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INVERTIBILITY AND TOPOLOGICAL STABLE RANK
FOR SEMI-CROSSED PRODUCT ALGEBRAS

JUSTIN R. PETERS

0. Introduction. The computation of invariants for C∗-algebras
such as the K-groups and topological stable rank, which has attracted so
much attention in recent years, can be fruitful for nonselfadjoint operator
algebras as well, though relatively little has been done in that direction.
In the present discussion we will compute these invariants for a special
class of nonselfadjoint, norm closed operator algebras, which we have
called semi-crossed products [4]. These algebras include the subalgebras
of C∗ crossed products of C(X) by a homeomorphism of X which are
generated by the nonnegative powers of the homeomorphism.

Denote the semi-crossed product of C(X) with respect to a homeo-
morhpism ϕ by Z +×ϕC(X). As the invertible elements are never dense,
the topological stable rank is greater than one, and we show it is in fact
equal to two in case X is zero or one dimensional. (In particular, we show
that the right and left stable ranks coincide, which is not automatic since
the algebra is not involutive.) On the other hand, the K-theory for these
algebras is “contractible” to K-theory of C(X).

As the class of algebras we will be discussing is somewhat more general
than the class of those algebras which arise naturally as subalgebras of
C∗-crossed products, we will need some preliminaries. By a dynamical
system we mean a pair (X,ϕ) where X is a compact Hausdorff space
and ϕ : X → X is a continuous surjection. Denote by K(Z +, C(X))
the algebra over C which is the free product of C(X) with a single
operator, U together with the relations fU = Uf ◦ ϕ, f ∈ C(X). A
typical F ∈ K(Z +, C(X)) thus has the form of a polynomial, F =
f0 + Uf1 + · · · + Unfn where n ∈ Z +, f0, . . . , fn ∈ C(X). For x ∈ X
define a representation of K(Z +, C(X)) on �+2 by means of

Πx(U)(ξ0, ξ1, ξ2, . . . ) = (0, ξ0, ξ1, ξ2, . . . )

(the unilateral shift), and

Πx(f)(ξ0, ξ1, ξ2, . . . ) = (f(x)ξ0, f ◦ ϕ(x)ξ1, f ◦ ϕ2(x)ξ2, . . . ), f ∈ C(X).

For F =
∑n

0 U
kfk, set Πx(F ) =

∑n
0 Πx(U)kΠx(fk). One checks

that this defines a representation of K(Z +, C(X)). Obtain a norm on
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K(Z +, C(X)) by ||F || = supx∈X ||Πx(F )||. The semi-crossed product
Z + ×ϕ C(X) is the completion of K(Z +, C(X)) in this norm. Alter-
natively, the semi-crossed product could have been defined directly as a
norm-closed algebra of operators in Hilbert space.

As we will see in Corollary 0.3, to each F in Z + ×ϕ C(X) we may
associate a unique Fourier series, F ∼ ∑∞

0 Unfn. Just as with ordinary
Fourier series, the partial sums of the Fourier series of F may not converge
in norm to F . (In fact, the disk algebra can be realized as a semi-crossed
product by taking X to be a singleton and ϕ the identity map.)

Define a one-parameter group τt of automorphisms of K(Z +, C(X))
by τt(

∑N
n=0 U

nfn) =
∑N

n=0 U
neintfn.

LEMMA 0.1. τt, t ∈ R , is isometric, and hence extends to an isometric
automorphism of the semi-crossed product Z + ×ϕ C(X).

PROOF. Let Λt : �+2 → �+2 be a one-parameter family of Hilbert
space isomorphisms given by Λt((ξn)∞n=0 = (e−intξn)∞n=0. Let F =∑N

n=0 U
nfn ∈ K(Z +, C(X)), x ∈ X, and observe

Πx(τt(F ))(ξn)∞n=0 = Πx

( N∑
k=0

Ukeiktfk

)
(ξn)∞n=0

= (f0(x)ξ0, f0 ◦ ϕ(x)ξ1 + eitf1(x)ξ0,
f0 ◦ ϕ2(x)ξ2 + eitf1 ◦ ϕ(x)ξ1 + e2itf2(x)ξ0, . . . ).

Consequently,

||Πx(τt(F ))(ξn)2n=0||2
= |f0(x)ξ0|2 + |f0 ◦ ϕ(x)e−itξ1 + f1(x)ξ0|2

|f0 ◦ ϕ2(x)e−2itξ2 + f1 ◦ ϕ(x)e−itξ1 + f2(x)ξ0|2
+ . . .

= ||Πx(F )Λt((ξn)∞n=0)||2.

Thus ||Πx(τt(F ))|| = ||Πx(F )||, x ∈ X, and ||τt(F )|| = ||F ||. Since τt is
isometric, it extends to an automorphism of Z + ×ϕ C(X), also denoted
τt.



SEMI-CROSSED PRODUCT ALGEBRAS 513

LEMMA 0.2. The automorphism group t → τt is continuous in the
topology of pointwise-norm convergence on Z + ×ϕ C(X).

PROOF. Let F ∈ Z +×ϕC(X), ε > 0 be given. Let G ∈ K(Z +, C(X))
with ||F − G|| < ε/3. Since G has only finitely many nonzero Fourier
coefficients, t �→ τt(G) is norm continuous, so there is δ > 0 such that
|t− t0| < δ implies ||τt(G) − τt0(G)|| < ε/3. So if |t− t0| < δ,

||τt(F ) − τt0(F )||
≤ ||τt(F −G)|| + ||τt(G) − τt0(G)|| + ||τt0(G− F )||
<
ε

3
+
ε

3
+
ε

3
= ε

where the first and third inequalities follow from 0.1.

COROLLARY 0.3. For n = 0, 1, . . . , there is a linear mapping Pn :
Z + ×ϕ C(X) → C(X) satisfying

(i) ||Pn(F )|| ≤ ||F ||, F ∈ Z + ×ϕ C(X)

(ii) Pn(fF ) = f ◦ ϕnPn(F ),

and
Pn(Ff) = Pn(F )f, F ∈ Z + ×ϕ C(X), f ∈ C(X);

(iii) Pn

( N∑
k=0

Ukfk

)
=

{
fn, 0 ≤ n ≤ N

0, n > N
.

PROOF. Define Pn(F ) by UnPn(F ) =
∫ 2π

0
e−intτt(F ) dt

2π . Thus

||Pn(F )|| ≤
∣∣∣∣∣∣

∫ 2π

0

e−intτt(F )
dt

2π

∣∣∣∣∣∣
≤ ||F ||.
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Property (iii) is a straightforward calculation and (ii) follows immediately
for F in the dense subalgebraK(Z +, C(X)), but then by continuity holds
for F ∈ Z + ×ϕ C(X).

In §I.1 we show that the invertible elements in a semi-crossed product
are not dense. Next we introduce a notion of local invertibility, which
could also be done in the larger context of triangular operator algebras.
Here the main result is that in the case of a free action, local invertibility
of an element F is equivalent to saying its zeroth Fourier coefficient is
nowhere vanishing, which holds iff F belongs to no maximal ideal. In §II
the topological stable rank of Z + ×ϕC(X) is shown to equal two in case
ϕ is a homeomorphism and the invertible elements of C(X) are dense.
Finally §III begins with a discussion of summability theory for Fourier
series, which parallels the classical theory, and uses this to show that the
study of the K-theory of the semi-crossed product Z + ×ϕ C(X) can be
reduced to that of C(X). The author acknowledges a useful discussion
with Y.T. Poon.

I. Invertibility and local invertibility.

PROPOSITION I.1. The invertible elements in the semi-crossed product
U = Z +×ϕC(X) are not dense. In particular, if F ∈ U, ||F −U || < 1/2,
then F is not invertible.

PROOF. Suppose to the contrary that F is invertible and let G = F−1.

Now ||F − U || < 1/2 implies

(∗) ||FG− UG|| ≤ ||F − U ||||G||,

or
||1 − UG|| < 1

2
||G||.

Since the norm of any element of U dominates the norms of its Fourier
coefficients, and since the zeroth Fourier coefficient of 1 − UG is 1, it
follows from (∗) that 1 < 1

2 ||G||, or

(∗∗) ||G|| > 2.
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On the other hand, since U is an isometry, ||UG|| = ||G||, and so

||1 − UG|| ≥ | ||1|| − ||UG|| | = |1 − ||G|| | = ||G|| − 1.

Therefore it also follows from (∗) that

||G|| − 1 <
1
2
||G||,

or
||G|| < 2,

contradicting (∗∗).

PROPOSITION I.2. An element of U is left invertible if and only if it is
right invertible.

PROOF. Let F ∈ U be left invertible, and let G ∈ U satisfy GF = 1.
Since

1 = P0(GF ) = P0(G)P0(F ) = P0(FG),

it follows that the Fourier series of H = FG has the form 1+
∑∞

n=1 U
nhn.

As (H − 1)H = (FG − 1)FG = F (GF )G − FG = 0, we obtain h1 =
P1[(H − 1)H] = 0. Continuing inductively, suppose h1 = · · · = hn = 0;
then 0 = Pn+1[(H − 1)H] = hn+1. We conclude H = 1, so that F is
invertible. A parallel argument shows that right invertibility implies left
invertibility.

I.3. Though the invertible elements of U fail to be dense, one can ask if
they are nonetheless dense “locally” in some sense. The motivation for
the following definition comes from commutative Banach algebras.

Definition. An element F ∈ Z + ×ϕ C(X) will be called locally
left invertible at x0 ∈ X if there is a neighborhood V of x0 and an
invertible G ∈ Z + ×ϕ C(X) such that, for some u ∈ C(X) satisfying
u|V ≡ 1, Fu = Gu. We will say that F is locally left invertible if it is
locally left invertible at every point of X.

Let U = Z + ×ϕ C(X).
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LEMMA I.4. Let u ∈ C(X), 0 ≤ u ≤ 1, u ≡ 1 in a neighborhood of
x0 ∈ X. If F ∈ U, ||Fu− u|| < 1, then F is locally left invertible at x0.

PROOF. Let {u = u1, u2, . . . , um} be a partition of unity on X, and set
F1 = Fu1 + u2 + · · · + um. Then ||F1 − 1|| = ||Fu − u|| < 1, so F1 is
invertible. Let v ∈ C(X), 0 ≤ v ≤ 1, v ≡ 1 in some neighborhood of x0

and such that supp(v) ⊂ {x : u(x) = 1}. Then Fv = Fuv = F1v, so F
is locally left invertible at x0.

COROLLARY I.5. Let F ∈ U be locally left invertible at x0, u ∈
C(X), 0 ≤ u ≤ 1, u ≡ 1 in a neighborhood of x0, and let G ∈ U be
invertible with Fu = Gu. If F ′ ∈ U satisfies

||Fu− F ′u|| < (||G−1||)−1,

then F ′ is locally left invertible at x0.

PROOF. Since G−1Fu = u,

||u−G−1F ′u|| = ||G−1Fu−G−1F ′u||
≤ ||G−1|| ||Fu− F ′u||
< 1,

so, by the lemma, G−1F ′ is locally left invertible at x0, Thus there is a
v ∈ C(X), 0 ≤ v ≤ 1, v ≡ 1 in a neighborhood of x0, and an invertible
H ∈ U such that G−1F ′v = Hv. Then F ′v = GHv, and F ′ is locally left
invertible at x0 since GH is invertible.

LEMMA I.6. Let (X,ϕ) be a free dynamical system. Let F ∈
K(Z +, C(X)), F =

∑N
n=0 U

nfn, and suppose f0 ≡ 1 in a neighborhood
of x0 ∈ X. Then F is locally left invertible at x0. Furthermore, there
exist v ∈ C(X), 0 ≤ v ≤ 1, v ≡ 1 in a neighborhood of x0, and G ∈ U
invertible such that Fv = Gv and ||G−1|| ≤ 2 + ||F ||.

PROOF. Since ϕ acts freely, there is a neighborhood W0 of x0 such that
W0, ϕ

−1(W0), . . . , ϕ−N (W0) are pairwise disjoint. Let u ∈ C(X), 0 ≤
u ≤ 1, u ≡ 1 in a neighborhood of x0, and supp(u) ⊂W0∩{x : f0(x) = 1}.
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Setting gk = fku, 1 ≤ k ≤ N , we see that
∑N

k=1 U
kgk is rank two

nilpotent, since (Ukgk)(U �g�) = Uk+�gk ◦ϕ�g� = 0, gk ◦ϕ�g� is supported
on ϕ−�(W0) ∩ W0 = ∅. Thus exp(

∑N
1 Ukgk) = 1 +

∑N
1 Ukgk. Set

G = 1 +
∑N

1 Ukgk ∈ U−1; then

G−1 = exp
(
−

N∑
1

Ukgk

)

= 1 −
N∑
1

Ukgk,

so

||G−1|| ≤ 1 +
∣∣∣
∣∣∣

N∑
1

Ukfku
∣∣∣
∣∣∣

≤ 1 + ||(F − 1)u||
≤ 2 + ||F ||.

REMARK I.7. Let f ∈ C(X), f(x0) 
= 0. Then an element F ∈ U is
locally left invertible at x0 iff Ff is locally left invertible at x0. The
proof is straightforward.

PROPOSITION I.8. Let (X,ϕ) be free. Then F ∈ U is locally left invert-
ible at x0 iff P0(F ), the zeroth Fourier coefficient, satisfies P0(F )(x0) 
=
0.

PROOF. The map Ex0 : U → C , F �→ Ex0(F ) = P0(F )(x0) is a nonzero
algebra homomorphism, and in fact every maximal ideal of U has the form
ker(Ex) for some x ∈ X [4, IV.9]. Suppose F is locally left invertible at
x0, and let u ∈ C(X) be ≡ 1 in a neighborhood of x0 such that Fu = Gu
for some invertible G ∈ U. Then

Ex0(Fu) = Ex0(Gu),

whence
Ex0(F )Ex0(u) = Ex0(G)Ex0(u),

or
Ex0(F ) = Ex0(G) 
= 0,
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since Ex0(u) = u(x0) = 1 and G cannot by virtue of its invertibility
belong to any maximal ideal. Thus the condition is necessary.

Now assume P0(F )(x0) 
= 0; replacing F by Fg, where g = P0(F )−1

in some neighborhood of x0, does not affect local left invertibility by
I.7, so we may assume P0(F ) ≡ 1 in some neighborhood of x0. Let
F ′ ∈ K(Z +, C(X)) with ||F ′ − F || < 1/(3 + ||F ||), and we may assume
that P0(F ′) ≡ 1 in some neighborhood of x0. Then ||F ′ − F || <
1/(2 + ||F ′||) < ||G−1||−1, where G is invertible with F ′v = Gv for some
v ∈ C(X), v ≡ 1 in a neighborhood of x0, as in Lemma I.6. Consequently,
by Corollary I.5, F is locally invertible at x0.

COROLLARY I.9. Let (X,ϕ) be free. Then F is locally left invertible iff
P0(F ), the zeroth Fourier coefficient, is invertible in C(X).

Suppose now that ϕ is a homeomorphism. Then every F ∈K(Z +, C(X))
has a unique expression of the form F = f0 + f1U + · · · + fNU

N . Also,
each F ∈ U = Z +×ϕC(X) has a unique Fourier series

∑∞
0 fnU

n. Thus,
everything that has been said about local left invertibility could be said
about local right invertibility; so from the “right” version of I.9 we can
conclude

COROLLARY I.10. Let ϕ be a freely acting homeomorphism. Then
F ∈ U is locally left invertible iff F is locally right invertible iff F does
not belong to any maximal two sided ideal of U.

REMARK I.11. Note that, in view of the above Corollary, one can speak
of the “locally invertible” elements. It follows that the locally invertible
elements in U will be dense iff the invertible elements in C(X) are dense.
In any case, there are always locally invertible elements which are not
invertible, e.g., F = 1/3 + U .

REMARK I.12. The situation in case (X,ϕ) has periodic points is not
clear. We can, however, show the following: If x0 = ϕ(x0) is a fixed
point, then the locally invertible elements of Z + ×ϕC(X) are not dense.
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PROOF. There is a continuous homomorphism ψ : Z + ×ϕ C(X) →
A(D) (the disk algebra), given as follows: if F ∈ Z + ×ϕ C(X) has
Fourier series

∑∞
n=0 U

nfn, then ψ(F ) = h ∈ A(D) has Fourier series∑∞
n=0 anz

n, an = fn(x0). (The fact that this is a homomorphism uses
ϕ(x0) = x0.) If ϕ−1(x0) = {x0}, the homomorphism is isometric and
hence onto [5, Corollary IV.1], but in any case the image is dense
as it contains the polynomials, which is all that is needed. Now if
F ∈ Z + ×ϕ C(X) has local inverse G near x0, so Fu = Gu for some
u ∈ C(X) with u(x0) = 1; then since ψ(u) = 1, we have ψ(F ) = ψ(G)
so ψ(F ) is invertible in A(D). Now if the locally invertible elements in
Z + ×ϕ C(X) were dense, that would imply in particular that, since
h(z) = z ∈ imageψ, every neighborhood of h(z) contains invertible
elements of A(D), which contradicts Hurwitz’s Theorem.

If x0 has least period k0 > 1, then there is a homomorphism of
Z + ×ϕ C(X) into a k0 × k0 matrix algebra of analytic functions [4].

The question of local invertibility in Z +×ϕC(X) seems to be related to
the question of topological stable rank in this matrix algebra of analytic
functions.

II. Topological stable rank. Let U be a topological ring with
identity, and denote by Rgn(U) the set of n-tuples of elements of U
which generate U as a right ideal: Rgn(U) = {(Fi)n

i=1 ∈ Un: there
exist G1, . . . , Gn ∈ U such that

∑n
i=1 FiGi = 1}. Recall that the right

topological stable rank of U, denoted rtsr(U), is the least integer n such
that Rgn(U) is dense in Un (for the product topology). Left topological
stable rank is defined analogously. If left and right topological stable
rank coincide, their common value is called the topological stable rank,
tsr(U).

It seems to be unknown for Banach algebras in general (without
involution) whether left and right topological stable rank must coincide.
We will show that if U = Z + ×ϕ C(X) where ϕ is a homeomorphism of
X and tsr(C(X)) = 1, then ltsr(U) = rtsr(U) = 2.

We will need some notation. Let [F1, F2] ∈ U2; if one of F1, F2 has
infinitely many nonzero terms in its Fourier series, define �([F1, F2]), the
length of [F1, F2], to be +∞. If Fi =

∑ni

k=0 U
kf

(i)
k , ni <∞, i = 1, 2, set

�([F1, F2]) = n1 + n2.
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GL(2,U) is the group of 2 by 2 invertible matrices with entries in U.
Note that, for any F ∈ U, the matrix E =

[
1
F

0
1

]
belongs to GL(2,U);

indeed, E−1 =
[

1
−F

0
1

]
.

LEMMA II.1. Let Fi =
∑ni

k=0 U
kf

(i)
K , and assume f (i)

ni is invertible in
C(X), i = 1, 2. If n1+n2 = �([F1, F2]) > 0, then there is an E ∈ GL(2,U)
such that

�([F1, F2]E) < �([F1, F2]).

PROOF. Let n1 = n, n2 = m and suppose 0 ≤ m ≤ n, where one of the
two inequalities is strict. If E is taken to be

E =
[

1 0
−Un−mf

(1)
n (f (2)

m ◦ ϕ(n−m))−1 1

]

one verifies by calculation that

�([F1, F2]E) ≤ �([F1, F2]) − 1.

If n < m, the result follows by a similar calculation.

PROPOSITION II.2. Assume that tsr(C(X)) = 1. Then tsr(U) ≤ 2.

PROOF. Let A1, A2 ∈ U and ε > 0 be given. If we can show that there
exist Hi, Gi ∈ U, ||Hi−Ai|| < ε, i = 1, 2 with H1G1 +H2G2 = 1, this will
imply that rtsr(U) is at most two. Let B ε = {[H1, H2] ∈ U2 : ||Hi−Ai|| <
ε}, and set �0 = min{�([H1, H2]T ) : [H1, H2] ∈ B ε, T ∈ GL(2,U)}.
Observe that �0 is finite, since the elements of U with finite Fourier series
are dense. In fact, we claim �0 = 0. For suppose �0 > 0, and let
[H1, H2] ∈ B ε and T ∈ GL(2,U) be such that �([H1, H2]T ) = �0. Set
[F1, F2] = [H1, H2]T . Since the map

U2 → U2, [K1,K2] → [K1,K2]T

is a homeomorphism, BεT is open. Hence there exists δ > 0 such
that if ||F ′

i − Fi|| < δ, i = 1, 2, [F ′
1, F

′
2] ∈ B εT . If Fi =

∑ni

k=0 U
kf

(i)
k ,
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let F ′
i =

∑ni−1
k=0 Ukf

(i)
k + Unif (i), where f (i) is invertible in C(X) and

||f (i) − f
(i)
ni || < δ, i = 1, 2. This is possible since the invertible elements

of C(X) are dense. Now �([F ′
1, F

′
2]) = �([F1, F2]) > 0. By the lemma,

there is an E ∈ GL(2,U) such that �([F ′
1, F

′
2]E) < �([F ′

1, F
′
2]). But as

TE ∈ GL(2,U),this contradicts the minimality of �0, and hence �0 must
be zero.

Thus there exist [H1, H2] ∈ B ε and T ∈ GL(2,U) so that [H1, H2] =
[f (1), f (2)] ∈ C(X)2. As above, we may further assume that f (1) and
f (2) are invertible. Let

[
G1
G2

]
= T

[
(f(1))−1

0

]
. Then

H1G1 +H2G2 = [H1, H2]
[G1

G2

]
= [H1, H2]T

[ (f (1))−1

0

]

= [f (1), f (2)]
[ (f (1))−1

0

]
= 1.

COROLLARY II.3. If tsr(C(X)) = 1, then tsr(U ) = 2.

PROOF. By the Proposition, rtsr(U ) ≤ 2, whereas, by I.1 and I.2,
rtsr(U ) > 1. On the other hand, by a left version of the above
Proposition, ltsr(U ) ≤ 2, and consequently, by I.1 and I.2, ltsr(U ) = 2.

Remarks II.4. (i) As mentioned in the introduction, the disk algebra
is a semi-crossed product Z +×ϕC(X) where X is a one point space and
ϕ the identity map. The fact that the disk algebra has topological stable
rank 2, which follows from the theorem, was already well known [6].

(ii) Does tsr(Z + ×ϕ C(X)) = 2 for an arbitrary continuous surjection
ϕ on a compact Hausdorff space X, assuming tsr(C(X)) = 1?

(iii) The topological stable rank of the C∗-algebra C∗(S), where S is
the unilateral shift of multiplicity one, is determined from the short exact
sequence

0 → K → C∗(S) → C(T ) → 0

(K the compact operators on L2(T )) [6; Example 4.13]. Let ϕ be a
minimal action such as irrational translation on the torus. Now the
semi-crossed product Z + ×ϕ C(T ) can be represented on H2(T ) such
that U is mapped to a unilateral shift of multiplicity one. (Indeed,
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any representation Πt(t ∈ T ) is the restriction to Z + ×ϕ C(T ) of a
covariant representation of the C∗-crossed product Z ×ϕC(T ), and such
a representation is isometric. See [4, II.4]). There is also here a short
exact sequence

0 → UU → U → C(T ) → 0

(U = Z + ×ϕ C(T )), and we know that

max{rtsr(UU ), rtsr(C(T )) + 1} ≥ rtsr(U )

[6, 4.12]. However as we have no a priori information concerning
rtsr(UU ), the computation of tsr(U ) cannot imitate that of C∗(S).

III. Summability and K-theory. Let I denote either the natural
numbers N or else the interval [0, 1) with the usual ordering; by limr

we will mean the limit as r ↑ ∞ if I = N or else the limit as r ↑ 1 if
I = [0, 1). Let {Kr}r∈I be a family of L1-kernels on [−π, π], and, for
0 < δ < π, set μr(δ) = supδ≤|t|≤π{|Kr(t)|}. Consider the conditions

(i) 1
π

∫ π

−π
Kr(t)dt = 1;

(ii) Kr(t) ≥ 0, −π ≤ t ≤ π;

(iii) limr μr(δ) = 0 for each fixed δ, 0 < δ < π.

Let σr(x;F ) = 1
π

∫ π

−π
τx+t(F )Kr(t)dt.

PROPOSITION III.1. Suppose the family of kernels {Kr}r∈I satisfies
conditions (i), (ii) and (iii). Then

lim
r
σr(x;F ) = τx(F )

for every x ∈ [−π, π] and F ∈ Z + ×ϕ C(X).

PROOF. The proof is similar to the classical one for Fourier Series [8;
Theorem 2.21]; for completeness, we reproduce it here. By (i),

σr(x;F ) − τx(F ) =
1
π

∫ π

−π

(τx+t(F ) − τx(F ))Kr(t)dt.

Thus, by (ii),

||σr(x;F ) − τx(F )|| ≤ 1
π

∫ π

−π

||τx+t(F ) − τx(F )||Kr(t)dt.
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Now ||τx+t(F ) − τx(F )|| = ||τx(τt(F ) − (F ))||
= ||τt(F ) − F ||

since, by 0.1, τx is isometric. Thus,

||σr(x;F ) − τx(F ) ≤ 1
π

∫
|t|≤δ

||τt(F ) − F ||Kr(t)δdt

+
1
π

∫
δ≤t≤π

||τt(F ) − F ||Kr(t)dt.

By Lemma 0.2, τt is pointwise-norm continuous, so, given ε > 0, there
is a δ > 0 such that, for |t| < δ, ||τt(F ) − F || < ε. So by (i), the first
term on the right is less than ε. By (iii) there is an r0 ∈ I such that, for
r ≥ r0 and |t| ≥ δ, 0 ≤ Kr(t) < ε/2, from which the second term of the
right is less than ε.

REMARK III.2. For any dynamical system (X,ϕ) (X compact), the
semi-crossed product contains the disk algebra as a closed subalgebra;
this is the set of elements F whose Fourier series are constant func-
tions. Since, for functions in the disk algebra, the partial sums of the
Fourier series may not converge, it is necessary to consider questions of
summability in Z + ×ϕ C(X). Just as in the classical situation, taking
Kn(t) = 2

n+1

{ sin(n+1)t/2
2 sin t/2

}2 (Fejér kernel) we obtain from III.1 that the
Fourier series of F ∈ Z + ×ϕ C(X) is Cesàro summable to F . Also, and
more importantly for what follows, taking Kr(t) = 1

2

(
1−r2

1−2r cos t+r2

)
, r ∈

[0, 1) (Poisson kernel), III.1 yields that the Fourier series of F is Abel
summable to F .

Now if F has Fourier series
∑∞

n=0 U
nfn, then

σr(0;F ) =
1
π

∫ π

−π

τt(F )Kr(t) dt

has Fourier series
∑∞

n=0 U
nrnfn. Denote, by Fr, σr(0;F ), where Kr

is the Poisson kernel, 0 ≤ r < 1, and set F1 = F . We can express
Fr =

∑∞
n=0 U

nrnfn, r < 1, since the series is properly convergent in the
sense that the partial sums converge.

Definition III.3. [2; 4.2] Let U be a Banach Algebra and f, g ∈ U .
A path in U joining f with g is a mapping [0, 1] → U , r �→ fr, which is
norm continuous and satisfies f0 = f, f1 = g.
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LEMMA III.4. Let U = Z + ×ϕ C(X).

(i) If F ∈ U , {Fr}0≤r≤1 is a path joining P0(F ) = f0 with F .

(ii) If F ∈ U is an idempotent, so is Fr, r ∈ [0, 1].

(iii) If F,G ∈ U , (FG)r = FrGr.

(iv) If F ∈ U is invertible with inverse G, then Fr is invertible with
inverse Gr, r ∈ [0, 1].

PROOF. The map r �→ Fr is clearly continuous at every r, 0 ≤ r < 1.
It is continuous at r = 1 by III.1.

Next, F ∈ U is an idempotent iff Pn(F 2) = Pn(F ), n = 0, 1, 2, . . . .
If F has Fourier series

∑∞
n=0 U

nfn, this is expressed by the equation∑n
k=0 fn−k ◦ϕkfk = fn, n = 0, 1, . . . . Replacing fn by rnfn for all n, the

above set of equations are still satisfied. Thus, Pn(F 2
r ) = Pn(Fr), so Fr

is idempotent.

That (FG)r = FrGr follows from comparing Fourier series, and the
statement (iv) concerning inverses is an immediate consequence of this.

Let Mn denote the n by n complex matrices, and Mn(U ) = Mn ⊗U ,U
a Banach Algebra.

LEMMA III.5. Let U = Z + ×ϕ C(X). F = (Fij). Let F r = ((Fr)ij).

(i) If F ∈ Mn(U ), F r is a path in Mn(U ) joining f with F , where
f = (P0(Fij)) ∈Mn(C(X)).

(ii) If F ∈Mn(U ) is an idempotent, so is F r, 0 ≤ r < 1.

(iii) If F ,G ∈Mn(U ), (F G)r = F rGr.

(iv) If F ∈ Mn(U ) is invertible with inverse G, then F r is invertible
with inverse Gr.

The proof is similar to that of III.4.

If m < n,Mm(U ) is imbedded in Mn(U ) as the upper left hand
corner, and M∞(U ) is the inductive limit of {Mn(U )}. Two idempotents
(respectively, invertible elements) in a Banach algebra are said to be
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homotopic if there is a path consisting of idempotents (respectively,
invertible elements) joining them. This is denoted by e ∼h f .

LEMMA III.6. Let U = Z + ×ϕ C(X). Two idempotents (respectively,
invertible elements) f, g ∈ Mn(C(X)) are homotopic in Mn(C(X)) iff
they are homotopic in Mn(U ), 1 ≤ n ≤ ∞.

PROOF. Let f, g be idempotents in Mn(C(X)). Clearly, if f, g are
homotopic in Mn(C(X)) they are homotopic in Mn(U ). Suppose they
are homotopic as elements of Mn(U ), and let ψ(t), 0 ≤ t ≤ 1, be a path of
idempotents inMn(U ) joining them. Then ψ(t)r is a path of idempotents
in Mn(U ) joining f = ψ(0)r with g = ψ(1)r for every r, 0 ≤ r ≤ 1. In
particular, setting r = 0 we obtain a path in Mn(C(X)). If f, g are
invertible, the proof is analogous.

PROPOSITION III.7. K0(Z + ×ϕ C(X)) � K0(C(X)).

PROOF. By Lemmas III.5 and III.6, every equivalence class of idempo-
tents in M∞(C(X)) is contained in a unique equivalence class of idem-
potents in M∞(U ). The conclusion follows from the definition of K0.

If U is a Banach algebra with identity, let U−1 denote the group of
invertible elements of U , and U−1

0 = expU the connected component of
the identity in U−1 [7; Proposition 4.6]. Let H1(X,Z) be as in [7].

COROLLARY III.8. Let U = Z + ×ϕ C(X) and F ∈ U−1. Then
F has a factorization F = Gf0, where G ∈ U−1

0 and f0 ∈ C(X)−1.
Hence U−1 = U−1

0 C(X)−1. Consequently H1(X,Z ) is isomorphic with
U−1/U−1

0 .

PROOF. If F ∈ U−1, then f0 = P0(F ) ∈ C(X)−1. Set G = Ff−1
0 ;

G has Fourier series 1 +
∑∞

n=1 U
ngn, gn = fnf

−1
0 , n ≥ 1. By III.4,

{Gr}0≤r≤1 is a path in U−1 connecting 1 with G, so G ∈ U−1
0 .
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Next observe C(X)−1
0 = C(X)−1 ∩ U 0; indeed, this follows from

Lemma III.6, n = 1. By [7; Proposition 3.9], H1(X,Z ) � C(X)−1/
C(X)−1

0 . Finally,

C(X)−1/C(X)−1
0 = C(X)−1/C(X)−1 ∩ U−1

0

� U−1
0 C(X)−1/U−1

0

= U−1/U−1
0 ,

the final equality being the factorization result, and the isomorphism
preceding it the second isomorphism theorem for groups.

COROLLARY III.9. GL(n,U )/GL(n,U )0 � GL(n,C(X))/GL(n,
C(X))0, 1 ≤ n ≤ ∞. Consequently, K1(U ) is isomorphic with
K1(C(X)).

PROOF. Repeat the above argument, replacing C(X)−1,U−1 by GL(n,
C(X)),GL(n,U ) respectively.
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