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A FEW REMARKS ON MIXING PROPERTIES
OF C*-DYNAMICAL SYSTEMS

FARRUKH MUKHAMEDOV AND SEYIT TEMIR

ABSTRACT. We consider strictly ergodic and strictly weak
mixing C*-dynamical systems. We prove that the system
is strictly weak mixing if and only if its tensor product is
strictly ergodic, moreover strictly weak mixing too. We also
investigate some other mixing properties of the system.

1. Introduction. It is known [13, 15] that a notion of mixing
for dynamical systems plays an important role in quantum statistical
mechanics. A lot of papers, see, [5, 6, 9, 10, 16], were devoted to
the investigations of mixing properties of dynamical systems. Very
recently in [11] certain relations between ergodicity, weak mixing and
uniformly weak mixing conditions of C"*-dynamical systems have been
investigated. It is known [8, 16] that strict ergodicity of a dynamical
system is stronger than ergodicity. Therefore, it is natural to ask
how this notion is related with mixing conditions. The object of this
paper is to investigate this question. Namely, we are going to consider
strictly ergodic and strictly weak mixing C*-dynamical systems. The
paper organized as follows. In Section 2 we recall some preliminaries
on C*-algebras and dynamical systems. Section 3 is devoted to the
characterization of strictly ergodic C*-dynamical systems. In Section 4
we prove that the system is strictly weak mixing if and only if its tensor
product is so. We also introduce a notion of ¢-ergodicity and compare
it with known mixing conditions.

2. Preliminaries. In this section we recall some preliminaries
concerning C'*-dynamical systems.

Let 2 be a C*-algebra with unit 1. An element z € 2 is called self-
adjoint, respectively positive, if © = x*, respectively there is an element
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y € A such that z = y*y. The set of all self-adjoint, respectively
positive, elements will be denoted by 2, respectively 2. By A* we
denote the conjugate space to 2. A linear functional ¢ € 2A* is called
Hermitian if o(z*) = ¢(z) for every z € 2. A Hermitian functional ¢ is
called positive if p(xz*x) > 0 for every € 2. A positive functional ¢ is
said to be a state if (1) = 1. By S, respectively 2}, we denote the set
of all states, respectively Hermitian functionals, on 2[. Let 2® 2l be the
algebraic tensor product of 2. By &%l we denote a completion of A®2
with respect to the minimal C*-tensor norm on 20 ® 2. The set of all
states on AR A we denote by S2. A linear operator T : 2 — 2 is called
positive if Tx > 0 whenever x > 0. A positive linear operator T is called
a Markov operator if T1 = 1. A pair (2, T) consisting of a C*-algebra
2l and a Markov operator 1" : 2 — 2 is called a C*-dynamical system.
In the sequel, we will call any triplet (2, ¢, T') consisting of a C*-algebra
2, a state p on A and a Markov operator T : A +— A with po T = ¢,
that is a dynamical system with an invariant state, a state preserving
C*-dynamical system. A state preserving C*-dynamical system is a
noncommutative C*-probability space (2, ¢), see [4], together with a
Markov operator T' on 2 preserving the noncommutative probability
. We say that the state preserving C*-dynamical system (2, ¢, T) is
ergodic, respectively weakly mizing, strictly weak mizring, with respect
to ¢ if

n—1

.1 & B
(21)  lim ~ ];)(sa(yT (@) — p(y)p(x)) =0, for all z,y € 2A.
(respectively,
1 n—1
. 4 k _ _
(22) lim — kz_o lp(T*(z)) — p(w)p(a)| = 0, forall z,y € 2,
n—1

(23) lim % kZ:O B(TH(@)) — o(2)| = 0, for all 7 € A4 € S.)

The state preserving C*-dynamical system (2, ¢, T) is called strictly
ergodic with respect to ¢ if ¢ is the unique invariant state under T.

Given a C*-algebra 2, by M, () we denote the set of all n X n-
matrices a = (a;;) with entries a;; in 2. Recall that a linear mapping
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T : A — Ais called n- positive if the linear operator T), : M, () —
M, () given by T}, (a;;) = (T'(aij)) is positive. If T" is n-positive for all
n, then T is said to be completely positive. It is known [14] that if T'is a
completely positive map, then the linear operator T®T : ARA — AR
defined by (T ® T)(z ® y) = Tz ® Ty is also completely positive.

3. Strictly ergodic dynamical systems. In this section we are
going to characterize strictly ergodic C*-dynamical systems. To do it
we need the following

Lemma 3.1. Let (A, ,T) be strictly ergodic. If h € A* is invariant
with respect to T, i.e., h(Txz) = h(z) for all x € A, then there is a
number A € C such that h = A\p.

Proof. Let us first assume that h is positive, then ¢ = h/h(1) is a
state. According to the strict ergodicity of (2, ¢,T) we have ¢ = ¢,
which implies that h = h(1)p. Now let h be a Hermitian functional.
Then there is a unique Jordan decomposition [14] of h such that

(3.1) h=nhy=h, Al = (Al + 2],
where || - ||1 is the norm on 2*. The invariance of h implies that
hoT'=hyoTlT —h_oT =hy —h_.

Using [|hy o Tlly = hy (1) = s lls, similarly [[hs o Tl = ||y |1, from
uniqueness of the decomposition we find hy o7 =hy and h_oT =h_.
Therefore, by the previous argument, one gets h = Ap. If h is an
arbitrary functional, then there are Hermitian functionals hj,hy such
that h = h; + the. Again, invariance of h implies that h; o T = h;,
t = 1,2. Consequently, we obtain that h = Ap. a

Now we are ready to formulate a criterion for the strict ergodicity of
a dynamical system. The proof of the criterion is similar to the proof
of [8, Theorem 2, Chapter 1, Section 8]. For the sake of completeness
we will prove it.

Theorem 3.2. Let (A,,T) be a state preserving C*-dynamical
system. The following conditions are equivalent
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(i) (A, p,T) is strictly ergodic;
(ii) For every x € 2 the following equality holds

‘ 1 n—1 .
nll)n;o - ZT (z) = p()1,
k=0
where convergence in norm of A;

(iii) For every x € A and ¢ € S, the following equality holds

Jm 23§k @) = (o)

k=0

Proof. Let us consider the implication (i) = (ii). It is clear that for
every element of the form y = T'(z) — z, x € 2 we have

1

2
—(T"(z) — < — —0 — 00.
n( (z) —2)|| < n||ac|| as n — 0o

%nZlTk(x)H -
k=0

So, as ¢(y) = 0 one gets

n—1
1 "
Jim. ;kEZOT (¥) = ¢(y)1.

It is evident that the set of elements of the form y =T(z) —z, z € A
forms a linear subspace of 2. By B we denote the closure of this linear
subspace. Set

By ={z € A: p(z) =0}.

It is clear that B C 9B,. To show B = B, assume that B # B,
this means that there is an element zy € B such that zy ¢ B. Then
according to the Hahn-Banach theorem there is a functional h € 2A*
such that A [ B = 0 and h(z¢) = 1. The condition h | B = 0 implies
that A is invariant with respect to T. Therefore Lemma 3.1 yields that
h = Ap, which contradicts ¢(zo) = 0. Hence B = B,.
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Let y € By. Then for an arbitrary ¢ > 0 we can find y. = T(z) — z,
such that ||y — yc|| < £/2. According to the following equality,

n—1

.1 k
Jim — T (ye) =0,
k=0
there exists ng € N such that
1 n—1
2 S 70| <er2
k=0

for all n > ny. Hence, we have

n—1 n—1 n—1
1 1 1
LIRS P SEVES) B8 CH Stlts
k=0 k=0 k=0

<|ly—vyel| +e/2 <e forall n> ng.

So,

n—1

: 1 k —
Jim ;OT (y) = p(y)1

is valid for every y € B.

Now let € 2. Put y =  — ¢(x)1. Obviously y € By, and for y the
last equality holds, whence we get the required relation.

The implication (ii) = (iii) is evident. Let us prove (iii) = (i).
Assume that v is an invariant state with respect to 7. According to
condition (iii) we find

Jim L3014 @) = o)
k=0

for every « € 2. On the other hand, we have
n—1
1
- > u(TH(z)) = v().
k=0

Whence ¢ = v. Thus the theorem is proved. i
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From this theorem we immediately infer that strict ergodicity implies
ergodicity of the C*-dynamical system. In the next section we will
demonstrate an example of a dynamical system which is ergodic but
not strictly ergodic. We mention that, from Theorem 3.2, one gets that
strict weak mixing trivially implies strict ergodicity.

4. Strictly weak mixing dynamical systems. In this section
we are going to give a criterion characterizing strictly weak mixing
C*-dynamical systems.

Set

A ={geA: gl <1}, Lh = AT NAL.

Before formulating a result we recall a well-known fact, see for example
[15].

Lemma 4.1. Let {a,} be a bounded sequence of real numbers. Then
the following are equivalent:
1 n
(i) lim > lak| =05
k=1
(ii) There exists a set J C N of density zero, i.e.,

lim cardinality (J N [1,n])

n—00 n

=0,

such that lim, o, a, = 0 provided n ¢ J;

n

TR | 2
(iii) nll)ngo - ; lax|* = 0.

Now we are ready to formulate the following

Theorem 4.2. Let (A,,T) be a state preserving C*-dynamical
system and T a completely positive map. The following conditions are
equivalent:

(i) (A, p,T) is strictly weak mizing;

(ii) The state preserving C*-dynamical system (AR A, o @ p, T RT)
1s strictly weak mixing;
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(iii) The state preserving C*-dynamical system (AR A, p @ p, TR T)
1s strictly ergodic;

(iv) For every x € 2, the following equality holds
n—1

tim sup 3 [9(TH(2)) ~ $(1)(e)| = 0;
k=0

n— 00 d]emfl« n

(v) For every x € A and ¢ € A*, the following equality holds

n—1

(4.1) Tim T3 (T @)~ p(1)e(e)] = 0.

Proof. Consider the implication (i) = (ii). Recall that complete
positivity of 7" implies that 7'® T is so. It is clear that the state p ® ¢
is invariant with respect to T'® T'.

Let ¢, ¢ € S be arbitrary states and z,y € ker p. Then, according to
(i), we have

n—1 n—1
Tlim. % S p(Tt@) =0,  lim % > lo(T )l =0.
k=0 k=0

So, according to Lemma 4.1, there exist two subsets Ji,J; C N of
density zero such that

Tlim_ [(T%(z))] =0,  lim |$(T*(y))| = 0.
né¢Jy ng¢J>

Then, for the set J = J; U J3, we have

Jim (T (2))$(T* ()] = 0,
n¢J

and hence again using Lemma 4.1 one gets that

Tim LS et @)e(rt ) = o
k=0
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Thus,

n—1

1m11§:w®¢u*®TWm®mn:a
k=0

n—o00 N

By G we denote the convex hull of the set {p ® ¢ : ©,¢ € S}. It
is clear that the || - ||;-closure of G is S2. Therefore, given ¢ > 0 and
w € S, there is ¢ € G such that |lw — ||y < e. For ¢ there is ng € N
such that

n—1
1
- Z IK(T* @ TF(z @ y))| <e for all n > ng.
™ =0
Consequently,
1 n—1
(4.2) E}:wa*®TWm®wﬂ
k=0
1 n—1 1 n—1
<. dDlw-OT* 0T @oy) + - Y KT eTHzoy)
k=0 k=0
Slw = dlhllz@yll +e <e(llz @yl +1)

for all n > nyg.

Let z,y € 2. Denote 2° =z — ¢(z)1, ¥° = y — p(y)1. Tt is clear that
2%, 9% € ker . By means of (4.2), for every w € S%, we have

n—1
1
(4.3) — E lw(T* @ T*(z° ® 4°))| < e forall n>n,.
n
k=0

Denote w1 (z) = w(z ® 1), wa(z) = w(l @), z € A. Then, according
to condition (i), there exist N1, N2 € N such that

n—1
1
- Z w1 (T*(z)) — p(z)| <& for all n > Ny,
(4.4) -
1«
- Z w2 (T*(y)) — ¢(y)| <& for all n > Ny.
k=0
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Now using (4.3) and (4.4), we find

n—1

(4.5) % D (It 0 Tz 0 0) ~ ple)el)

o) & Zowl (14(a) - p(2)])

n—1 n—1

o) (5 3 T 0) = o)) + 1 Ll 8 TH @ 47)

< (I (@) + lp(y)] + 1

for all n > max{ny, N1, Na}.

Now let z € A ® 2. Then there exists an element z, € A ® 2 such
that
Iz — z¢|| < e.

It follows from (4.5) that

n—1

% D w(TF @ T*(2)) — p @ p(2e)| < &

for all n > n.. Therefore, we obtain

n—1

% D w(TF @ T*(2)) — 0 @ p(2))
- %Z (T © T (= - 2.))|
k=0

n—1
1
+ =D W(TF O T (2)) — 9 @ p(2)| + o ® p(2e — 2)|
k=0
<e+2z—zl < 3¢

for all n > n.. The last relation implies that (AR A, o @ p, T QT) is
strictly weak mixing.

The implication (ii) = (iii) is obvious. Let us prove the implication
(iii) = (iv). Let (AU, ¢ Q@ ¢, T®T) be strictly ergodic. Let x € ker ¢,
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xz = z*. Given ¢ > 0, strict ergodicity of the dynamical system (see
Theorem 3.2) implies that there is ng, € N such that

n—1

Y TreTHzor)
k=0

1

— <e forall n > ngyg.
n

Hence,

n—1

1

‘E Z¢®¢(Tk®Tk(:L‘®m)) <e foralln>ng., Vi € A ,.
k=0

As zx is self-adjoint, we get

n—1

1

- Z |W(T*(2))> <& forall n>ng,, Vib € A7 p-
k=0

According to Lemma 4.1 we infer that there is n; , € N such that

n—1

1

- Z 1(T*(x))| < e foralln >ny,, Vo € A7 4
k=0

Consequently,

n—1

1
(4.6) sup — Z 1(T*(z))| <& forall n > ni,.
pea; , M=)

Let & € ker ¢ be an arbitrary element. Then it can be represented as
T = 1 + iT2, where z1,z2 € kerp, 7 = z;, j = 1,2. It then follows
from (4.6) that

1 n—1 )
(4.7) s ;0 [W(T"(2))] < 2¢

for all n > nq , := max{ni 4, N1z, }-
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Let ¢ € A]. Then ¢ = )1 +ith2, where ¢; € U] ,, j = 1,2. By means
of (4.7) one obtains

(4.8)
sup — Y |(T*(x sup o1 (T* (
ped; N Z = ' Z

+ sup — Z [bo (TF ()] < 4e,  Vn > ny,.
P2 AT —

Finally let z € 2. Then we have the last relation (4.8) for the element

2% = 2 — ()1, which implies that

lim sup —Zw (T*(x)) - ¥(1)p(z)| = 0.

n—o0 wem*

So the implication (iii) = (iv) is proved. The implications (iv) = (v)=
(i) are obvious. O

Remark. The implication (i) < (v) can be proved directly using
only positivity of the operator T. Indeed, it is enough to prove the
implication (i)= (v). Let & € ker p. Assume that ¢ € 2} is a positive
functional. Then ¢ (z) = 1/(¥(1))¢ () is a state. Hence, using (2.3),
we get

n—1
Jim T3G04 (@) = 0
k=0

which means

(4.9) Tim LS ) =0,

Now let ¢ E 2A* be an arbitrary functional; then it can be represented
as Y = Zm 0t Ym, where ¢, € Ay, m = 0,1,2,3, are positive
functionals. By means of (4.9), we have

1 n—1 1 n—1 3
Jim = (T @) < lim =YD [ (T (@) =
k=0

k=0 m=0
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Using the same argument as in the final part of the proof (iii) = (iv) we
obtain the required assertion. Therefore, if we take ¥(z) = p(yz),z €
A in (v), we easily get (2.2); this means that strictly weak mixing
implies weak mixing.

Using the same argument as the previous theorem, one can prove the
following

Theorem 4.3. Let (A,,T) be a state preserving C*-dynamical
system and T be a completely positive map. The following conditions
are equivalent:

(i) (A, ¢, T) is weak mizing;

(ii) The state preserving C*-dynamical system (AQRA, o @ p, TR T)
is weak mizing.

(iii) The state preserving C*-dynamical system (AR A, p @ p, TR T)
s ergodic.

Remark. It should be noted that Theorem 4.3 adapts Theorem 6.3
of [16] to a C*-algebra setting.

From Lemma 3.1 we infer that 1 is an eigenvalue of multiplicity one
for T* when (2, ¢, T) is strictly ergodic. Now what can we say about
strictly weak mixing dynamical systems? We have the following

Proposition 4.4. Let (A, p,T) be strictly weak mizing. If there exist
a number o € C with || =1 and a # 1, and h € A* such that

(4.10) hoT = ah,
then h = 0.

Proof. Assume that h # 0. Then h # u¢p for all 4 € C. Now choose
z € A such that h(z) is nonzero. Observe that the hypothesis (4.10)
with & # 1 implies that k(1) = 0. Therefore, using |a| = 1, one gets

LS @ @)~ e = L3 10h@) — r)e()
k=0 k=0
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=|h(z)| >0 forallneN

which contradicts the strictly weak mixing condition. ]

Now we are going to give a concrete example of a strictly weak mixing
C*-dynamical system.

Ezample 1. Let A = (> = {(z,,) : ,, € C, sup|z,| < co}. Define an
operator T : £*° +— (> by means of matrix (¢;;); jen such that ¢;; =
1/27,4,7 > 1. It is not hard to check that p = (1/2,1/2%,...,1/2",...)
is an invariant state with respect to T'. It is known from the Theory
of Markov Chains with countable state space, see [12], that ¢ (T™z)
converges to ¢ in norm of A* for every state ¢ € 24*. Consequently, T’
is strictly weak mixing.

The following example shows that strict ergodicity does not imply
strict weak mixing,.

Example 2. Let S' = {z € C : |z| = 1} and X be the Lebesgue
measure on S1 such that A\(S') = 1. Fix an element a = exp(i2ra),
where a € [0,1) is an irrational number. Define a transformation
r: 8t — St by T(z) = az The measure induces a positive linear
functional pA(f) = [o f ) such that ¢,(1) = 1. Consider a
C*-algebra 2 = C’( §), Where C’(Sl) is the space of all continuous
functions on S'. Now by means of T define a positive linear operator
T, : C(SY) — C(SY) by (Tr(f)(2)) = f((2)) for all f € C(SY). It is
clear that (C(S'),¢x,Ty) is a state preserving C*-dynamical system.
Since « is irrational, then according to [8, Theorem 2, Chapter 3] we
find that the defined dynamical system is strictly ergodic. On the other
hand, it is not strictly weak mixing. Indeed, take a linear functional
h € C(S')* defined by h(f) = [q 2f(2)dA(2), f € C(S'). Then we
have h(T,(f)) = a 2h(f) for all f € C(S'). Thus Proposition 4.4
implies that T’ is not strictly weak mixing. It should be noted that T’
is also not weakly mixing, see [15, Theorem 1.27].

The next example shows that strict ergodicity is stronger that ergod-
icity of C"*-dynamical systems.
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Ezample 3. Consider C*-algebra 2 = ®zM>(C), where M3(C) is
the algebra of 2 x 2 matrices over the field C of complex numbers. By
el(»r.b), n € Z, i,j € {1,2}, we denote the basis matrices of the algebra
M, (C) sited on nth place in the tensor product ®zMs(C). The shift
automorphism 6 : 20 — 2 of the algebra 2 is defined by 9(65?)) = egH'l)
for every n € Z and i,j € {1,2}.

Let tr be the normalized trace on M>(C), ie., tr(1) = 1. Let
©wo(-) = tr(p(:)) be a state on Ma(C), where p € M3(C) is a positive
operator such that tr(p) = 1. Such kind of p is called a density operator
for ¢g. Now let K : M5(C) — M;(C) be a completely positive Markov
operator such that ¢o(z) = @o(Kz) for every z € M3(C). On the
algebra Aj; ) = Qpr,n)M2(C) define the following linear functional

Pl (ar ® ars1 ® -+ ® an) = olarK (art1(- - K(an) - -)))-

The defined functional @, is a state, see [2, 3]. If a compatibility
condition holds

Olkn] | Ar—1,n-1] = Plk—1,n—1]

for the states {[,n}, then there is a state px on 2 such that
oK | Ukn] = Prnp> see [1], and ¢ is called a Markov state. We
note that a more general definition of Markov state was given in [1, 2].

It is easy to see that the Markov state is invariant with respect to 6.
Define two Markov operators K; : M2(C) — M5(C), i = 1,2 by

(@ b\ _ (pua+pid 0
"\c d 0 P21a + prad )’

K (@ b\ [ qia+qd 0
2\e d) ™~ 0 qa+qd)’

Here P = (p;;) is a stochastic matrix such that p;; > 0 for all 4, j,
and g1 +¢2 =1, q1,¢2 > 0.

Now consider two states ¢g1 and ¢g 2 defined on M;(C), whose
density operators are given by

_(p1 O _ (a1 O
pl—(o p2>7 p2—<0 q2>
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where m = (p1,p2) is a vector such that p; +ps = 1, p1 > 0, p2 > 0 and
P = .

Note that for these operators and states the compatibility condition
is satisfied; therefore, there are two associated Markov states ¢k, and
PK,-

Then (2, vk, ,0) and (2, ¢k,, ) are weak mixing, and hence ergodic,
state preserving C*-dynamical systems, see [7, Theorems 4.1 and 4.5].

On the other hand, they are not strictly ergodic because there exist
two invariant states with respect to 6.

Remark. From Examples 2 and 3 we conclude that weak mixing and
strict ergodicity are not comparable. Therefore, we may formulate the
following

Problem 4.5. Let (A, ¢,T) be a state preserving C*-dynamical
system. Are the following conditions equivalent?

(i) (A, ¢, T) is weak mizing and strictly ergodic;
(i) (A, @, T) is strictly weak mizing.

Recall a state preserving dynamical system (2, ¢, T) is called ezact,
see [9], if for each ¢ € A*

Tim |y o T™ = $(1)g]ly = 0

is valid, where || - ||; is the norm in 2*. It is not hard to see that
the exactness implies strict weak mixing. In [9] Luczak proved that
exact and weak mixing conditions, for dynamical semi-groups on von
Neumann algebras, are equivalent if and only if the von Neumann
algebra is strongly R -finite. Regarding this result we can formulate
the following

Problem 4.6. Let (A, ¢,T) be a state preserving C*-dynamical
system. When are the following conditions equivalent?

(i) (A, ,T) is exact;
(i) (A, @, T) is strictly weak mizing.
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Now by Sp denote the set of all continuous functionals f : A — R

such that
f(Az) = Af(z) forall \e R,, z €A,

£(1) =1.

Now we introduce a notion of ¢-ergodicity. Namely, a state preserving
C*-dynamical system (2, ¢, T) is called ¢-ergodic if the equality

(4.11) f(T(x)) = f(z) forall z e Ay,

where f € Sy, implies that f(z) = ¢(x) for all x € A

Theorem 4.7. Let (A,,T) be a state preserving C*-dynamical
system. Then for the conditions:

(i) For every x € 2 the following equality holds

n—1

1 "
dm 537 @) - el =0

(ii) For every x € 2 the following equality holds

lim {|T"(z) — ¢(z)1]| = 0;

n—roo

(iii) (A, ¢, T) is p-ergodic;
(iv) For every v € S and x € 2 the following equality holds

lim (T"(z)) = ¢(x).

n—roo
The following implications hold: (i) < (i) = (iii) = (iv).
Proof. The (i) < (ii) implication is obvious. Consider the implication
(i) = (ii). Assume that z € ker ¢; then we have

n—1

1 "
(4.12) HILH;OEI;)HT (z)|| = 0.
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On the other hand, one gets
[T @) < 1T () ];

this means that the sequence {||T"z||} is nonincreasing. Hence, we
have lim, o ||7"z|| = a. It follows from (4.12) that & = 0. Let 2 € ;
then setting 2° = z — p(x)1 we find

lim |77 (z°)] =0,

n— oo

which implies (ii).
(ii) = (iii). Assume that (4.11) is valid for some f € Sy. According
to condition (ii) we have

T (z) = (z)1 asn — oo

for x € 2, here the convergence in norm of 2. By means of continuity
of f one gets

f(T"(2)) = fp(2)1) = p(z) asn — oo
On the other hand, (4.11) implies that f(z) = ¢(z), for all x € A4. So
(A, p,T) is ¢-ergodic.
(ili) = (iv). Let ¢ € S. Define functionals f : 2, — R,

f : Ql+ — R+ by
f(z) = limsupy(T"(x)), = €Ay,

n—0o0

f(z) = liminf (T"(z)), =€ A,.

n— oo

It is clear that f,f € Sp. We have

F(Tz) = limsup p(T"(z)) = f(x).

n—r0o0

Similarly, f(Tz) = f(z). Hence, ¢-ergodicity of (2, ¢, T) implies that

f@) =), fl)=p(@) YzeAU.
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Consequently, we infer the existence of the following limit

lim ¢(T"(z)) = p(z), zeAy.

n—roo

Every € 2 can be written as x = Z?nzo """ T, Tm € Ay, m =

0,1,2, 3; therefore, by means of the last equality, we get

lim ¢(T"(z)) = p(z), ze

n—oo
This completes the proof. ]

This theorem leads us to ask

Problem 4.8. Is the implication (iv) = (iii) true?

It is clear that the exactness of a dynamical system implies condi-
tion (iv). Therefore, it is natural to formulate the following

Problem 4.9. Let (A, ¢, T) be a state preserving C*-dynamical
system. How are the following conditions related with each other?

(i) (A, 0, T) is ¢p-ergodic;
(ii) (A, ,T) is ezact.

Remark. If C*-algebra 2 is finite dimensional, then all conditions in
Theorem 4.7 are equivalent.
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