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HOMOLOGIES ARE INFINITELY COMPLEX

Mark Grant — András Szűcs

Abstract. We show that for any k > 1, stratified sets of finite complexity
are insufficient to realize all homology classes of codimension k in all smooth

manifolds. We also prove a similar result concerning smooth generic maps

whose double-point sets are co-oriented.

1. Introduction

Realizing homology classes by manifolds is a classical problem in Algebraic

Topology.

(1) It is well known that any Z2-homology class of any space X can be

realized by a manifold in the sense that for any x ∈ Hm(X; Z2) there

is an m-dimensional closed, smooth manifold and a map f :Mm → X

such that x = f∗[M ] (see [4]).

(2) When X itself is a manifold, then one can ask, how nice the map f can

be chosen. Thom gave a necessary and sufficient condition to have an

embedding realizing the class x. In particular, if dimX − dimx = 1,

then the homology class x can be realized by a smooth embedding.

We shall say that a cohomology class α ∈ Hk(P p; Z2) of a smooth

manifold P p is realized by a map f :Mm → P p if α is Poincaré dual to

f∗[M
m] (p = m+ k).
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(3) In [1] it was shown that for any k > 1 there are k-dimensional coho-

mology classes of some sufficiently high-dimensional manifolds which

cannot be realized by immersions.

(4) In [1] we have shown also that if we allow only a finite set of multisin-

gularities, then not all cohomology classes can be realized.

In the present paper we show that stratified sets of finite complexity are never

sufficient to realize all homology classes of codimension k > 1 (Theorem A). The

proof is almost identical to that of Theorem 1.3 in [1].

Further we show that smooth maps with any types of local singularities are

not sufficient to realize all homology classes if we require the set of (regular)

double points to be co-oriented (Theorem B).

2. Stratified sets of finite complexity

Definition 2.1. Let θ be a finite set with elements η1, . . . , ηr, where each

ηi is a triple: ηi = (Ai, D
ci , Gi). Here

(a) ci is a natural number and Dci is the ci-dimensional unit ball in Rci .

(b) Gi is a compact subgroup of O(ci).

(c) Ai is a Gi-invariant subset of Dci . We shall suppose that Ai is a cone

over a simplicial subcomplex of the sphere Sci−1 = ∂Dci .

(d) We shall suppose also that there is a k such that eachAi has codimension

k in Dci for i = 1, . . . , r.

Definition 2.2. A subset K of a smooth manifold P p is called a θ-subset

if the following hold:

(a) For each x ∈ K ⊂ P there are an i, 1 ≤ i ≤ r, a neighbourhood U

of x, and a diffeomorphism ϕU of U onto the product Dci ×Dp−ci such

that the image of K ∩ U is Ai × Dp−ci . Such a point x will be called

a point of type ηi in K. We shall say also that such a point x has normal

structure type ηi.

(b) For any given i (1 ≤ i ≤ r) the set of points of the type ηi form a smooth

submanifold ηi(K) in P . Let Ti be the tubular neighbourhood of ηi(K)

in P .

(c) The Dci-bundle Ti → ηi(K) admits Gi as a structure group. More

precisely the maps ϕU define a Gi-structure on it in the sense that for

any x ∈ ηi(K) and U , V neighbourhoods as in (a) with maps ϕU and

ϕV the map ϕV ◦ ϕ−1
U restricted to any ball Dci × q with q ∈ Dp−ci

belongs to Gi (if it is defined).

Remark 2.3. Any θ-subset in a smooth manifold is a codimension k strati-

fied subset (by (d) in Definition 2.1), hence the highest dimensional stratum has
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codimension k. If the second highest dimensional stratum has codimension at

least k+2, then a θ-subset is a cycle and so it represents a codimension k homol-

ogy class of the ambient smooth manifold. We shall say also that the θ-subset

represents the dual k-dimensional cohomology class.

Theorem A. Let k be greater than 1 and let θ be a finite set (of normal struc-

tures) as above, so that θ-subsets in smooth manifolds represent k-dimensional

cohomology classes. Then there is a smooth manifold P (of sufficiently high di-

mension) and a k-dimensional cohomology class of P that can not be represented

by a θ-subset.

In other words, stratified subsets of codim k with finitely many allowed nor-

mal structure types are never enough to realize all k-dimensional cohomology

classes.

3. Preliminaries for the proof:

The Pontryagin–Thom construction for θ-subsets

Definition 3.1. Two θ-subsets K0 and K1 in a manifold P are said to be

cobordant if there is a θ-subset W in P × I such that W ∩ (P ×{ε}) is K0 ×{ε}
if 0 ≤ ε ≤ 1/3 and it is K1 × {ε} if 2/3 ≤ ε ≤ 1. The set of θ-cobordism classes

in P will be denoted by θ(P ).

Remark 3.2. If f :N → P is any continuous map of the smooth manifold

N into the smooth manifold P , then it induces a map f∗: θ(P ) → θ(N) in the

following way:

Given a θ-subset K in P make the map f transverse to each stratum of

K and take the inverse images of these strata. The tubular neighbourhoods in

N of the preimages of the strata of K will have Gi-structures, hence in these

neighbourhoods the normal structures ηi arise, i = 1, . . . , r.

Remark 3.3. If P has the form P ′×R1 for some manifold P ′, then θ(P ) will

be a group. (The inverse element is obtained by applying the map (q, t) 7→ (q,−t)
for q ∈ P ′, t ∈ R1.)

If the source manifold N also has the form N ′ × R1 and f has the form

f ′ × idR1 where f ′ is a map N ′ → P ′, then f∗ is a homomorphism.

Notation:

(1) If Y is any space, then we shall denote by Y∞ its one-point compactifi-

cation. In particular if Y is compact, then Y∞ is the disjoint union of

Y with a point. So Y∞ is a pointed space (i.e. a space with a marked

point).

(2) If V is any pointed space, then [Y, V ] will denote the set of homotopy

classes of pointed maps Y∞ → V (i.e. continuous maps mapping the
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marked point to the marked point, and the homotopies must go through

pointed maps.)

Theorem 3.4. There is a Pontryagin–Thom construction for cobordisms of

θ-subsets. That is, there is a classifying space Xθ such that θ(P ) can be canon-

ically identified with the set of homotopy classes [P,Xθ] for any closed mani-

fold P . (Note, that Xθ is a pointed space, we shall see that below.) Moreover,

for any map f :N → P the induced map f∗: θ(P ) → θ(N) will be identified

with the map [P,Xθ] → [N,Xθ], induced by taking the precomposition with the

map f∞:N∞ → P∞ (induced by f), [α] 7→ [α ◦ f∞], where α is a pointed map

α:P∞ → Xθ.

The construction of Xθ goes by induction. The starting of the induction:

When θ consists of a single element η1, then necessarily A1 is the centre of Dc1 ,

and θ-subsets are simply embedded submanifolds of codimension k with normal

bundle reduced to the structure group G1. Let MG1 be the Thom space of

the corresponding universal vector bundle. Then Xθ = MG1 by the classical

Pontryagin–Thom construction. (The Thom space MG1 is a pointed space, and

its marked point will be the marked point of Xθ, for any θ. From the induction

step it will be clear, that MG1 is a subspace of Xθ for any θ.)

The induction step: We can suppose that the elements η1, . . . , ηr of the set θ

are enumerated in such a way that dim ηi(K) ≤ dim ηi+1(K) for any θ-subset K

and i = 1, . . . , r − 1.

Let θ′ be the subset of θ obtained by omitting ηr. We shall denote ηr =

(Ar, D
cr , Gr) simply by η = (A,Dc, G). Let X ′ be the classifying space for θ′-

subsets. Let us denote by ξ the bundle EGG×Rc, where EG is a contractible,

free G-space. Note that on the boundary of D(ξ) (the associated ball-bundle)

a θ′-subset arises: K ′ = EG ×G (A ∩ Sc−1). (More precisely for any finite

dimensional manifold-approximation (Dξ)finite of Dξ the set ∂(Dξ)finite ∩ K ′

is a θ′-subset of ∂(Dξ)finite.) Hence by the hypothesis of the induction a map

%: ∂D(ξ)→ X ′ arises. Now we define Xθ as follows: Xθ = X ′
⋃
%
D(ξ) (i.e. attach

D(ξ) to X ′ using the map %). It is standard to show that θ(P ) = [P,Xθ]. (See

the analogous result for singular maps in [2].)

4. Proof of Theorem A

Let U be the Thom class of the Thom space MG1. By construction the space

MG1 is a subset of Xθ, and the inclusion j:MG1 ⊂ Xθ induces an isomorphism

of the k-th cohomology groups:

j∗:Hk(Xθ; Z2)
∼−→ Hk(MG1,Z2)
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(Xθ is obtained from MG1 by successive cofibrations, the cofibers of which are

the Thom spaces of bundles of dimensions at least (k+ 2), hence the k-th coho-

mology group does not change). We shall denote also by U the element (j∗)−1(U)

in Hk(Xθ; Z2). Considering U as a map U :Xθ → K(Z2, k), its composition with

a map f :P → Xθ induces the map θ(P ) → Hk(P ; Z2) that associates to (the

cobordism class of) a θ-subset the represented k-dimensional cohomology class.

If a k-dimensional cohomology class y:P → K(Z2, k) can be represented by

a θ-subset, then there is a lift ỹ:P → Xθ such that U ◦ ỹ = y.

If any k-dimensional cohomology class of any manifold P can be represented

by a θ-subset, then such a lift ỹ exists for any P and any map y:P → K(Z2, k),

so the identity map id:K(Z2, k) → K(Z2, k) also has a lift ĩd:K(Z2, k) → Xθ

such that U ◦ ĩd = id. Hence U∗:H∗(K(Z2, k); Z2)→ H∗(Xθ; Z2) is an injection.

On the other hand, by a classical result of Serre the ring H∗(K(Z2, k); Z2)

is a polynomial algebra with infinitely many variables. It is well known that the

dimension of the degree n part of such an algebra grows faster (when n → ∞)

than the degree n part of any polynomial algebra with finitely many variables

(or of any finite sum of such algebras).

Hence Theorem A will be proved if we show the following

Lemma 4.1. The sequence dimHn(Xθ; Z2) grows not faster (when n→∞)

than the dimension of the degree n part of a finite sum of finitely generated

polynomial algebras.

Proof of lemma. By construction Xθ has a filtration:

X0 ⊂ X1 ⊂ . . . ⊂ Xr = Xθ,

where X0 is a point and Xi/Xi−1 is the Thom space of a vector bundle (of

dim ci) over BGi. Hence

dimHn(Xθ; Z2) ≤
r∑
i=1

dimHn−ci(BGi; Z2).

By a result of Venkov [5] for any compact Lie group G dimHn(BG; Z2) grows

not faster than the dimension of the degree n part of a polynomial algebra with

finitely many variables. �

This concludes the proof of Theorem A. �

It is natural to pose the following questions (We do not know the answers):

Questions.

(1) Is it possible to realize any homology class of any smooth manifold by

maps having local singularities from a given finite set? (For example:
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Is it possible to realize any homology class in smooth manifolds by fold

maps?)

(2) Is it possible to realize all homology classes by corank imaps for a fixed i?

5. Maps with arbitrary local singularities

and co-oriented double points

Here we show that not all homology classes in smooth manifolds can be

realized by smooth maps even if we allow any local singularities but require the

second top dimensional stratum to be co-oriented.

Definition 5.1. Let a smooth generic map f :Nn → P p be called double-

points co-oriented, or a dc map for short, if the push-forward of the virtual

normal bundle f!(νf ) becomes oriented when we restrict it to the set of the

image of double points.

Remark 5.2. Genericity of the map will imply that the set of points of

P having exactly two non-singular preimage points form a p − 2k-dimensional

chain (when properly triangulated) with boundary equal to the image of the

fold-singular points.

Theorem B. For any even k there is a cohomology class of dimension k

in a smooth manifold of sufficiently high dimension which can not be realized by

any dc-map.

Proof. In [1, Proposition 4.2] it was shown that if f :Mm → P p is a generic

smooth map, p = m + k, and α ∈ Hk(P ; Z2) the cohomology class realized by

f , then the class β(α2) ∈ H2k+1H(P ; Z) (where β is the Bockstein operator) is

dual to the homology class f∗
[
Σ(f)

]
, where Σ(f) is the set of singular points.

By Remark 5.2, for a dc map the class β(α2) must be zero. (The cycle

f
(
Σ(f)

)
is the boundary of the chain formed by the regular double points in the

chain group Cp−2k−1(P ; Z).)

On the other hand, it was shown in [1, Theorem 1.1] that there is a manifold

P and a class α ∈ Hk(P ; Z2) for which β(α2) is not zero. �
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