σ, τT + σ [,

gn(t, x[ϕ]t) for t ∈ [σ + τT, T + σ].
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Thus, for every x ∈ Dτ (xn, T ), we have

Fτn(x) = S(1[σ,τT+σ]fn + 1[σ+τT,T+σ]G
τ
n(x)). �

Lemma 3.18. For each τ ∈ [0, 1), the map Fτn is well-defined and maps

Dτ (xn, T ) into itself.

Proof. From property (2S1) of S (see Lemma 3.7), the value Fτn(x) does

not depend on the choice of fn. Hence Fτn is well-defined.

Using property (1S1) (see Lemma 3.7), we obtain, for all x ∈ Dτ (xn, T ),

‖Fτn(x)(t)− xn(t)‖ = ‖Fτn(x)(t)− S(fn)(t)‖

=
∥∥S(1[σ,τT+σ]fn + 1[σ+τT,T+σ]G

τ
n(x))(t)− S(fn)(t)

∥∥
=M

∫ t

σ

‖f(γ)− 1[σ,τT+σ]f(γ)‖dγ = 0,

for all t ∈ [σ, τT + σ]. Hence, for all x ∈ Dτ (xn, T ), we have

(3.23) Fτn(x)(t) = xn(t), for all t ∈ [σ, τT + σ].

Consequently, Fτn maps Dτ (xn, T ) onto itself. �

Now, for each τ ∈ [0, 1), let us consider in Dτ (xn, T ) the problem

(3.24) x = Fτn(x) = S ◦ self̂ (x).

Lemma 3.19. Every local solution of problem (3.24) is a local solution of

problem (3.19) (see Definition 1.2).

Proof. Let z ∈ Dτ (xn, T ), such that z|[σ,σ+b] is a local solution of (3.24)

for some 0 < b ≤ T . Then

(3.25) z( · )|[σ,σ+b] = S(1[σ,τT+σ]fn + 1[σ+τT,T ]G
τ
n(z))( · )|[σ,σ+b].

Expression (3.20) together with (3.25) imply that z is a local solution of (3.19).�

Lemma 3.20. For each τ ∈ [0, 1), problem (3.24) has a local solution defined

on [σ, τT + σ + h] for some h > 0 small enough.

Proof. Let us fix τ ∈ [0, 1). Consider the function ϕ(t) given by

(3.26) ϕ(t) =

xn(t) for t ∈ [σ, τT + σ],

xn(σ + τT ) for t ∈ [τT + σ, T + σ].

It is clear that ϕ ∈ Dτ (xn, T ). The set

(3.27) Q = %([σ, T + σ], ϕ) = {ϕ[ϕ]t : t ∈ [σ, T + σ]} ⊂ B

is compact, where % is from (3.2). Let c1(Q), c2(Q) > 0 be such that (3.18) holds

with K = Q, and let r > 0 be chosen so that

(3.28) rβK ≤ c2(Q),
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where βK is from (3.10). By QrβK
denote the closure of the rβK-neighbourhood

of Q. Let h > 0 be chosen so that

(3.29)

∫ σ+τT+h

σ+τT

α(s)ds ≤ r

4M
, h ≤ T (1− τ) and

(3.30) max
|t1−t2|≤h

‖xn(t1)− xn(t2)‖ ≤ r/2, t1, t2 ∈ [σ, T + σ],

where α is from the estimate (F
′
3) and M from condition (S1).

Consider the map F̂τn : Dτ (xn, T )|[σ,τT+σ+h] → Dτ (xn, T )|[σ,τT+σ+h], de-

fined by

F̂τn(x|[σ,τT+σ+h]) = Fτn(x)|[σ,τT+σ+h](3.31)

= S(1[σ,τT+σ]fn + 1[σ+τT,T+σ]G
τ
n(x))|[σ,τT+σ+h];

where Dτ (xn, T )|[σ,τT+σ+h] = {x|[σ,τT+σ+h] : x ∈ Dτ (xn, T )}. Here, for x ∈
D(xn, T ), the element x|[σ,τT+σ+h] ∈ C([σ, τT +σ+h];E) is the restriction of x

to the interval [σ, τT + σ + h].

Before continuing the proof, let us make some remarks:

Remark 3.21. It is clear that,

(a) the set D(xn, T )|[σ,τT+σ+h] is closed (convex) subset of C([σ, τT + σ +

h];E);

(b) from (3.23), we have for all x ∈ Dτ (xn, T ) and t ∈ [σ, τT + σ],

(3.32) F̂τn(x|[σ,τT+σ+h])(t) = Fτn(x)|[σ,τT+σ+h](t) = Fτn(x)(t) = xn(t);

(c) for all x ∈ Dτ (xn, T ),

(3.33) x|[σ,τT+σ+h][ϕ]t = x[ϕ]t, for all t ∈ [σ, τT + σ + h].

Now, in Dτ (xn, T )|[σ,τT+σ+h], denote by Bτ (ϕ|[σ,τT+σ+h], r) the closed ball

of the radius r centered at ϕ|[σ,τT+σ+h], where ϕ is from (3.26), i.e.

Bτ (ϕ |[σ,τT+σ+h] , r)

=
{
x|[σ,τT+σ+h] ∈ Dτ (xn, T )|[σ,τT+σ+h] :

‖x|[σ,τT+σ+h] − ϕ|[σ,τT+σ+h]‖C([σ,τT+σ+h];E) ≤ r
}

=
{
x|[σ,τT+σ+h] ∈ Dτ (xn, T )|[σ,τT+σ+h] : sup

t∈[σ,σ+τT+h]

‖x(t)− ϕ(t)‖ ≤ r
}

=
{
x|[σ,τT+σ+h] ∈ Dτ (xn, T )|[σ,τT+σ+h] :

sup
t∈[σ+τT,σ+τT+h]

‖x(t)− xn(σ + τT )‖ ≤ r
}
.

Let us prove that F̂τn maps Bτ (ϕ|[σ,τT+σ+h], r) into itself. Take x|[σ,τT+σ+h]

in Bτ (ϕ|[σ,τT+σ+h], r). Let us estimate the value∥∥Fτn(x|[σ,τT+σ+h])− ϕ|[σ,τT+σ+h]

∥∥.
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From Remark 3.21 (b) and (3.23), we have for any t ∈ [σ, τT + σ],∥∥F̂τn(x|[σ,τT+σ+h])(t)− ϕ|[σ,τT+σ+h](t)
∥∥ = ‖xn(t)− xn(t)‖ = 0.

By property (1S1) (see Lemma 3.7), (3.29), (3.30), (3.32), and the fact that

S(fn)( · ) = xn( · ), we obtain for any t ∈ [τT + σ, τT + σ + h],∥∥F̂τn(x|[σ,τT+σ+h])(t)− ϕ|[σ,τT+σ+h](t)
∥∥

=
∥∥S(1[σ,τT+σ]fn + 1[σ+τT,T+σ]G

τ
n(x))(t)− xn(σ + τT )

∥∥
≤
∥∥S(1[σ,τT+σ+h]fn + 1[σ+τT,T+σ+h]G

τ
n(x))(t)− S(fn)(t)

∥∥
+ ‖S(fn)(t)− xn(σ + τT )‖

≤M
∫ τT+σ

σ

‖fn(γ)− 1[σ,τT+σ]fn(γ)‖ dγ

+M

∫ σ+τT+h

σ+τT

‖fn(t)− gn(γ, x[ϕ]γ)‖ dγ + ‖xn(t)− xn(σ + τT )‖

≤ 2M

∫ σ+τT+h

σ+τT

α(γ) dγ +
r

2
≤ 2M

r

4M
+
r

2
= r.

Now in the space C([σ, τT + σ + h];E), let us consider the equivalent norm

‖ · ‖∗ given by

‖y‖∗ = max
t∈[σ,τT+σ+h]

e−η(t−σ)‖y(t)‖,

where η > 0 is a constant which will be determined later.

Let us prove that

F̂τn :
(
Bτ (ϕ|[σ,τT+σ+h], r), d∗

)
→
(
Bτ (ϕ|[σ,τT+σ+h], r), d∗

)
is a contraction, where d∗ is the metric induced by ‖ · ‖∗.

Remark first that for z|[σ,τT+σ+h] ∈ B(ϕ|[σ,τT+σ+h], r), by axiom (B2) and

expression (3.33), we obtain, for any t ∈ [σ, σ + τT + h],∥∥z|[σ,τT+σ+h][ϕ]t − ϕ|[σ,τT+σ+h][ϕ]t
∥∥
B = ‖z[ϕ]t − ϕ[ϕ]t‖B

≤βK sup
t∈[σ,σ+τT+h]

‖z(t)− ϕ(t)‖+M(t− σ)‖ϕ− ϕ‖B

≤βK sup
t∈[σ+τT,σ+τT+h]

‖z(t)− ϕ(t)‖ ≤ βKr.

But, for all t ∈ [σ+τT, σ+τT+h], ϕ[ϕ]t ∈ Q, where Q is from (3.27). Therefore,

using (3.28), we obtain, for all t ∈ [σ, τT + σ + h],

(3.34) z|[σ,τT+σ+h][ϕ]t = z[ϕ]t ∈ QβKr ⊂ Qc2(Q).

Let x|[σ,τT+σ+h], y|[σ,τT+σ+h] ∈ Bτ (ϕ∗, r). Using (3.34), we have, for any t ∈
[σ, τT + σ + h],

x|[σ,τT+σ+h][ϕ]t = x[ϕ]t ∈ QβKr ⊂ Qc2(Q),

y|[σ,τT+σ+h][ϕ]t = y[ϕ]t ∈ QβKr ⊂ Qc2(Q).
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Hence, because g(t, · ) is locally Lipschitz (see Lemma 3.15 (d)), we have, for

almost every t ∈ [σ, τT + σ + h],

(3.35) ‖gn(t, x[ϕ]t)− gn(t, y[ϕ]t)‖ ≤ c1(Q)α(t)‖x[ϕ]t − y[ϕ]t‖B.

Now, for any t ∈ [σ, τT + σ + h], let us estimate∥∥F̂τn(x|[σ,τT+σ+h])(t)− F̂τn(y|[σ,τT+σ+h])(t)
∥∥.

If t ∈ [σ, τT + σ], using (3.32), we get

(3.36)
∥∥F̂τn(x|[σ,τT+σ+h])(t)− F̂τn(y|[σ,τT+σ+h])(t)

∥∥ = ‖xn(t)− xn(t)‖ = 0.

If t ∈ [σ + τT, τT + σ + h], using condition (1S1), (3.32), (3.33), (3.35), and the

fact that x(t) = y(t) for all t ∈ [σ, τT + σ + h], we obtain∣∣F̂τ n(x|[σ,τT+σ+h])(t)− F̂τn(y|[σ,τT+σ+h])(t)
∥∥ = ‖Fτn(x)(t)−Fτn(y)(t)‖

≤
∥∥S(1[σ,τT+σ]fn + 1[σ+τT,T+σ]G

τ
n(x))(t)

− S(1[σ,τT+σ]fn + 1[σ+τT,T+σ]G
τ
n(y))(t)

∥∥
≤M

∫ τT+σ

σ

‖1[σ,τT+σ]fn(γ)− 1[σ,τT+σ]fn(γ)‖ dγ

+M

∫ t

σ+τT

‖gn(γ, x[ϕ]γ)− gn(γ, y[ϕ]γ)‖ dγ

≤ c1(Q)M

∫ t

σ+τT

α(γ)‖x[ϕ]γ − y[ϕ]γ‖B dγ

≤ c1(Q)M

∫ t

σ+τT

α(γ)
[
βK sup

σ≤s≤γ
‖x(s)− y(s)‖+ βN‖x[ϕ]σ − y[ϕ]σ‖

]
dγ

≤βK c1(Q)M

∫ t

σ+τT

α(γ)eη(γ−σ)e−η(γ−σ) sup
σ+τT≤s≤γ

‖x(s)− y(s)‖ dγ

≤βK c1(Q)M

∫ t

σ+τT

α(γ)eη(t−σ) sup
σ+τT≤s≤γ

e−η(s−σ)‖x(s)− y(s)‖ dγ,

where α( · ) from is condition (F′3), βK is from (3.10) and βN is form (3.11).

Thus

sup
σ+τT≤t≤τT+σ+h

e−η(t−σ)
∥∥F̂τn(x|[σ+τT,T+σ])(t)− F̂τn(y|[σ+τT,T+σ])(t)

∥∥
≤ sup

t∈[σ+τT,T+σ]

[
MβKc1(Q)

∫ t

σ

α(γ)e−η(t−γ) dγ

]
· sup
σ+τT≤s≤τT+σ+h

e−η(s−σ)‖x(s)− y(s)‖ dγ.

Observe that

sup
t∈[σ,T+σ]

[
MβKc1(Q)

∫ t

σ

α(γ) e−η(t−γ)dγ

]
−→ 0,
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when η → +∞. Choose η > 0, so that

q̂ = sup
t∈[σ,T+σ]

[
MβKc1(Q)

∫ t

σ

e−η(t−γ) dγ

]
< 1.

Hence, we obtain

(3.37) sup
σ+τT≤s≤τT+σ+h

e−η(s−σ)
∥∥F̂τn(x)|[σ+τT,T+σ] − F̂τn(y)|[σ+τT,T+σ]

∥∥
≤ q̂ sup

σ+τT≤s≤τT+σ+h
e−η(s−σ)‖x(s)− y(s)‖.

Expression (3.36) together with (3.37) imply that Fτn is a contraction. By the

Banach contraction principle, it results that for each τ ∈ [0, 1), the equation

x|[σ,τT+σ+h] = Fτn(x)|[σ,τT+σ+h] has (a unique) solution in D(xn, ϕ)|[σ,τT+σ+h].

Thus, problem (3.24) has a local solution defined on [σ, τT + σ + h] for some

h > 0. �

Denote by z τn that solution. Since f̂ instead of Fn satisfies conditions (F1),

(F2), (F′3) and (F4), by hypothesis (I2), the function z τn has an extension to

all of [σ, T + σ]. Lemma 3.19 ensures that this extension belongs to ΣFn

ϕ(0). Let

zτn ∈ ΣFn

ϕ(0) be an extension of z τn to all of [σ, T + σ].

Lemma 3.22. zτn is unique.

Proof. Let z ∈ ΣFn

ϕ(0) be another extension of z τn to all of [σ, T + σ]. Then

zτn(t) = z(t) for all t ∈ [σ, τT + σ + h], where h > 0. Set

A = {t ∈ [σ, T + σ] : zτn(s) = z(s) for each s ∈ [σ, t]}.

As zτn and z are continuous and zτn(s) = z(s) for each t ∈ [σ, τT + σ + h], the

set A is nonempty bounded and closed, hence compact. Set a = maxA. It is

clear that σ + τT + h ≤ a ≤ T + σ. Let us prove that a = σ + T . Assume

the contrary. Then for each t ∈ [σ, a] with a < T + σ, we have zτn(s) = z(s).

Reasoning as above, we can see that zτn and z must coincide on an interval of the

form [σ, a + h′], with h′ > 0 sufficiently small. Since this statement contradicts

the definition of a, it follows that the supposition a < T + σ is false. Then

a = T + σ. �

Proof of Lemma 3.16. Let n ≥ 1 be fixed. Let us define the deformation

h : [0, 1]× ΣFn

ϕ(0) → ΣFn

ϕ(0) by

h(τ, xn) =

zτn for 0 ≤ τ < 1,

xn for τ = 1.

It is clear that h(0, · ) = z0
n and h(1, · ) is the identity.
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It remains to prove that h is continuous. Since, for all t ∈ [σ, T + σ], zτn(t) =

S(1[σ,τT+σ]f + 1[σ+τT,T+σ]G
τ
n(zτn))(t), where f ∈ selF (x) is such that xn( · ) =

S(f)( · ), we have

h(τ, xn) =

S(1[σ,τT+σ]f + 1[σ+τT,T+σ]G
τ
n(zτn)) for 0 ≤ τ < 1,

xn for τ = 1.

Recall that by property (2S1) (see Lemma 3.7) of the operator S, the value

h(τ, xn) does not depend on the choice of f . As

(1[σ,T+σ]f + 1{σ+T}G
τ
n(zτn))(t) = f(t), for a.e. t ∈ [σ, T + σ],

we have

xn = S(f) = S(1[σ,T+σ]f + 1[σ+T,T+σ]G
τ
n(zτn)) = h(1, xn).

Hence, for all (τ, xn) ∈ [0, 1]× ΣFn

ϕ(0), one can write

h(τ, xn) = S(1[σ,τT+σ]f + 1[σ+τT,T+σ]G
τ
n(zτn)).

It is clear that by condition (1S1) (see Lemma 3.7), we have

(3.38) h(τ, xn)(t) = S(f)(t) = xn(t), for all t ∈ [σ, τT + σ].

Let (τk, xk) ∈ [0, 1]× ΣFn

ϕ(0) with (τk, xk)
k→∞−−−−→ (τ, x). Set

ψk(t) = ‖h(τ, x)(t)− h(τk, xk)(t)‖.

We are going to prove that sup
t∈[σ,T+σ]

ψk(t)
k→∞−−−−→ 0. We consider only the case

τk ≤ τ , the remaining cases can be treated similarly. For ε > 0, let δ > 0 be

chosen such that for every measurable set I ⊂ [σ, T + σ], meas(I) ≤ δ, we have

(3.39)

∫
I

α(s) ds <
ε

M
,

where α is from the estimate (F′3) and M is from (S1). Choose kε ≥ 1 so that,

for all k ≥ kε,

(3.40) ‖xk − x‖C([σ,T+σ];E) ≤
ε

M
, |τk − τ | ≤

δ

T
.

Let k ≥ kε. We distinguish three cases:

Case 1. If t ∈ [σ, τkT + σ], then by (3.38), we get

ψk(t) = ‖x(t)− xk(t)‖ ≤ ε

M
.

Case 2. If t ∈ [σ+ τkT, τT +σ], then using condition (S1), (3.39) and (3.40),

we obtain

ψk(t) =
∥∥S(f)(t)− S(1[σ,τkT+σ]fk + 1[τkT+σ,T+σ]G

τ
n(zτkk ))

∥∥
≤M

∥∥S(f)(σ + τkT )− S(1[σ,τkT+σ]fk + 1[τkT+σ,T+σ]G
τ
n(zτkk ))(σ + τkT )

∥∥
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+M

∫ t

σ+τkT

‖f(s)− g(s, zτkn [ϕ]s)‖ ds

≤M‖x(σ + τkT )− xk(σ + τkT )‖+ 2M

∫ τT+σ

τkT+σ

‖α(s)‖ ds

≤M ε

M
+ 2M

ε

M
= 3ε.

Set K = {x[ϕ]t : t ∈ [σ, t + σ], x ∈ ΣFn

ϕ(0)}. From Corollary 3.11, we know that

ΣFn

ϕ(0) is compact. Taking ΣFn

ϕ(0) instead of X in Corollary 3.13, we deduce that

K is compact. Let c1(K), c2(K) > 0 be such that (3.18) holds with K = K. We

have for all k ≥ kε,

Case 3. If t ∈ [σ + τT, T + σ], then, by means of condition (S1), Lem-

ma 3.15 (d), and the last inequality in Case 2, we obtain

ψk(t) ≤M
∥∥S(1[σ,τT+σ]f + 1[τT+σ,T+σ]G

τ
n(zτ ))(σ + τT )

− S(1[σ,τkT+σ]fk + 1[τkT+σ,T+σ]G
τ
n(zτkk ))(σ + τT )

∥∥
+M

∫ t

σ+τT

‖g(s, zτ [ϕ]s)− g(s, zτkk [ϕ]s))‖ ds

≤ψk(σ + τT ) +M

∫ t

τT+σ

‖g(s, zτ [ϕ]s)− g(s, zτkk [ϕ]s)‖ ds

≤ 3Mε+Mc1(K)

∫ t

σ+τT

α(γ)‖zτ [ϕ]γ − zτkk [ϕ]γ‖B dγ

≤ 3Mε+Mc1(K)

∫ t

σ+τT

α(γ)

[
βK sup

σ≤s≤γ
‖zτ (s)− zτkk (s)‖

+ βN‖zτ [ϕ]σ − zτkk [ϕ]σ‖
]
dγ

≤ 3Mε+Mc1(K)

∫ t

σ+τT

α(γ)

[
βK sup

σ≤s≤γ
‖zτ (s)−zτkk (s)‖+βN‖ϕ−ϕ]‖B

]
dγ

≤ 3Mε+MβK c1(K)

∫ t

σ+τT

α(γ)

[
sup

σ≤s≤σ+τT
‖zτ (s)− zτkk (s)‖

+ sup
σ+τT≤s≤γ

‖zτ (s)− zτkk (s)‖
]
dγ

≤ 3Mε+MβK c1(K)

∫ t

σ+τT

α(γ)
[
3ε+ sup

σ+τT≤s≤γ
‖zτ (s)− zτkk (s)‖

]
dγ

≤ 3Mε+ 3εMβK c1(K)

∫ t

σ+τT

α(γ) dγ

+MβK c1(K)

∫ t

σ+τT

α(γ) sup
σ+τT≤s≤γ

‖zτ (s)− zτkk (s)‖ dγ
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≤ 3(M +MβKc1(K)‖α‖L1)ε+MβKc1(K)

∫ t

σ+τT

α(γ) sup
σ+τT≤s≤γ

ψ(s) dγ,

where βK from (3.10) and βN form (3.11). Since the last expression does not

decrease, we have

sup
σ+τT≤s≤t

ψ(s) ≤ 3(1 +M βK c1(K)‖α‖L1)ε

+MβK c1(K)

∫ t

σ+τT

α(γ) sup
σ+τT≤s≤γ

ψ(s) dγ.

Thus, applying the Gronwall–Bellmann inequality to the function

ψ̂(t) = sup
σ+τT≤s≤t

ψ(s),

we obtain

ψ̂(t) ≤ 3(1 +MβK c1(K)‖α‖L1) ε exp

(
MβKc1(K)

∫ T+σ

σ+τT

α(γ) dγ

)
.

The continuity of h follows from the arbitrariness of ε. This achieves the proof

of Lemma 3.16.

In the proof of our main result we will need the following simple lemma.

Lemma 3.23. Let E1, E2 be two metric spaces and let ϕ : E1 → E2 be a con-

tinuous injective application. If C is an Rδ-set in E1, then ϕ(C) is an Rδ-set

in E2.

Proof. Let C be an Rδ-set in E1 with C =
⋂
n≥1

Cn, Cn compact contractible

and, Cn+1 ⊂ Cn, for all n ≥ 1. It is clear that ϕ(Cn) is a compact set and

ϕ(Cn+1) ⊂ ϕ(Cn) for all n ≥ 1 . For any n ≥ 1, let hn : [0, 1] × Cn → Cn be

a continuous function such that, for every x ∈ Cn, hn(0, x) = xn0 ∈ Cn and

hn(1, x) = x. Let h̃n : [0, 1]× ϕ(Cn)→ ϕ(Cn) be defined by

h̃n(τ, y) = ϕ(hn(τ, x)),

where x ∈ Cn is the unique element (since ϕ is injective) such that y = ϕ(x). It

is clear that h̃n( · , · ), n ≥ 1, is continuous and satisfies for every y ∈ ϕ(Cn),

h̃n(0, y) = ϕ(hn(0, x)) = ϕ(xn0 ) ∈ ϕ(Cn),

h̃n(1, y) = ϕ(hn(1, x)) = ϕ(x) = y.

Thus for all n ≥ 1, ϕ(Cn) is contractible. Using again the fact that ϕ is injective,

we have

ϕ(C) = ϕ

( ⋂
n≥1

Cn

)
=
⋂
n≥1

ϕ (Cn) .

Therefore ϕ(C) is an Rδ-set. �
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Proof of Main Result (Proof of Theorem 3.1). Let us prove that

ΣF̂ϕ(0) =
⋂
n≥1

ΣFn

ϕ(0),

where F̂ is given by (3.17). From Lemma 3.15 (b), we immediately have that

ΣF̂ϕ(0) ⊂
⋂
n≥1

ΣFn

ϕ(0).

Let us prove the converse inclusion. Let x ∈
⋂
n≥1

ΣFn

ϕ(0). Then, for each n ≥ 1,

there exists a function fn such that

fn ∈ L1([σ, T + σ];E), fn(t) ∈ Fn(t, x[ϕ]t), for a.e. t ∈ [σ, T + σ],

and x( · ) = S(fn)( · ). From Lemma 3.15 (b), we have, for all n ≥ 1

Fn(t, x[ϕ]t) ⊆ coF (t,X[ϕ]t), for a.e. t ∈ [σ, T + σ],

where X is from Lemma 3.10. Hence using condition (F4), we obtain

χ({fn(t)}∞n=1) ≤ χ(coF (t,X[ϕ]t)) = χ(F (t,X[ϕ]t) = 0,

for almost every t ∈ [σ, T + σ]. Further, condition (F′3) ensures that the se-

quence {fn}∞n=1 is integrably bounded. Consequently, the sequence {fn}∞n=1 is

semicompact, so we can assume without loss of generality that

fn
w−→ f0 ∈ L1([σ, T + σ];E) when n→∞.

Applying Lemma 3.4, we have, for almost every t ∈ [σ, T + σ] and for all n ≥ 1,

f0(t) ∈ Fn(t, x[ϕ]t), for a.e. t ∈ [σ, T + σ].

Hence, using Lemma 3.15 (c), we obtain, for almost every t ∈ [σ, T + σ],

f0(t) ∈
⋂
n≥1

Fn(t, x[ϕ]t) = F̂ (t, x[ϕ]t).

By Lemma 3.8, we have S(fn) → S(f0) when n → ∞. But for all n ≥ 1,

S(fn)( · ) = x( · ), then S(f0)( · ) = x( · ). Consequently, x ∈ ΣF̂ϕ(0). Thus

ΣF̂ϕ(0) =
⋂
n≥1

ΣFn

ϕ(0).

From Lemma 3.15 (b), we have Σ
Fn+1

ϕ(0) ⊂ ΣFn

ϕ(0), n ≥ 1. Hence invoking Lem-

ma 3.16, we deduce that ΣF̂ϕ(0) is an Rδ-set. Corollary 3.11 and Lemma 3.14

imply that ΣFϕ(0) is a compact Rδ-set.

The application Φ: D(ϕ, T ) → C((−∞, T + σ];E) defined by Φ(x) = x[ϕ]

is continuous and injective. Applying Lemma 3.23, we conclude that the set

ΣFϕ = Φ
(
ΣFϕ(0)

)
is a compact Rδ-set in C((−∞, T + σ];E). �
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4. Applications

Let F : [σ, T + σ]× B → Kv(E) be a multivalued map satisfying conditions

(F1)–(F4) and let ϕ ∈ B be a fixed element, where B is a Banach space of

functions mapping (−∞; 0] into E satisfying conditions (B1)–(B4). Consider

the quasi-linear problem

(4.1)

y′(t) ∈ A(t, y(t)) + F (t, yt) for t ∈ [σ, T + σ],

yσ = ϕ.

As an operator S : L1([σ, T +σ];E)→ D(ϕ, T ), we take the solution operator of

the quasi-linear problem

(4.2)

y′(t) ∈ A(t, y(t)) + f(t) for t ∈ [σ, T + σ],

y(σ) = ϕ(0),

i.e. for each f ∈ L1([σ, T+σ];E), the value S(f) stands for the (unique) solution

of (4.2). Then, problem (4.1) can be written asy ∈ S ◦ selF (y),

yσ = ϕ.

Let us describe some concrete situations.

Semilinear case. A(t, x(t)) = Ax(t), where A : D(A) ⊂ E → E a linear not

necessarily bounded operator generating a strongly C0-semigroup {eAt, t ≥ 0}.
By means of the variation of constants formula, the mild solution operator S

associated with the inclusion (4.1) can be expressed explicitly by

S : L1([σ, T + σ];E)→ C([σ, T + σ];E),

S(f)(t) = e−A(t−σ)ϕ(0) +

∫ t

σ

e−A(t−s)f(s) ds.

Let M > 0 be a constant such that ‖e−At‖ ≤M , for all t ∈ [σ, T + σ]. It is easy

to see that S satisfies condition (S1). Condition (S2) follows from [25, 4.2.1 ].

According to [18, Theorems 2, 3], the solution set ΣFϕ is nonempty and compact

(hence bounded) and each local solution has an extension to all (−∞, T + σ].

Thus, the solution set of (4.1) is a compact Rδ-set in C((−∞, T + σ];E).

Fully nonlinear case. A(t, x(t)) = −Ax(t), where A : D(A) ⊂ E → P(E)

is an m-accretive operator, with 0 ∈ A0, such that −A generates an equicon-

tinuous semigroup not necessarily compact. Suppose that ϕ(0) ∈ D(A). Let

S : L1([σ, T +σ];E)→ C([σ, T +σ];E) be the integral solution operator, i.e. for

every f ∈ L1([σ, T+σ];E), the value S(f) is the unique integral solution of prob-

lem (4.2). Suppose that the dual space E∗ of E is uniformly convex, then one

can invoke [5, Proposition 1, Lemma 4] to infer that the operator S satisfy (S2).



Solution Set of Abstract Inclusions 593

Condition (S1) follows from the fact that if yi, i = 1, 2, is the integral solution

to the problem y′i(t) ∈ −Ayi(t) + gi(t) for a < t ≤ b,
yi(a) = y0

i ∈ D(A),

then

‖y1(t)− y2(t)‖ ≤ ‖y1(s)− y2(s)‖+

∫ t

s

‖g1(τ)− g2(τ)‖ dτ,

for all a ≤ s ≤ t ≤ b. (For more details see [4].) According to [18, Theorems 4.1,

5.1], the solution set ΣFϕ is nonempty and compact (hence bounded) and each

local solution has an extension to all (−∞, T +σ]. From Theorem 3.1, we deduce

that ΣFϕ is a compact Rδ-set in C((−∞, T + σ];E).

Nonautonomous semilinear case. A(t, x(t)) = A(t)x(t), where family

{A(t)}t∈[0,T ] is a family of closed, not necessarily bounded operators in E gene-

rating a strongly continuous evolution operator U : ∆→ L(E), where ∆ = {t, s ∈
[0, T ] : s ≤ t} and L(E) is the space of all bounded linear operators in E.

(U1) For any x ∈ E, the function (t, s) 7→ U(t, s)x is continuous in ∆;

(U2) for all (t, s), (s, θ) ∈ ∆, the relations U(t, s) ◦ U(s, θ) and U(t, t) = IE .

The mild solution operator S associated with inclusion (4.1), with σ = 0, can be

expressed explicitly by

S : L1([0, T ];E)→ C([0, T ];E),

S(f)(t) = U(t, 0)ϕ(0) +

∫ t

0

U(t, s)f(s) ds.

Let M > 0 be a constant such that ‖U(t, s)‖L(E) ≤ M , for all (t, s) ∈ ∆. It is

clear that S satisfies condition (S1). Condition (S2) follows from [7, Theorem 2]

(see also [11]). If conditions (I1) and (I2) of Theorem 3.1 are satisfied, then ΣFϕ
is a compact Rδ-set in C((−∞, T ];E).

Remark 4.1. (a) In our approach, the space B was considered as a Banach

space, however it is more natural to consider it as a seminormed space. Another

approach would be to assume that B is a complete seminormed space satisfying

axioms (B1)–(B4) and to show that the solutions observed only for t ∈ [σ, T +σ]

form a compact Rδ-subset in C([σ, T + σ];E). In this case, the space C((−∞,
σ + T ];E) becomes a complete seminormed space and many of our preliminary

results are valid, but the major constraint is Lemma 3.15 that played a key role

in the proof of our main result. This is why we choose B as a Banach space.

(b) In Section 4 where some concrete situations are described, it is not as-

sumed that the operator A generates necessarily a compact semigroup. This is

one of the interesting points of this work.
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