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PROBLEMS ABOUT REFLEXIVE ALGEBRAS

KENNETH R. DAVIDSON

The content of this paper was the subject of a talk given at the 1987
GPOTS meeting in Lawrence, Kansas. It was our purpose to try to
survey some of the most important problems extant regarding reflexive
algebras with a commutative invariant subspace lattice. In most cases,
the motivation for these problems is based on a nice theory for nest
algebras. However, the desired generalizations rarely turn out to be
trivial; and often are not true in full generality.

We begin with two problems about nest algebras. Then we will
briefly describe commutative subspace lattices (CSL’s) and give a few
examples before considering the remaining eight problems. Recall that
anest NV is a family of closed subspaces of a Hilbert space containing {0}
and H which is totally ordered by inclusion and is complete with respect
to intersection and closed span. The corresponding nest algebra 7 (N)
is the algebra of all operators leaving each element of A invariant. The
simplest example is given by taking an orthonormal basis {e,,n > 1}
and forming P,, = span{ex,k < n} forn > 0. Then P = {P,,n > 0; H}
is a nest. Even for this simplest of all nests there is an interesting open
problem.

PROBLEM 1. Is T(P)~! connected?

It is surprising that such a simple sounding problem should remain
open in this context. It is conjectured by many that the invertibles
in 7(P) are not connected. One reason is based on an analogy with
function theory. The algebra H* of bounded analytic functions on
the unit disc is a nonselfadjoint subalgebra of L°° which is analogous
to T(P) in B(H) in a number of ways. The set of Toeplitz operators
{Ty : h € H®} is a weak* closed abelian subalgebra of 7(P) equal to
the intersection of 7 (P) with the set of all Toeplitz operators. But the
invertibles in H are not connected. Indeed, as in any commutative
Banach algebra, the connected component of the identity is the set of
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exponentials {e” : h € H>®}. It is easy to construct an invertible
H® function which has an unbounded logarithm and hence is not
connectable to 1. For example, take

1+z2
1—2

o
h(z) = = log
™

This is a conformal map of the disc onto {z : |Rez| < 1} such that
h(0) = 0. Hence e" is invertible in H>°, but has no bounded analytic
logarithm. Therefore, T, belongs to 7(P) ! and cannot be connected
to T in T (P) ! N {Toeplitz operators}.

Another approach uses finite dimensional matrices. There exist
nilpotent k x k matrices Vj such that limg ., ||Vk|| = oo and
limg o0 ||V — Re Vi || = 0. Put Vi in strictly upper triangular form,
and set Ty = e, Then T = Y,., ®T} is invertible in T(P),
and in fact is a small compact perturbation of the unitary operator
U =Y @e®eVe (which is not in 7(P)). The spectrum of ReV} can-
not have any big gaps, so o(U) is the whole unit circle; and o.(T) is
thus the unit circle. If T were connected to I in 7(P)~!, then each T}
is connected to I by a path Tj; with a uniform bound on (i) ||T% I,
(i) HTk_tlH, and (iii) the arc length of ¢ — T} ;. There are easy paths
which control two of these. For example, the straight line (1 —¢)7} +tI
controls (i) and (iii). A path suggested by Vern Paulsen is given by

Ts = (tijsj_i), 0 <s< 1.

The map taking an upper triangular matrix T to T is a contractive
homomorphism. Thus it controls both invertibility and the norm of
||Ts]| and ||T571||. Unfortunately, it generally “blows up” in length as
the dimension k increases.

A third approach involves K-theory. The group K (7 (P)) measures
the connectedness of (7(P) ® M,)"! as n increases. If this group is
nonzero, then 7(P(™)~1 fails to be connected for some n. Almost
certainly, n = 1 would suffice. This group has not been computed.
However David Pitts [37] has computed K of every nest algebra to be
equal to Ky of the atomic part of the diagonal algebra. In particular,
Ko(T(P)) = Ko(£>°). The diagonal of a nest algebra is a von Neumann
algebra. Since the invertibles in a von Neumann algebra are always
connected, it follows easily that they have trivial K7 groups. So it is
possible that K; will not be sufficient to solve this problem.
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PROBLEM 2. Is every (separably acting) maximal nest equal to the
invariant subspace lattice of a single operator?

An operator T such that Lat T is a nest is called unicellular. Ex-
amples of such operators are quite rare. The Volterra operator on
L?(0,1) given by V f(t) = ftl f(z)dz has the continuous nest of sub-
spaces Ny = {f : supp(f) C [0,t]}, 0 < t < 1, as its only invariant
subspaces [15]. Weighted shifts Se; = 0,Se,+1 = wpen, n > 1 such
that w, decreases monotonely to zero have the nest P as its invari-
ant subspaces [17, 42]. Other examples are more difficult to come
by. Domar [16] showed that certain bilateral weighted shifts have only
the obvious invariant subspaces, while many others do not. Harrison
and Longstaff [21] were able to “glue” two weighted shifts together
to produce a nest order isomorphic to P + P. Then Barria and I [7]
constructed unicellular operators with lattice order isomorphic to any
countable ordinal.

All of these examples except for the Volterra operator essentially build
up the unicellular operators from “smaller” ones. A useful test case for
problem 2 is the nest on ¢?(Q) given by the subspaces Q; = {f €
(Q) : supp(f) C (—o0,t]} and Q, = {f € £3(Q) : suppf C (—o0,1)}.
The nest is uncountable, even though the Hilbert space is the sum of
the countably many atoms. Moreover, every infinite piece of this nest
is identical to the whole. So it is impossible to build it up from smaller
pieces.

Now let us turn to commutative subspace lattices. A CSL is a
complete lattice £ of subspaces such that the corresponding projections
{P(L) : L € L} is commutative. The corresponding algebra, Alg L,
consists of all operators leaving each element of £ invariant. This
algebra contains the commutant £ = {P(L) : L € £}’ which is the
von Neumann algebra Alg £ N (Alg £)*. This has abelian commutant
L". Nest algebras (corresponding to chains) and von Neumann algebras
with abelian commutant (complemented lattices) are the two extreme
types of CSL algebras.

A more typical example is given as follows. Let X = 2% be the
Cantor set, thought of as sequences z = (z,) of 0’s and 1’s with
the product topology. Let p be a finite regular Borel measure on
X. Form L*(u) and let L, = {f € L?(u) : supp(f) C X, } where
X, ={xz € X : z,, = 0}. The lattice £ generated by {L,,n > 1} is
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a CSL. In fact, a theorem of Arveson [3] shows that the most general
CSL is given by the lattice generated by {Ls,,n > 1}.

A final example is the prototype for width 2 lattices (those generated
by two commuting nests). Take the Hilbert space to be H = ¢2(N xN),
and consider the two nests

PV = {f :supp(f) C E, x N}

PT(LQ) ={f :supp(f) C N x E, },

where E,, = {1,2,...,n}. One can realize H as a tensor product
(2(N) ® £2(N). Then the two nests become P ® ¢? and ¢?> ® P. So we
denote the lattice generated by these two nests by P ® P.

Arveson’s seminal paper [3] on CSL’s is a penetrating analysis of
those lattices and their algebras. In particular, he shows that CSL’s
are reflexive. That is,

Lat(Alg L) = L

for every commutative subspace lattice. Later in this article, we will
discuss some of the other implications of this paper. In the sequel, £
will always denote a CSL.

PrROBLEM 3. What is the Jacobson radical of Alg £?

In the study of any Banach algebra, the structure of the radical is
fundamental to an understanding of the irreducible representations.
In the two extreme cases, there is a complete description. Every C*-
algebra is semisimple, so the complemented case is trivial. Consider a
nest N. For a finite nest F,7 (F) consists of block upper triangular
operators. It is routine to verify that the radical consists of the
strictly upper triangular algebra, and the quotient 7 (F)/rad T (F)
is isomorphic to the diagonal algebra F'.

For an arbitrary nest NV, take any finite subnest F . Then rad 7 (F)
is contained in 7(N), and thus in rad 7(N). Now the C*-algebra
C*(N) = span{P(N) : N € N} is commutative. Each multiplicative
functional ¢ in its maximal ideal space is determined by its restriction
to {P(N) : N € N'} which is necessarily an increasing map of A onto
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{0,1} = 2. Thus ¢|N is an element of Hom (N,2), the set of lattice
homomorphisms onto 2. Each ¢ gives rise to a seminorm on 7 (N):

ITlly = mf{[|[ETE||: E~ = P(N1) — P(N2),¢(E) = 1}

Now ®g(T) = ETE is a contractive homomorphism for each interval
E = P(N;) — P(N3). Thus the set

Iy ={T:|[T]|¢ = 0}

is a closed two sided ideal of T(A/).

For example, consider the nest P = {P,,n > 1;H}. For each n > 1,
there is a functional §,,(Py) = 1 if £ > n. Let A, be the projection
onto P, — P,_1. Then ||T||s5, = ||AnTA,||. The ideal Z;, consists
of those T in T(N) with A, TA,, = 0. There is also the functional
#(Px) =0,k > 1 and ¢(H) = 1. In this case,

ITlls = lim ||P(PHTP(PY)|| = |IT]]..

The kernel Z, consists of the compact operators in 7(N). In this
example, one can verify directly that

rad T(P) = nHom(P,Q)Iqb ={KeT(P)NK:Ap(K) =0},

where Ap(K) is the diagonal part of K with respect to P.

The general result is a theorem of Ringrose [39].

THEOREM. Let N be a nest. For T in T(N), the following are
equivalent:

(1) T € rad(T(N));
(2) T en{Zy : $ € Hom(N, 2)};
(3) T € U{rad T(F) : F finite subnest of N'} ;

(4) For all ¢ > 0, there is a finite subnest F of N such that
1Az (T)]] < e

In the case of a CSL algebra, Hopenwasser and Larson [22, 24]
observed that conditions (1)—(4) above can be formulated analogously.
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They show that (2), (3) and (4) are equivalent for CSL algebras and
imply membership in the radical. Moreover, as in the nest case, every
irreducible representation contains exactly one Zj in its kernel. So
Problem 3 can be reformulated: Does rad Alg (L) equal N{Zy : ¢ €
Hom(L,2)}?

PROBLEM 4. Is there a distance formula for Alg (P ® P)?

For any reflexive algebra A = Alg L, L € L, and any operators T in
B(#) and A in A, one has

I1P(L)*TPL)|| = |P(L)(T ~ A)PL)|| < [IT — All.

Thus
suppe.|[P(L)TP(L)|| < dist(T, A).

In [4], Arveson proves the remarkable result that, for nests N,
supy e ||[P (N)"TP(N)|| = dist(T, T(N)).

This result is of crucial importance in developing the structure the-
ory for nests. In his analysis of derivations and cohomology of von
Neumann algebras, Christensen [10] proves that, for AF von Neumann
algebras A (i.e., those algebras which are the weak* closure of an in-
creasing sequence of finite dimensional subalgebras),

dist(T’, A) < 4 supcpapullP(L) " TP(L)|]-

An algebra for which there is a constant K (in lieu of 4) making the
above formula valid is called hyperreflexive.

Unfortunately, Power and I [14] showed that many CSL algebras
fail to be hyperreflexive, including all infinite tensor products of nests.
Larson [31] has a different approach which produces similar examples.
One hope remains—finite width lattices. The prototypical width 2
lattice is P ® P, so we ask the question in this context.

Aside. let us mention a related question outside the context of
CSL’s. Is the weakly closed algebra W (S) generated by a subnormal
operator always hyperreflexive? A deep theorem of Olin and Thomson
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[34] generalizing the work of Scott Brown [8] shows that W(S) is
always reflexive. In [13], it is shown that, for the unilateral shift,
W (S) is hyperreflexive. The Olin-Thomson result gives quantitative
control of the predual of W (S). What is needed for hyperreflexivity is
quantitative control of the preannihilator.

PROBLEM 5. Are there examples of close CSL algebras which are not
similar? or even not isomorphic?

The distance between two subspaces is measured as the Hausdorff
distance between their unit balls. Perturbation results for von Neu-
mann algebras were first considered by Kadison and Kastler [27]. Then
Christensen [9] showed:

THEOREM. Let A and B be type I von Neumann algebras. Then the
following are equivalent:

(1) A and B are close.
(2) A’ and B’ are close whence Lat A and Lat B are close.
(3) There is a unitary operator U such that UAU* = B and ||U — I||

is small.

Here we interpret close and small as O(¢) for sufficiently small ¢ > 0.
The analogous result for nests was proved by Lance [29].

THEOREM. Let N and M be nests. Then the following are equivalent:
(1) TNV) and T (M) are close.
(2) N and M are close.

(3) There is an invertible operator S such that SN = M and ||S —I||
s small.

In both these results, the distance estimate is crucial. These results
give important information about the unitary and similarity classes of
these algebras. It is reasonable to expect that the failure of the distance
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formula should lead to some interesting pathology in CSL’s. This might
shed some light on the equivalence problem for these lattices. In [14],
an example is given of close lattices which are similar but require a
similarity far from I. Nevertheless, it is shown in [12] that close CSL
algebras have close, isomorphic lattices. As yet, it is not clear what
sort of breakdown to expect.

ProOBLEM 6. Classify commutative subspace lattices up to approxi-
mate unitary equivalence.

Two lattices £, and Loy are unitarily equivalent (similar) if there is
a unitary (invertible) operator S such that S£; = Lo. If £y and Lo
are lattice isomorphic, say via 6, then they are approzimately unitarily
equivalent if there is a sequence of unitary operators U,, such that

limn o0 |[P(O(L)) — Un P(L)UL]| = 0

uniformly for L in £. The notion of similarity is not convenient for
CSL’s as it does not preserve orthogonality.

In the case of nests, unitary equivalence reduces to the Hellinger-Hahn
multiplicity theory for self-adjoint operators together with an order
relation [18]. The corresponding result for CSL’s must be possible along
similar lines. For nests however, the other two equivalence relations
have proven to be much more important. If SN" = M, then S induces
an order isomorphism 0g of A/ onto M. Moreover, because of the
spatial nature of S, if N3 < Na, then dim 0(N2)/8(N1) = dim Na/Nj.
That is, 05 preserves dimension. The work of Andersen [1], Larson
[30] and myself [11] culminated in the

SIMILARITY THEOREM. Let N and M be separably acting nests.
Then the following are equivalent:

(1) N and M are approzimately unitarily equivalent
(2) N and M are similar.

(3) There is an order isomorphism 6 of N' onto M which preserves
dimension.
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Moreover, given any such order isomorphism 6 and € > 0, there is a
unitary operator U and a compact operator K with || K|| < e such that
vk = 0.

In the case of von Neumann algebras, Christensen’s theorem on per-
turbations implies that approximate unitary equivalence coincides with
unitary equivalence. Moreover, by the Johnson-Parrott Theorem [26],
even the compact perturbations of von Neumann algebras are rigid.
Arveson [5] develops a perturbation theory valid for certain “homoge-
neous” CSL’s which are compact in the strong operator topology. In
particular, his results give a completely new approach to the approx-
imate unitary equivalence of continuous nests. Is there some way to
unify the theory for nests and complemented lattices?

PrOBLEM 7. If L N Alg L is weak* dense in Alg L, is £ completely
distributive?

This question asks for a lattice condition on £ equivalent to having
sufficiently many compact operators in Alg £. Erdos [19] showed that
the span of the rank one operators in a nest algebra is weak™ dense. On
the other hand, the non-atomic masa L*(0,1) acting on L?(0,1) has
no compact operators at all. A CSL is called completely distributive if
the infinite distributive law

ANV o=\ A Lo

z€X a€A, fENA, z€X

holds for every collection {A, : x € X} of subsets of L. Fortunately,
this unsightly condition has a number of more tractable formulations.
Using a deep result of Arveson [3], Laurie and Longstaff [32] prove that
the finite rank operators are weak* dense in Alg L precisely when £
is completely distributive. This is also equivalent to the density of the
Hilbert-Schmidt operators [25].

Froelich [20] has shown that CSL algebras may contain compact
operators yet fail to have Hilbert-Schmidt operators. On the other
hand, density of the compact operators implies the compactness of
L in the strong operator topology. Wagner [41] has shown this
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latter condition to be equivalent to a weaker infinite distributive law.
However, for CSL’s, these conditions may be equivalent. Even a
negative answer to Problem 7 should shed light on the correct answer.

PROBLEM 8. If £; and L5 are commuting synthetic lattices, is £1V Lo
synthetic?

In Arveson’s original paper on CSL’s [3], he shows that, for each
lattice £, there is a smallest algebra A, (£) such that Lat A, (£) =
L and A, contains a masa. (In fact, Ap;, contains £'.) This result
was motivated in part by a theorem of Radjavi and Rosenthal [38]
which showed that if A was a WOT closed algebra containing a masa
and Lat A is a nest N, then A = T(N). A lattice L is synthetic if
Apin(£) = Alg £. The surprising thing is that A, (£) is sometimes
strictly less than Alg(£). All such examples are closely related to failure
of spectral synthesis in harmonic analysis. Let G be a locally compact
abelian group, and let E be a closed subset of G. Let Ag be the
algebra acting on L?(G) @ L?(G) consisting of all operators of the form
S
an operator “supported” on ), = {(z,y):x—y € E} (i.e,if UxVis
an open rectangle disjoint from ), then MyTMy = 0 where My is
multiplication by the characteristic function of U). Froelich [20] shows
that Lat Ag is synthetic if and only if F is a set of spectral synthesis.

], where M; are multiplication operators in L*°(G), and T is

On the positive side, £ is a synthetic if it is either finite width or
completely distributive. The present knowledge of synthetic lattices is
generally mired in measure theoretic technicality. The real problem
is to find an operator theoretic approach to determining synthetic
lattices. Two related test questions are: If £; and L5 are commuting
synthetic lattices, are £1 N Ly and L1 ® Lo synthetic? Any operator
theoretic result which yields a new result in harmonic analysis will be
very interesting indeed.

PROBLEM 9. Does Alg(L1) ® Alg(Ls) = Alg(L) ® L2)?



REFLEXIVE ALGEBRAS 327

The tensor products here are spatial. £1 ® L5 is the strongly closed
subspace lattice of H; ® Hs generated by {L; ® Ly : L; € L;}, and
Alg(L£1)®Alg(L2) is the WOT closed span of {4; ® A : A; € Alg(L;)}.
Clearly, A; ® Ay belongs to Alg(L£; ® L3) so one containment is
automatic.

If £; are complemented, then A; = Alg(L;) are von Neumann
algebras. Since £; is the projection lattice of A}, our problem in this
context is resolved positively by a celebrated theorem of Tomita [40]:

A1 ® Ay = (A1 @ Ay)'.

Hopenwasser and Kraus [23] showed that the answer is affirmative if
L, is finite width, and in Kraus [28] it is also shown to be valid if £y
is completely distributive. Even in much more general situations, no
counterexample is known.

PrOBLEM 10. Is every bounded representation of a nest algebra
completely bounded with ||¢|| = ||#]]?

This final problem deals with the representation theory of nest alge-
bras. Every map ¢ of A into B(H) induces maps ¢(™ from A ® M,
to B(H™). The map ¢ is completely bounded if |||, = sup [|¢™ ||
is finite. Arveson [2] identified completely contractive maps of nonself
adjoint algebras as being precisely those maps which can be dilated to
a * representation of the enveloping C*-algebra.

Paulsen, Power and Ward [36] considered weak* continuous contrac-
tive representations of nest algebras. They were able to show that all
such maps are completely contractive, and hence can be dilated to a
weak* continuous * representation of B(#). Such representation are
just the maps «(T) = T(™) . In finite dimension, these results were
obtained by Ball-Gohberg [6] and McAsey-Muhly [33]. Paulsen and
Power [35] were then able to prove lifting theorems for representations
of nest algebras analogous to the Sz-Nagy-Foias dilation theory. Some
of their results extend to completely distributive lattices but even finite
dimensional CSL algebras have contractive representations which are
not completely contractive [43]. When weak* continuity is dropped,
problem 10 is open even for contractive maps.
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ADDED IN PROOF. Y. Domar has settled positively the special case
of Problem 2 of the Cantor nest in a short note “An invariant subspace
lattice”, preprint 1989.

D. Pitts and I make further partial progress on Problem 7 in “Com-
pactness and complete distributivity for commutative subspace lat-
tices,” to appear in J. London Math. Soc.

J. Kraus has shown that the variant of Problem 9 fails for arbitrary
lattices, even when one is complemented. See his 1989 preprint “The
Slice Map Problem and Approximation Properties.”
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