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SEQUENCES OF CONSECUTIVE HAPPY NUMBERS

H.G. GRUNDMAN AND E.A. TEEPLE

1. Introduction. Let Sy : ZT — Z* denote the function that takes
a positive integer to the sum of the squares of its decimal digits. A
happy number is a positive integer a such that S3*(a) = 1 for some
m > 0. In [2], happy numbers were generalized as follows: For e > 2,
b>2,and 0 < a; <b, define S, : ZT — ZT by

Sep ( i aibi> = i as.
i=0 i=0

If ST (a) = 1 for some m > 0, then a is an e-power b-happy number.

Using a computer search, it is easy to find examples of short sequences
of consecutive happy numbers. The least examples of sequences of
lengths 1-5 are given in Table 1. A natural question to ask is whether
or not there exist arbitrarily long finite sequences of consecutive happy
numbers. In 2000, El-Sedy and Siksek [1] showed that the answer is
yes.

One can also ask more generally for what values of e and b do there
exist arbitrarily long sequences of consecutive e-power b-happy num-
bers. Some results are already known. For example, for all e > 2,

TABLE 1. CONSECUTIVE HAPPY NUMBERS.

Length | Least happy number sequence

1 1

2 31, 32

3 1880, 1881, 1882

4 7839, 7840, 7841, 7842

5 44488, 44489, 44490, 44491, 44492
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every positive integer is an e-power 2-happy number [2, Theorem 4],
while for each odd b, there are no consecutive 2-power b-happy numbers.
The latter follows from [2, Theorem 10], which states that if p is prime
and b =1 (mod p), then for any a € Z" and k € Z™,

(1) Sgb(a) =a (mod p).

In particular, all 2-power b-happy numbers are congruent to 1 modulo d,
where d = ged(2,b — 1). With this in mind, we define a d-consecutive
sequence to be an arithmetic sequence with constant difference d.

In Section 2, we show that, for each base b, letting d = ged(2,b — 1),
there exist arbitrarily long finite d-consecutive sequences of 2-power
b-happy numbers. The result is based on a theorem due to Lenstra
[3]. We then, in Section 3, consider such sequences of 3-power b-happy
numbers, proving their existence for 2 < b < 13 with d = gcd(6,b — 1).

2. Lenstra’s theorem. In this section we present Theorem 1, which
is due to H. Lenstra. Since his proof has not been published elsewhere,
we include a slightly modified version of it here.

Let U, denote the set of all fixed points and cycles of S, that is,

let
Uep = {a € Z"| for some m € Z*, 57" (a) = a}.

Following Lenstra [3], a finite set T is (e, b)-good if, for each u € U, p,
there exist n,k € Z" such that for all t € T, S¥,(t +n) = u.

Theorem 1 [3]. Fiz b > 2, and let d = gcd(2,b—1). A finite set T
of positive integers is (2,b)-good if and only if all of the elements of T
are congruent modulo d.

As immediate corollaries we get the following.

Corollary 2. There exist arbitrarily long finite d-consecutive se-
quences of b-happy numbers.

Corollary 3. If there exists at least one positive integer that is not
a b-happy number, then there exist arbitrarily long finite d-consecutive
sequences of numbers that are not b-happy numbers.
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The proof of Theorem 1 is constructive in that it provides an algo-
rithm for finding example sequences corresponding to any (2, b)-good
set. We illustrate this with an example at the end of this section.

Let I : Z* — Z" be defined by I(t) = t + 1. We begin with two
lemmas, which we prove in general for any exponent, e.

Lemma 4. Fize, b> 2. Let F : ZT — Z7T be the composition of a
finite sequence of the functions Sep and I. If F(T) is (e,b)-good, then
T is (e, b)-good.

Proof. Tt follows immediately from the definition of (e, b)-good that
fore, b > 2,if I(T) is (e, b)-good, then T is (e, b)-good. Using induction
on the length of the sequence of functions, it suffices to show that if
Ses(T) is (e, b)-good, then T is (e, b)-good.

Suppose that S ,(T') is (e, b)-good, and let u € Ue ;. Then there exist
n’ and k' such that for all s € S, (T), S’f:b(s +n') =u. Let

n=11...1100...00,
——

nl
where the number of zeros is the number of base b digits of the

largest element of T. Then S.;(n) = n' and, for each ¢t € T,
Sep(t+mn)=S8ep(t)+n'. Let k =k"+ 1. Then, for allt € T,

SEy(t+n) = SE(Sen(t +n)) = SEy(Sen(t) + 1) = u.
So T is (e, b)-good. O
Lemma 5. Fize, b> 2. If T = {t} CZ", then T is (e,b)-good.
Given u € U, there exist x and k such that S¥,(z) = u. Let r € Z*
such that ¢ < b"z. Then, since S‘f,b(t + (b"z —t)) = vab(a:) =u, Tis

(e, b)-good. o

We now prove Theorem 1 by induction on the number of elements
in T.
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Proof of Theorem 1. Let d = gcd(2,b—1). Since every positive integer
is 2-power 2-happy, we fix b > 2. It follows from Congruence (1) that
if, for each ¢ in a set T, S;b(t + n) = u, then the elements of T are all
congruent modulo d.

For the converse, let T" be a finite set of positive integers all of which
are congruent modulo d. Note that if 7" is empty, then vacuously it
is (2,b)-good. If T has exactly one element, then, by Lemma 5, T is
(2,b)-good.

Fix N > 1, and assume that any set of fewer than IV elements all of
which are congruent modulo d is (2, b)-good. Suppose T has exactly N
elements, and let t; > t5 € T. We will show that there exists a function
F of the type described in Lemma 4 such that F(t;) = F(ts).

There are three cases.

Case 1. If t; and ¢, have the same nonzero digits, S24(t1) = S2,5(t2).
Thus, it suffices to let F' = Sy 4.

Case?2. Ift; =ty (mod b—1), then t; —ty = (b—1)v for some v € ZT.
Choose r € Z* so that b > bv +t5, and let m = b" +v —ty > 0. Then

I't)=t1+b" +v—te=b"4+v+(b—1v=0"+b

and
Im(tg):tgﬁ-br-i-’l}*tg:br—’-v.

Since b" > bv, it follows that I™(t1) and I™(t2) have the same nonzero
digits. Thus, referring back to Case 1, it suflices to let F' = S5, I™.

Case 3. If neither of the above holds, let u = t; — ts.

If b is odd, then d = gcd(2,b — 1) = 2 and therefore, from the
conditions on T, u must be even. It follows from Congruence (1) that
S2p(u—1) =u—1 (mod 2) and thus is odd. Therefore, —S,(u—1)—1
is even. Since b — 1 is even, there exists ac € Z, 0 < ¢ < (b—1)/2,
such that

(2) 2c=-S5(u—1)—1 (modbd—1).

If b is even, then 2 is invertible modulo b — 1. Hence (defining
S2,5(0) =0, when u = 1) there exists a c € Z, 0 < ¢ < b — 1, such that
2¢ = —S3p(u—1) —1 (mod b —1). So, in either case, there exists a
c€Z,0<c<b—1 satisfying Congruence (2).
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Choose 7' € Z* such that (c+1)b" > t;. Let m' = (c+1)b" —t5—1 >
0. Then Sy p(t1 +m') = Sop((c+1)b" +u—1) = (c+1)2+Sap(u—1) =
2 +2c+1+S34(u—1) =c® (mod b—1), by Congruence (2). Further,
Sap(ty +m') = Sop((c+1)b" —1) = +7'(b—1)2=c? (mod b— 1).
Therefore, So 1™ (t1) = S2,I™ (t2) (mod b — 1). Using the argument
in Case 2, it suffices to let F' = Sg7bImSQVbIm’, for some appropriately
chosen m € ZT.

Hence, in any case, there exists a map F' as in Lemma 4 such that
F(t1) = F(t2). This implies that F(T) has fewer elements than does
T. Further, since the elements of T are congruent modulo d, the same
holds for I(T') and, by Congruence (1), for Sz ;(T"), implying that the
same holds for F(T'). Therefore, by the induction hypothesis, F(T) is
(2,b)-good. Hence by Lemma 4, T is (2, b)-good.

This completes the proof of Theorem 1. |

To illustrate the construction provided by this proof, we use it to find
a pair of consecutive happy numbers (e = 2, b = 10). Starting with
T = {1, 2}, the method involves finding the function F' in the proof of
the theorem, then for each occurrence of Sy 1o in F), using the method
from the proof of Lemma 4 to find a suitable value of n such that t +n
is a happy number, for each appropriate t.

Using the notation of the proof, let ¢t; = 2 and t5 = 1. Case 3 of the
proof applies to T' with u = 1. Note that ¢ = 4 satisfies Congruence (2).
Since (4 +1) > 2, we take 7/ = 1 and so m' = 48. This yields
Ty = Sy10I%8(T) = {97,25}.

Now to find m, we look at Case 2 of the proof with ¢; = 97, to = 25,
v = 8. Since 102 > 10-8 + 25, let » = 3. Then m = 983 and we get
T2 = 52710[983(T1) = {65}

We now have a set with only one element and so use the proof of
Lemma 5. Since S319(1) =1 and ¢t = 65, we take =1 and r = 2. So,
n =100 — 65 = 35 and we see that Sz 10I%°(T%) = {1}.

Finally, we use the proof of Lemma 4 to find the corresponding
pair of consecutive happy numbers: Since Ss10I%%(T) = {1}, T»
is (2,10)-good with ny = 35 and k2 = 1. Following the proof,
Ty = S2,10(1%%3(T1)) and each element of 19%3(T}) has four digits, so,
letting
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ny = 11...110000,
——
35

each element of I9%3(T1) + n; = Ti + (n; + 983) is a happy number.
Now, T} = S,10(1*8(T)) and each element of I*8(T") has 2 digits, so we
let
no = 11...1100,
——

n1+983

and see that each element of T+ (ng + 48) is happy. Hence

11111...1149 and 11111...1150
— ———
11...110983 11...110983
—_—— ——

35 35

are consecutive happy numbers.

Recall from Table 1 that the smallest pair of consecutive happy
numbers is 31 and 32. So Lenstra’s algorithm clearly does not construct
the smallest examples of consecutive b-happy numbers.

3. The cubic case. In this section, we generalize to 3-power (or
cubic) b-happy numbers. Recall that all positive integers are cubic
2-happy.

For cubic happy numbers (the base 10 case), notice that it follows
from Congruence (1) that, for all z,k € Z*, S¥(z) = 2 (mod 3). Thus,
if z is a cubic happy number, x =1 (mod 3). We begin this section by
proving that there exist arbitrarily long finite 3-consecutive sequences
of cubic happy numbers.

Theorem 6. Let T be a finite set of positive integers. The set T
is (3,10)-good if and only if all of the elements of T are congruent
modulo 3.

Proof. One direction follows from Congruence (1). For the converse,
assume that all of the elements of 1" are congruent modulo 3. Choose
n € {0,1,2} such that forallt € T, t+n =0 (mod 3). It follows from
[2, Theorem 5] that for each a = 0 (mod 3), there exists a k, € ZT
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such that S’;“lo(a) = 153. Hence, since T is finite, there exists a k € Z™
such that for each ¢ € T, S§ ,(t +n) = 153. Thus S§ ,,I"(T") = {153}.
But by Lemma 5, {153} is (3,b)-good and so by Lemma 4, T is (3,b)-
good. O

As an immediate corollary, we have the following.

Corollary 7. There exist arbitrarily long finite 3-consecutive se-
quences of cubic happy numbers.

For other bases, we recall from [2, Theorem 12] that, for any b > 2
and a,k € Z7,

(3) S;b(a) =a (mod gcd(6,b—1)).

This leads easily to the following lemma.

Lemma 8. Fiz b > 2, and let T be a finite set of positive integers.
If T is (3,b)-good, then all of the elements of T are congruent modulo
ged(6,b — 1).

We conjecture that the converse is true, which would imply that for
each b > 2, there exist arbitrarily long finite sequences of d-consecutive
cubic b-happy numbers for d = ged(6,b — 1).

Conjecture 1. Fiz b > 2, and let T be a finite set of positive
integers. The set T is (3,b)-good if and only if all of the elements of T
are congruent modulo gcd(6,b — 1).

In a series of lemmas, we prove Conjecture 1 for 2 < b < 13. Finally,
we will show that the conjecture holds for infinitely many bases, b.

Lemma 9 allows for a generalization of the method used in the proof
of Theorem 1 to the cubic case. Its proof follows the same format as the
proof of that theorem. The generalization is limited in its application
in that, as indicated in Lemma 10, it does not apply to every base.
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Lemma 9. Fiz b > 2, let d = ged(6,b — 1), and let T be a finite
set of nonnegative integers all of which are congruent modulo d. If for
every integer w =0 (mod d) there exists a positive integer ¢ such that

(4) 3c(c+1)=w (modbd—1),

then T is (3,b)-good.

Proof. Since every set is (3,2)-good, fix b > 2. Using Lemma 5,
assume that 7" has N > 1 elements and that any set of fewer than
N elements all of which are congruent modulo d is (3,b)-good. Let
t; > ty € T. Following the proof of Theorem 1, we consider three cases,
showing in each that there exists a function F' of the type described in
Lemma 4 such that F(¢1) = F(t2).

If ¢, and ¢, have the same nonzero digits, let F' = S34.

If t; =t (mod b—1), let v € Z* such that t; —t2 = (b—1)v. Choose
r € Z so that b” > bv + t2, and let m = b" + v —t2 > 0. Then I™(ty)
and I™(t2) have the same nonzero digits, so let F' = S ,I™.

If neither of the above holds, let u = t; — ts = 0 (mod d). It
follows from Congruence (3) that Ssp(u — 1) = v — 1 (mod d) and
so =1 —S53(u—1) =0 (mod d). By assumption, there exists a ¢ such
that

(5) 3e(c+1)=—-1-S3(u—1) (modb—1).

Choose 7' € Z* such that b” > max{u — 1,t; + 1}. Let m' =
(c+1)b" —ty —1>0.

Then
Sap(ty+m') = (c+1)>+S35(u—1)=c* (modb— 1)

and
Sap(ta+m')=c+7'(b-1)3=c® (modb—1).

Thus, S3p(m + t2) = Sz p(m +t1) (mod b — 1). Using the argument
above, we get F' = Sg’bImS&bIml, for some appropriately chosen
m e Zt.
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Hence, in any case, there exists a map F' as in Lemma 4 such that
F(t,) = F(tz). As in the proof of Theorem 1, this implies that T is
(3,b)-good. o

We now use Lemma 9 to prove Conjecture 1 for specific values of b.

Lemma 10. Let T be a finite set of positive integers, and let
be {3,4,5,7,9,13}.

If all of the elements of T are congruent modulo d = gcd(6,b—1), then
T is (3,b)-good.

Proof. Fix b € {3,4,5,7,9,13}, and let T be a finite set of positive
integers all of which are congruent modulo d. Let w = 0 (mod d).
Using Lemma 9, it suffices to show that there exists a ¢ with 3¢(c+1) =
w (mod b — 1).

Ifbe {3,4,7},d =b—1 and so taking c = 0, 3c(c+1) =0 = w
(mod b—1). If b =5, d = 2 and taking ¢ = 0 and 1 yields 3¢(c+1) =0
and 2 (mod 4), respectively. If b = 9, d = 2 and taking ¢ = 0, 2, 3,
and 1 yields 3¢(c+1) =0, 2, 4, and 6 (mod 8), respectively. Finally,
if b = 13, then d = 6 and taking ¢ = 0 and 1 yields 3¢(c+ 1) =0 and 6
(mod 12), respectively. O

Lemma 9 does not apply to b € {6,8,10,11,12}. We already proved
Conjecture 1 for b = 10 in Theorem 6. The following lemma addresses
b € {6,8,12} and, finally, Lemma 12 proves the remaining case of
b = 11. Recall that Uz is the set of all cycles and fixed points of S3 .
Note that for b € {6,8,12}, d = ged(6,b — 1) = 1.

Lemma 11. If T is a finite set of positive integers and b € {6, 8,12},
then T is (3,b)-good.

Proof. Let b € {6,8,12}, and let T be a finite set of positive integers.
It is easy to see that there exists some k € Z™ such that S§7b(T) C Usp.
By Lemma 4, it therefore suffices to prove that Us is (3, b)-good.

Let b = 6. From [2, Theorem 5],
Use = {1,9,28,62,73,99, 128,190, 251}.
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So,
S3.61%85,61785,61° (Us,e) = S561°S3,61%({1,44,514})

= 856I%({1,514}) = {1}.
By Lemmas 4 and 5, Us g is (3, 6)-good.
Next let b = 8. Again from [2, Theorem 5],

Uss = {1,92,133,307, 432, 433, 434, 440, 469, 476, 559} .
Now,

S5 g I*285 g I*° S5 g I**(Us s) = 59 s I*° 59 ¢ I*° ({1, 92,432,559, 469})
= S5s1*°({1,92,469}) = {1}.

Thus, Us g is (3, 8)-good.

Finally let b = 12. Using [2, Corollary 9] and a straightforward com-
puter search, we see that Us 12 = {1, 8, 288, 342, 343,415,512, 755, 793,
811,944,1001,1008, 1136, 1344, 1351, 1464, 1539, 1672, 1738, 1855, 2002} .
So

S§ﬁ2195’§,212125'§,2121255,212]2(U3,8)
= 834,1°537,17 537,17 ({1, 342,415, 755,1008, 1351, 1539, 1855}
= S34,1°53%,17({1,415,1008, 1855})
= S3%,1°({1,415,1855}) = {1}.

Thus, Us 12 is (3, 12)-good. O
Now, we consider the base 11 case.

Lemma 12. Let T be a finite set of positive integers. If all of the
elements of T are congruent modulo 2, then T is (3,11)-good.

Proof. Let T be a finite set of positive integers all of which are
congruent modulo 2. There exists some k € Z* such that S§ ,(T) C
Us11. By Lemma 4, it therefore suffices to prove that any subset
V' C Us 11 of integers all of which are congruent modulo 2 is (3, 11)-
good. We will use induction on the size of V. Again, if V is empty or
has only one element, we have already shown that it is (3,11)-good.
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Using [2, Corollary 9] and a computer search,

Us11 = {1,3,9,10,27,35,36,54, 126, 133, 226, 243, 307, 370, 433,
435, 459, 476,593, 684, 687, 688, 729, 757, 793, 855, 946,
953, 1000, 1051, 1054, 1064, 1071, 1072, 1133, 1161, 1216,
1280, 1305, 1366, 1415, 1520, 1536, 1584, 1793, 1855}

Without loss of generality, assume 370 € V. (If not, then add an
appropriate amount, then apply S3 11 and rename the resulting set V,
utilizing Lemma 4.) Let t € V, t # 370. By assumption, ¢ is even.

If t = 1280, then S§711(t+1) =855 = 5’3711(3704—1), and so S§711](V)
is a smaller subset of Us11. If ¢ € {10,1000, 1520, 226, 946, 1072, 1366,
36, 54,1064, 1536, 688, 684,476,1054, 1584}, i.e., if ¢ is in the loop con-
taining 10, then choose k such that S ;, (£) = 1000. Since S3 ;,(1001) =
855 = 53 1,(371), we have S5 ,,15%,,(V) is a smaller subset of Us1;.

If neither of the above holds, then ¢ = 126 or 1216. In this case, we
have that S§ |, I7°(370) = 370 and S5 ,, I7°(t) is in the loop containing
10. Hence, combining with the above, S5,,155,,55,,1"°(V) is a
smaller subset of Us 1;.

Thus, by induction, Us 13 is (3, 11)-good, as needed. O

Combining the results from Theorem 6 and Lemmas 8, 10, 11, and
12, this completes the proof of Conjecture 1 for 2 < b < 13:

Theorem 13. Let T be a finite set of positive integers, and let
2 < b<13. The set T is (3,b)-good if and only if all of the elements
of T are congruent modulo ged(6,b —1).

Hence, for 2 < b < 13 and d = gcd(6,b — 1), there exist arbitrarily
long finite d-consecutive sequences of cubic b-happy numbers.

Finally, we show that there are infinitely many bases b such that
there exist arbitrarily long finite d-consecutive sequences of cubic b-
happy numbers for d = ged(6,b — 1) by exhibiting two such families of
bases.

Theorem 14. For anyr € Z%, let b=2"+1 or 3-2" + 1. Then
for d = gcd(6,b — 1), there exist arbitrarily long finite d-consecutive
sequences of b-happy numbers.
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Proof. Fix r € Z.

Note that for b = 3-2" + 1, d = 6. Then by Lemma 9, it suffices
to show that for every w = 6v, v € Z, there exists a ¢ € Z such that
3c(c+1)=w (mod 3-27).

For b =2"+1, d = 2, and so it suffices to show that for every even w
there exists a ¢ such that 3¢(c+ 1) = w (mod 2"). Since w is even and
3 is invertible modulo 2", we can again let w = 6v, for some v € Z.

Since 12 = 8v+1 (mod 23), we can apply Hensel’s lemma to conclude
that for each n € Z™T, there exists an a,, € Z such that a2 = 8v +1
(mod 2"*1). Since each a, is odd, we can let a,41 = 2c + 1, with
c € Z. Tt then follows that (2c+1)? = 8v+1 (mod 2"*2) and therefore
3c(c+ 1) = 6v = w (mod 3 - 2"), satisfying the required condition in
either case. 0
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