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SOME EXTENSIONS OF THE MARKOV
INEQUALITY FOR POLYNOMIALS

D. DRYANOV, R. FOURNIER AND S. RUSCHEWEYH

ABSTRACT. Let D denote the unit disc of the complex
plane and P, the class of polynomials of degree at most n
with complex coefficients. We prove that

P(TT/) + plemIm/m)
2 ?

pr(2) — Pk (2)

< nltk

max
z€0D

max
0<j<n

where po := p belongs to Py, and for k > 0, pyy1(2) := 2p} (2).
We also obtain a new proof of a well-known inequality of
Duffin and Schaeffer and sharpenings of some other classical
inequalities.

Introduction. Let P, be the class of polynomials

p(z) = 3 au(p)*

k=0
of degree at most n with complex coefficients. We define, together with
D:={z]|z| <1},

Ipllo = max |p(2)] - and - pf—1a) = max [p(x)]

The famous inequalities of, respectively, Bernstein and Markov state
that for any p € P,

(1) 9o < nllpllp
and
(2) 19"l (= 1,1 < n?llpllj=1,1);
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while
/ < 2 .
(3) 1P [=1,) <m0 Orgjagn\p(cosoﬂ/n))\

is a far reaching extension of (2) obtained by Duffin and Schaeffer
[3] in 1941. We refer the reader to the recent book by Rahman and
Schmeisser [4] or to the survey paper by Bojanov [1] for historical
remarks and generalizations of these inequalities.

Let us consider a polynomial p(z) := > ,_,ax(p)z* in P, and an
associated polynomial P(z) := >"}'_, ax(p)Tk(z) where T}, denotes, for
each integer k > 0, the kth Chebyshev polynomial, i.e., Tj(cosf) =
cos(kd@) for any real number 6. We have

Pleost) = LR

and, applying (3) to P, we obtain the inequality

ewp/(ew) _ e—iep/(e—w)

p(eikﬂ'/n) + p(e—ikw/n)
(4) T

2

< n? max
0<k<n

valid for any real § and equivalent to the Duffin and Schaeffer inequality.

Given a nonnegative number ¢ and a polynomial p(z) := Y ,_ ax(p)z"

€ P,, we define

pe(z) == Z ktak(p)zk.
k=0

Clearly, p; € Py, po = p and pi11(z) = zpi(z) for ¢ > 0. Our main
result is the following

Theorem 1. For any integer 7 > 0 and polynomial p € Py,

p(eikﬂ'/n) + p(e—ikw/n)
2

‘619 . e—i9
o [mene

for all real 6.
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Our proof of Theorem 1 is completely independent of the known
proofs of (3). This Theorem 1 therefore contains (3) as a special case
(j =1, compare with (4)). It also follows easily from (5) that

p(ei(0+k¢ﬂ'/n)) 4 p(ei(efkrﬂ'/n))

(6) Ipj_1(e”) <n’ max

, 0 real,
0<k<n 2

for all p € P, and integer j > 1. It is therefore also clear that our
Theorem 1 contains an improvement of Bernstein’s inequality (1).

Some lemmas. Using the notation
o ag = an
]z::() aj = ?—F;a]——F?,
our auxiliary results are as follows:

Lemma 1. For any real o, n>2 and z € D

z el ) 1 1
(1 —zew)(1 — ze~i®) ]Z::O 2 1 — zetim/n * 1 — ze—iim/n

2(2" — cos(ngp))z" L
(1 —ze®)(1 — ze=#)(1 — 22n)’

where
(=1)7 cos(jm) — cos(nyp)
n  cos(jm/n) — cos(yp)

cnldr @) =

and
n
"

S lewliop) < .

Jj=0

Lemma 2. For any real ¢, n > 2 and z € D,
2(1 — " d, (], 1 1
(o) Sl (11
(1 — ze¥)(1 — ze~i¥) = 2 1 — zelim/n 1 — ze—im/n
22" (cos(n + 1) — cos(n — 1))
(1 —ze)(1 — ze~®)(1 — 227)
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where ! )
. —1)77" cos(n+1)p —cos(n — 1
dn(j, ) = s ( ')Qp . (p
. cos(jm/n) — cos(yp)
and i
" . nsin@
Z ldn (7, ¢)| < sin(m/?)"

We only prove Lemma 2 in details. Let us fix ¢ € R and consider

(1 —zcos)(1 — 22") — 2" (cos(n + 1)@ — cos(n — 1))
(1= ze¥)(1 — ze™™¥)

L,(z):=

together with
1< - ycos(n+1)p—rcos(n—1)p 1—22"
Ry(2) : > (!

4n it cos(jm/n) — cos(p) 1 — zeidm/n

It is readily seen that L, and R, are polynomials in Pa,_;. A simple
computation gives

Rw(e_ijﬂ/n) = L<p(e—ij7r/n) = —1)j 005(1;175'7:)) S_mc(oi)(gp)

at the 2n distinct points e=7™/" j = —n+1,... ,n. Clearly then the
polynomials L, and R, must coincide on the whole complex plane and
the identity of Lemma 2 follows. We further have with Z = ™

" 1
jz::() | cos jm/n — cos @]

" 2
_jgo |1—Zeij7f/””1—Z67ij7r/n|
1 2 1

“hnozet ; 1= Zeum/n|[1— Ze—um/n] " 11 22

n—1

n—1

1 1 1 1
P — —
IEE +j:1 T— Zeun/n2 1 Zean/nE 11 2
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2n—1 2n—1

1 —w;Z n
B ; 1—w;Z]> ; (1-w;Z)?  sin’

where {w; ?Zgl is the set of distinct 2nth roots of unity. It follows

that

S v 2|sin(ng)||sin(g)| _ 2n|sing|
ST daGop)l = : < A
; ‘— n|cosjm/n — cos | | sin nep|
j=0 Jj=0
This completes the proof of Lemma 2. i

A similar proof holds for Lemma 1. It is based on the fact that the
polynomials (in Pa,_1)
1 —eimPzn 1 — e~ingn

1—eivz 1—e ¥z

ly(2) =2

and

1 & . cos(jm) —cos(ngp) 1 — 22"
ro(2) = — Z -1)7

2n j=—n+1 cos(jm/n) — cos(p) 1 — elim/nz

also satisfy r,(e~97™/") = £,(e~¥™/"), j = —n+1,... ,n. A proof that

i "
7=0

can be found in [2]. o
We end this section by an application of Lemma 2.

Corollary 1. Let p € P, and p € R. Then

[p(e') + p(e™")]
sin(g)
sin(ney)

maxo<j<n [p(e7™/") + p(e=IT/")] if e2ne = 1.

| maxosjn [p(e97/7) + ple= /M) if e 1,
_ <i<
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We first define the Hadamard product of two analytic functions
f(z) =30 an(f)z" and g(z) = 327 an(g)2" by

frglz Z

Then for any p € P, and ¢ € R, we obtain from Lemma 2,

i —i 1 L
)+ = (= + 1t ) +0(0)

~ 2(1—zcos(p))
(7) T (1= zei?) (1 — ze— %)

*p(z)

" p(2ePTI) 4 op(ze= /0

=0

Therefore,

[t

n
() + ple™ ) < = 37 |du(, 0| [p(e7™/™) + p(e97/m)|
7=0

[\)

<|n sin(yp)

ijmw/n —ijmw/n
Sin(ng) | 0B lp(e”™™) + p(e s

0<j<n

and the result follows. It can also be checked that the above inequality
is strict when p € P,,, n > 2, p £ 0, % ¢ {wj}2” L

Proof of Theorem 1. Let ¢ € P, and ¢ € [0,7]. By Lemma 1, we
have

q(ze?) —q(ze™™?) z
ety — ety (1= ze) (1 — ze—i®)

_ Z// Cn(‘; 90) (q zjﬂ/n) + q(ze zj‘n'/n))

*q(z)

and in particular for z =1,

(8) % Z// (i ( ijw/n) —I—q(eiijﬂ/”).

e — e~
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Letting now ¢ = 0 in (8) we obtain

) B n 7 ) q(eljﬂ'/’ﬂ) + q(e—ijﬂ'/’n)
¢ (1) = Z cn (4, 0) 5 :
7=0
and more generally
. . "o eiletim/n)y oL g(eile—im/n)
(9) eztpq/(eup) — JZO Cn(], 0) Q( ) 5 Q( )

We shall prove the following statement by induction on k£ > 0: there
exist real numbers «; (), 7 = 0,1,...,n, such that for any p € P,
and n > 1,

—i6

(10) pi(e) — pr(e

il _ o—if 2 ’

n ijm/n —ijmw/n

§=0
and )" |a; x(0)] < n't* 6 € R. The truth of Theorem 1 is clearly a
consequence of (10). A proof of (10) for & = 0,1 has been given in [2];
clearly such a proof also follows from (8) and Lemma 1. Let us now
assume that (10) is valid for a certain integer k and any polynomial
q € P,. By (9), we obtain

- - n i(:|:9+j7'r/n))+ (ei(:l:efjfr/n))
11 +i0, 7 (Ei0) _ " (5,0 pk(e Dk .
(1) () =3 e (i) !

Now, since

Prr1(€”) = pryi(e™) _ e“pi(e’”) — e "pj(e")

)

T — P -
it follows from (11) that

prr1(€) — prga(e™?)
P ——

o pelefTinei®) — py(edT/mei)
=Y cali0) 2 — e 10)
j=0

" e*ijﬂ'/neie _ efijﬂ'/nefie
+ 3" e, 0) 2 et 3
=0

(e — e—0)
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Applying the induction hypothesis, we get

pk(eiz‘jw/neie) _ pk(eiijw/ne—ia)
eif _ o—if

ei(ijw/n+€ﬂ'/n)) 4 p(ei(ijﬂ/n—fﬂ/n))

- ;am(a) pl .

with >, [, (0)] < n'**. Finally, we have

Pk+1(€i9) - pk+1(6_i9)
e _ o—if

n

1
=32
=0

n

>

Jj=0

"

ei(j+‘€)7"/n) + p(e_i(j"l‘é)ﬂ'/n)
2

cn(5,0) ) i (6) p(
=0

<

"

i(j—f)Tr/n) 4 p(e—i(j—l)ﬂ'/n)

+ en(3,0) Y o i(6) ple 5
£=0

N | =

Clearly, the right-hand side of the above is a sum of the type

n eijw/n 4 efijﬂ‘/n
Zo‘j,k-i-l(a) P( ) 2p( ), Olj7k+1(0) real,
7=0

and obviously, since

n n n
"
Do lagre @ <D 1eaG 0D laer(0)] < m-nf = nkt2,
7=0 7=0 £=0

the final result follows. ]

We shall end this section with some remarks concerning the sharpness
of Theorem 1. Let us first point out that the inequality (5) becomes
an equality for certain choices of polynomials p; indeed

» i . i
pﬁ(el‘) —pj(e ) — ' max p(etFm/m) 4 p(e=tm/n)
el —e=i0 0<k<n 2
for any j = 0,1,2,..., 0 = 0 or # = 7 and p(z) = Kz" for some

complex constant K. As shown in [2], there are no other cases of
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equality if j = 1 but there are many other cases of equality if j = 0.
To discuss the cases of equality for j > 1 seems to be beyond the scope
of our method. Tt is not, however, difficult to establish that (compare
with (10)) for £ =0,1,2,...,

Z‘aj,k(9)|:nl+k < 0=0 or O=m
j=0

i.e., the inequality (5) is always strict if § # 0, 7 and the polynomial p

does not vanish identically. We also remark that the statement

p;i(2) —p;i(%) pi-1(2) —pj-1(2)
zZ—Zz zZ—Zz

<n R ZE(?D, ]21, pEPm

can be seen numerically to be false and therefore cannot yield a simpler
inductive proof of Theorem 1.

Let us notice that the definition of p;(2) := >";2, klak(p)2z" extends
to positive but not necessarily integer values of j and it is therefore
a legitimate (but apparently hard) question to ask whether or not
Theorem 1 holds for these values of j. In this context, let us mention
that the slightly weaker inequality

|pt|D < nt|p‘Da pE Pn

holds for all real ¢ > 1 but does not hold in general for 0 < ¢ < 1. This
unpublished result is due to Mohopatra, Qazi, and Rahman [4, Section
14.5].

Concluding remarks. It is possible to apply the identity of
Lemma 1 to Hadamard products of polynomials of degree greater than
n. For example, for p € P, 11, we have

pe) = p(e™™9) _ v Pl £ ple i)
T S M

j=0
+ 2011 (p) cos(nep)

and (9) gets transformed into

n
() =
0

j=
+ 20,11 (p)e! M HD)e,

"

ei(@+jﬂ/n) + p(ei“o*jﬂ-/n))

-
cn(J4,0) 3

(13)
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Therefore,
eigap/ ez’ga _ e—icpp/ e—icp 1 n 7 )
( 2) — ( ) =35 Cn(]70)
e —e ¥ 2 4
=0
p(eijﬂ'/neigo) _ p(eijﬂ/n€7i¢) p(efijﬂ'/neitp) _p(efijfr/nefigo)
x el — e~y + et — ey
sin(n + 1)¢
2 _~ @ J/7F
+ an+1(p) SlIl(gD)

and applying (12) to the polynomials p(e=77/"z),

€9 (¢%) — =9/ (=7%)

eir — iy
1 " ) ez(jJrZ)Tr/n + e*l(]ﬁﬂ@)ﬂ‘/’ﬂ
— 5 3 el 0 (b (M )
7,4=0
N p(ez’(j—é)w/n) —l—p(e_i(j_e)”/")
2
- Y ) sin(n+1)¢
+ 2a02(p) cosiing) D (G 0) (1) cos(in/m) +2ania(r) LT
§=0

We now use (13) with ¢ = 0 and p(z) = 2" ! and get

(n—1) = ¢ulj,0)(=1) cos(jm/n)

§=0
and finally, as in the proof of Theorem 1,

e'p'(e’?)— e"p'(e*¥) sin(n+1)p
0i% _ o—i = 2an+1(p) W-ﬁ-(n—l) cos(ny)
ijm/n —ijm/n
< n? max ple ) + ple )
0<j<n 2

Some more of our results can be similarly generalized. For example we
have, given p € P,11, ¢ € [0, 7],
p(e’?) —ple™*)
‘W — 2an41(p) cos(nyp)
p(eijﬂ/n) +p(67ij7r/n)
) .

< n max
0<j<n
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