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OSCILLATION OF
NONLINEAR IMPULSIVE HYPERBOLIC EQUATION
WITH SEVERAL DELAYS

ANPING LIU, LI XIAO, TING LIU AND MIN ZOU

ABSTRACT. In this paper, oscillatory properties of solu-
tions for certain nonlinear impulsive hyperbolic equations with
several delays are investigated and a series of new sufficient
conditions and a necessary and sufficient condition for oscil-
lation of the solutions are established.

1. Introduction. The theory of delay partial differential equations
can be applied to many fields, such as to biology, population growth,
engineering, generic repression, control theory and climate model. In
the last few years, the fundamental theory of partial differential equa-
tions with deviating argument has undergone intensive development.
The qualitative theory of this class of equations, however, is still in
an initial stage of development. A few papers have been published on
oscillation theory of partial differential equations with delay. We may
easily visualize situations in nature where abrupt change such as shock
and disasters may occur. These phenomena are short-time perturba-
tions whose duration is negligible in comparison with the duration of
the whole evolution process. Consequently, it is natural to assume, in
modeling these problems, that these perturbations act instantaneously,
that is, in the form of impulses. In 1991, the first paper [8] on this
class of equations was published. But, for instance, only a few papers
have been published on oscillation theory of impulsive partial differ-
ential equations. Recently, Bainov, Minchev, Fu, Luo and Liu [2-5,
9, 18-21] investigated the oscillation of solutions of impulsive partial
differential equations with or without deviating argument.

In this paper we’ll discuss the oscillatory properties of solutions for a
class of nonlinear impulsive hyperbolic equation with several delays (1),
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under the boundary conditions (4) and (5) separately. Up to now, we
do not find work for oscillations of this kind of problem. The problem
that paper [20] discussed is a special case of Theorem 1 here.

(1)

% = a(t)h(u)Au — q(t,z) f(u(t,z)) — Zgj(t, z)fi(u(t —oj,x))
t#te, (tLz)ERLxNQ=C
(2) u(t),z) — u(ty,z) = gru(ty, ),

(3)  we(tf,z) —w(ty,, ) = brug(ty,x), t=tg, k=12,....
with the boundary conditions

(4) & gt ), (a) € Ry x 90

(5) u=0, (tz)€ Ry x0Q

and the initial condition u(¢,z) = ®(¢,z), (¢t,2) € [-6,0] x Q. Here
Q C RY is a bounded domain with boundary 9 smooth enough and
n is a unit exterior normal vector of 0%, § = max{o;}, ®(t,z) €

O2(]-5,0] x O, R).

This article is organized as follows: Section 2 studies the oscillatory
properties of solutions for problems (1) and (4). Section 3 discusses
problems (1) and (5). In Section 4, we obtain for the linear case a
necessary and sufficient condition.

Assume that the following conditions are fulfilled:

H,) a(t) € PC(R4,Ry), 0j = const > 0, q(t,x),9;(t,z) € C(Ry x
Q,(0,00)), 5 = 1,2,...,n; where PC denotes the class of functions
which are piecewise continuous in t with discontinuities of the first
kind only at ¢t = t; and left continuous at t =t;, k=1,2,... .

Hy) W (u), f(u), fj(u) € C(R,R); f(u)/u > C = const > 0,
fi(w)/u > C; = const > 0, for u # 0; uh/(u) > 0,9(¢t,z,u) is

continuous and uh(uw)g(t,z,u) < 0, g > —1,bpy > —1,bx < g,
O0<ty <ta<--»<tp<---,limy o0t = 00.
H;) u(t,z) and their derivatives u(t, z) are piecewise continuous in ¢

with discontinuities of the first kind only at ¢ = ¢; and left continuous
at t = tr, u(ty, x) = u(ty , ), ue(te, ) = u(ty, ), k=1,2,....
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Let us construct the sequence {tx} = {tx} U {txo,}, where t3,, =
ty + 0 and % <Ek+1, k=1,2,....

Definition 1. By a solution of problem (1), (4) ((1),(5)) with initial
condition, we mean that any function w(t,x) for which the following
conditions are valid:

1. If =6 <t <0, then u(t,z) = (¢, z).

2. If 0 <t <ty =ty, then u(t,z) coincides with the solution of the
problem (1), (2), (3) and (4) ((5)) with initial condition.

3. If ty, <t <tpy1,tr € {te} \ {tro;}, then u(t,z) coincides with the
solution of the problem (1), (2), (3) and (4) ((5)).

4. If tp < t < tpg1,te € {tro,;}, then u(t,z) coincides with the
solution of the problem (4) ((5)) and the following equations

2U
T = a(t)h(u(t*, ) Au(t*, 2) — qlt, ) f(u(t*, )

—Zgjtxf] (t—o)t,2)), (t,z)e RLxQ=G

uw(ty, z) = uly,z), w(t,z)=ukz), fortrc {tro,} \ {tr},

w(tl,z) = (L+ g )ultr, @),  w(t),z) = (1+ bg,)u(r, x),
for &, € {tro, }[ {te}-

Here the number k; is determined by the equality & = ty, .

We introduce the notations: I'y, = {(t,z) : t € (tk,tk+1) € Q}
F = Uk OFk7 I, = {(t l‘) 1t e (tk,tk+1) xr € Q} T = k—OFk’
= [ u(t,®) dx and p(t) = minq(t,z), p;(t) = ming;(t,z), z € Q.

Definition 2. The solution u € C%(T') N C*(T) of problem (1), (4)
((1),(5)) is called nonoscillatory in the domain G if it is either eventually
positive or eventually negative. Otherwise, it is called oscillatory.

2. Oscillation properties of the problem (1), (4). The following
is the main theorem of this paper, and the proof needs the following
lemmas.
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Lemma 1. Let u € C*T) N CYT) be a positive solution of the
problem (1), (4) in G. Then the function v(t) satisfies the following
impulsive differential inequality

6)  V"(t)+Cp(t) +chpj v(t—0;) <0, t#£t
(7) v(tf) = (1 +aqe)v(ty), k=1,2,...
(8) V() = L+ b))V (k) k=1,2,....

Proof. Let u(t,z) be a positive solution of the problem (1), (4)
in G. Without loss of generality, we may assume that u(t,z) > 0,
u(t—oj,z)>0,5=12,...,n, for any (¢,z) € [ty,00) x .

For t > tg, t # tr, k =1,2,..., integrating (1) with respect to x over
Q yields

j—;[/ﬂudw} :a(t)/ h(u)Audw—/q(t,w)f(u(tam))dw

—Z/gjmf] —0j,2).

By Green’s formula and the boundary condition, we have

/h(u)Auda::/ h(u )@d —/h'(u)|gradu\2da:
Q on Q
< —/ R (u)|grad u|? dz < 0.

Q

From condition Hs), we can easily obtain
[ atto)futt,a) do > Cott) [ utt,a)da.
Q Q
/ 9;i(t,z) fi(u(t — oj,z)) dz > C;p;(t) / u(t —oj,x) d.
Q Q

It follows that
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(10) " + Cp(t) +chp] 0;) <0, t>ty, tFi

where v(t) > 0.
Fort > tg, t =tx, k=1,2,..., we have

/ /u ty,x) :qk/u(tk,,x)dw,
Q Q Q
/ut tk, /ut ty,x) :bk/ut(tk,,x)dw.
Q Q Q

This implies

(11) v(ty) = (1 +qr)o(ts)
(12) V() = (L+ b)) (b), k=1,2,....

Hence we obtain that v(¢) > 0 is a positive solution of differential
inequality (6)—(8). This ends the proof of the lemma. o

Definition 3. The solution v(t) of differential inequality (6)—(8) is
called eventually positive (negative) if there exists a number ¢t* such
that v(t) > 0 (v(¢) < 0) for ¢ > t*.

Lemma 2 [11, Theorem 1.4.1 |. Assume that
(i) m(t) € PCY[R™, R] is left continuous at ty fork =1,2,...,
(ii) for k=1,2,... ,t > to,

p(t)m(t) +q(t), t#tx
drm(tx) + ek,

where p(t),q(t) € C(R*,R),di, > 0 and ey are real constants,
PC'[R™,R] = {z : Rt — R;x(t) is continuous and continuously dif-
ferentiable everywhere except some t), at which z(t), z(t,), z'(t}) and
z'(t), ) exist and x(ty) = x(t;, ), «'(tx) = ' (5 )}
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Then

t)<mito) [] dkexp</ ()d>

to<tp <t

/ 11 dkexp< / (r)dr)q(s)ds

to s<ty <t

+ > ] dexp(/ (8)d8>€k-

to<tp <t il <t;<t

From Lemma 2 we can obtain Lemma 3. See also [20].

Lemma 3. Let v(t) be an eventually positive (negative) solution of
differential inequality (6)—(8). Assume that there exists T > ty such
that v(t) > 0(v(t) < 0) fort > T. If the following condition holds,

¢ 1+ 0bg

(13) , 1i$1
—
>t to<tp<s

then v'(t) > 0 (v/(t) < 0) for t € [T,t;] U (UL (tkytrtr]), where
Il =min{k:t, >T}.

Theorem 1. Let condition (13) and the following condition (14) hold
for some jp,

¢ 1+ qr

(14) lim T

t—+oo

Pjo (s) ds = +o0.
to to<tp<s

Then every solution of the problem (1), (4) oscillates in G.

Proof. Let u(t,x) be a nonoscillatory solution of (1), (4). Without
loss of generality, we can assume that w(¢,z) > 0, u(t — oj,2) > 0,
j=1,2,... ,n, for any (t,z) € [ty,00) x Q. From Lemma 1, we know
that v(t) is a positive solution of (6)—(8). Thus, from Lemma 3, we can
find that v’(t) > 0 for ¢t > to.
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For t > tg, t #tg, k=1,2,..., define

w(t) = t > tq.

Then we have w(t) > 0, ¢ > to, v'(t) — w(t)v(t) = 0. We may assume
that v(tp) = 1, thus we have that for t > tg

(15) o0 = ( [ wls)ds

(16) V() = w(t) exp ( /t t w(s) ds)

(17)  "(t) = w?(t) exp </t:w(5) ds> + ' (t) exp (/t:w(s) ds).

We substitute (15)—(17) into (6) and can obtain the following inequality

w?(t) exp (/t: w(s) ds> + w'(t) exp </t: w(s) ds)
+ Cjopjo () exp ( /t :% w(s) ds> <0.

Hence, we have

t

w?(t) +w'(t) + Cjopjo (t) exp < - /t

—j

w(s)ds) <0.

From this inequality and condition by < g, it is easy to see that the
function w(t) is nonincreasing for ¢ > t; > § + tp. Thus, w(t) < w(ty)
for ¢t > t; which implies that

w' (t) + Cjypjo (t) exp(—dw(t1) ds) <0, ¢ > t;.

From (7), (8) we can obtain

w(ty) =
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It follows that

(18) w'(t) < =Cj,pj, (t) exp(—dw(t1) ds), t# tg
(19) w(th) = ii;’:w(tk), —

By using Lemma 2, we obtain

14 by
1+ g

w(t) <wte) ]

to<tp <t

+/ II 1+bk(—Cjopjo(s)eXP(—5w(t1)))ds

to s<itp <t 1+ gk

_ H 1+ b {’w(to)

to<trp <t 1 + 4k

- / 11 1+qujopjo(s)exp(—éw(tl))ds}.

to to<tr<s 1+ by,

Since w(t) > 0, the last inequality contradicts (14). The proof of
Theorem 1 is completed. ]

It should be noted that obviously every solution of problem (1), (4)
is oscillatory if there exists a subsequence ng of n such that g,, < —1,
for k=1,2,.... So we only discuss the case of g > —1.

3. Oscillation properties of the problem (1), (5). Making
use of the following lemma of eigenvalue, we can obtain many similar
results for problem (1), (5). In this section, we suppose that h(u) = 1.

Lemma 4. Suppose that Ay is the smallest eigenvalue of the problem

Ap(x) +Ap(x) =0, z€Q
p(z) =0, z€dQ

and () is the corresponding eigenfunction of A\g. Then Ao > 0, p(x) >
0, z €.
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Lemma 5. Let u(t,z) € C*() N CY(T) be a positive solution of
the problem (1), (5) in G. Then the function v(t) = [ u( z)dx
satisfies the impulsive differential inequality

(20) v"(t) + Moa(t)v(t) + Cp(t) +ZCJPJ v(t—05) <0,
t £ tg

(21) o(tf) = (L +ao(te) k=12,....

(22) V() = L+ b (t), k=1,2,....

Proof. Let u(t,z) be a positive solution of the problem (1), (5)
in G. Without loss of generality, we may assume that u(¢,z) > 0,
u(t—oj,z) >0,5=12,...,n, for any (¢,z) € [ty,00) x .

For t > tg, t # tg, k = 1,2,..., multiplying equation (1) with ¢(z),
which is the same as that in Lemma 4 and then integrating (1) with
respect to x over 2 yields

a [ [ uete) dx] = aft) [ Aup(e)do — [ aft,0)(ult,0))p(o) do

Q
- Z/ng(t,x)fj(u(t —0j,z))e(x) de.

By Green’s formula and the boundary condition we have

/uAgadxf/gaAudw:/ a—ﬁpudsf/ @cpdszo.
Q Q oq On oq On

It follows that

/QAu(t,x d:v—/Aap u(t, z) da:——)\o/Q o(z)u(t, z) dz.

From the condition Hj), we can easily obtain

/ a(t, 2) F(ult, 2))p(z) dz > Cp(t) / u(t, 2)p(a) de
Q

Q

/ 9;(t; ) f(u(t — aj, 2))p(z) dz > ijj(t)/ u(t — o, x)p(z) dz.
Q Q
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Thus, v(t) > 0. Hence, we obtain the following differential inequality
(23) v+ Noa(t)v(t) + Cp(t) +ZC'Jp] v(t — ;) <0.

For t = t;, we have

/Qu(t;,x)ga(w)dx—/Qu(t,;,a:)ga(m)da::qk/ﬂu(tk,x)ga(m)da:,
/Qut(tg,w)go(x)dw—/Qut(t,;,a:)ga(m)da::bk/ut(tk,x)ga(w)dx.

Q

This implies

(24) (t;:) (I+ae)v(te), k=1,2,...
(25) V() = L+ bV (t), k=1,2,....

Hence, we obtain that v(t) > 0 is a positive solution of impulsive
differential inequality (20)—(22). This ends the proof of Lemma 5. u]

Theorem 2. Let condition (13) and the following condition hold

¢ 1+ gk
1+ by

(26) lim

t—+oo

(Moa(s) + Cp(s)) ds = +o0.

to to<tr<s

Then every solution of the problem (1), (5) oscillates in G.

Proof. Let u(t,x) be a nonoscillatory solution of (1), (5). Without
loss of generality, we can assume that w(¢,z) > 0, u(t — oj,2) > 0,
j=1,2,... ,n, for any (t,z) € [ty,00) x Q. From Lemma 5, we know
that v(t) is a positive solution of (20)—(22). Thus, from Lemma 3, we
can find that v’(t) > 0 for ¢ > ¢,.

For t > tg, t A tg, k= 1,2,..., define

w(t) = t > tq.
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Then we have w(t) > 0, t > ¢g, v'(t) — w(t)v(t) = 0. We may assume
that v(tg) = 1, thus we have that for t > tg

(27) o =eo( [ wls)ds

(28) V() = w(t) exp ( /t t w(s) ds)

(29)  v"(t) = w?(t) exp ( /1t :w(s) ds> + ' (t) exp ( /t :w(s) ds).

We substitute (27) and (29) into (20) and can obtain the following
inequality
w?(t) + w'(t) + Aoa(t) + Cp(t) < 0.

From (21), (22) we get

v'(tﬁ) 1+
v(t:) 1 + qk

w(t]) = w(ty), k=1,2,....

It follows that

(30) w'(t) < —Xoa(t) — Cp(t), t#tk
(31) w(th) = %w(tk), —

By using Lemma 2, we obtain

14 b
1+ gk

w(t) < w(ty) H

to<tp <t

t
[T T deals) — o) ds
to stpee -+ Ik

= ] iizz {w(to)

to<tp<t

_/t IT 5% (a(s) + Op(t)) ds}.

0 to<tp<s 1+ by
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Since w(t) > 0, the last inequality contradicts (26). The proof of
theorem is completed. ]

Theorem 3. Let condition (13) and the following condition hold for
some pj, ,

¢ 1+ g

2 li —_—
(32) im 7o,

t—+o00

Cjopjo, () ds = 4o00.
to to<tp<s

Then every solution of the problem (1), (5) oscillates in G.
The proof is easy, we just omit it. o

4. Necessary and sufficient condition. In this section, we will
establish a necessary and sufficient condition for oscillation of impulsive
wave equation with several delays. We consider the following linear
problem.

n

(33) ug = a(t)Au — p(t)u(t,z) — ij (t)u(t —oj,x)
t#t, (Lz)eR.xQ=G
(34) u(th) —ulty) = qeulte,z), t=tx, k=12,...

(35)  we(td) —wilty) = brue(ty, ), t=ty, k=12,...,

with boundary condition (5).

Theorem 4. Every solution of the problem (33)—(35), (5) is oscilla-
tory in domain G if and only if every solution of the following impulsive
delay differential equation (36)—(38) is oscillatory.

CORMEA VIO +Zp] ot~ o5) =0,

(37) o(t) —o(ty) = qev(te), k=1,2,....
(38) V() = (ty) = bk (t), k=1,2,....
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Proof. Sufficiency. Using reduction to absurdity. Let u(¢,z) be a
nonoscillatory solution of the problem (33)-(35), (5). Without loss of
generality, we may assume that there exists a tg > T such that u(t, z) >
0 and u(t —oj,z) >0, j=1,...,n, for any (¢,z) € [to, +00) x Q.

For t > tg,t # tg, k = 1,2, ..., multiplying equation (33) with ¢(z),
which is the same as that in Lemma 4, then integrating (33) with
respect to x over §2 yields

2
5 | vt de = at) [ Autt.0)ole) da
~0) [ ult.a)ole) do
- ;pj(t) /Q u(t —oj,z)p(x) de.

By Green’s formula and boundary condition, we have

/QuAga(a:)dac—/an(a:)Audx:/aQ 3?;)61 —/8990( )g—st:

It follows that

/ng(ac)Audm:/QuAcp(ac) dm:—)\o/ngo(m)u(t,x)dm.

Denote v(t) = [, ¢(z)u(t,z) dz. Then v(t) > 0. It follows that

dgdigt) a(t)Mov(?) —l—Zp] ot — o7) = 0.

For t > tg, t =tx, k =1,2,..., analogous to (11), (12) we have

(39) () — v(ty,) = arv(te)
(40) O () v (ty) = bkt (t), k=1,2,....

Hence, we obtain that v(¢) > 0 satisfies equation (36)—(38). This means
that impulsive delay differential equation (36)—(38) has a nonoscillatory
solution. A contradiction. This ends the proof of sufficient condition.
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Necessity. We are still using reduction to absurdity. Let v(t) be
a nonoscillatory solution of the equation (36)—(38). Without loss of
generality, we may assume that there exists a t; large enough such that
v(t) >0and v(t —o;) >0, j=1,...,n, for any t € [t;,+00).

For t > t1,t # tg, k = 1,2,..., setting u(t,z) = v(t)p(x), we have
u(t,z) > 0 and we can easily obtain

Au(t, z) = Alv(t)p(z)] = v(t)Ap(z) = —Aov(t)¢(2).

Making use of this result, we use equation (36). We obtain

d2

Jz [ve(@)] + a(t)dov(t)p(2) + p(t)u(t)p(2)

n

+ZP] v(t —oj)p(z) =0.

This means that u(¢,z) = v(¢)p(z) satisfies equation (33).

For t > t;,t =tx, k =1,2,..., from the conditions (37) and (38), it
is easy to see that function u(t, z) = v(t)p(x) satisfies (34), (35). And,
because p(z) = 0, z € 0Q. That is, u(t,z) = v(t)p(z) also satisfies
boundary condition (5). This indicates that problem (33)—(35), (5)has
a nonoscillatory solution. This is a contradiction. This ends the proof
of Theorem 4. O
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