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ABSTRACT. An elementary approach is given to prove
Blumenthal’s theorem describing the support of measures as-
sociated with orthogonal polynomials on the real line in case
the recurrence coefficients associated with these polynomi-
als tend to finite limits. Then the known approach using
H. Weyl’s theorem on compact perturbations of self-adjoint
operators to Blumenthal’s theorem is presented. Finally, us-
ing Weyl’s theorem, Geronimus’s result on the support is dis-
cussed when the recurrence coefficients with subscripts hav-
ing the same residue (modk) have finite limits. Instead of
the usual approach of using continued fractions, the Hardy
class H? is used to determine the spectrum of the self-adjoint
operator arising in the study of this support.

1. Introduction. In what follows, the word measure will always
refer to a positive Borel measure on the real line such that its support
is an infinite set and all its moments are finite. Here the support of a
measure « is the smallest closed set whose complement has a-measure
zero and is denoted by supp (a), and the n-th moment of « is defined
as

/ z" da(z), n > 0.
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These moments are said to be finite if these integrals are absolutely
convergent.

As is well known, there is a unique system of orthonormal polynomials
pr(2) = pr(da, ) = yp(da)z™ +---,n =0,1,..., associated with such
a measure. These polynomials are defined by the requirements that
Yn = Yn(da) > 0 for all n > 0 and

/00 P (2)pr(2) da(z) = S, m,n >0,

— 00

where §,,, = 1 if m = n and §,,, = 0 otherwise. They satisfy the
three-term recurrence equation,

(1) an+1pn+1(z) + (bn - z)pn(z) + anpnfl(z) =0, n > 0;

here a, = ap(da) = Yp—1/¥n (for n = 0 put v_; = 0), b, = b,(da),
po(x) = 70, and p_1(z) = 0 (see, for example, [6, formula (I 2.4), p.
17] or [22, formula (3.2.1), p. 42]).

Given real numbers a,,,b,, n > 0, such that ag = 0 and a,, > 0 for
n > 0, there is a measure « such that a,(da) = a, and b,(da) = by,.
This result is often attributed to J. Favard, but it goes back to T. J.
Stieltjes; for a concise, modern discussion, see, for example, [4, §XII.10,
pp. 1275-1276], or, for a more extensive discussion, [21, pp. 530-614].
Under fairly general conditions, the measure « is uniquely determined.
This is certainly the case if the sequences of the numbers a, and b,
are bounded, see, for example, [6, Theorem I11.2.2, p. 64] (cf. also our
Corollary 9 below).

Blumenthal’s theorem (see Theorem 10 below) concerns the determi-
nation of the support of the measure « if the coefficients a, and b,
have limits. In Sections 1-3 we discuss an elementary approach to this
theorem. In Section 4 we show how a result of H. Weyl on compact per-
turbations of self-adjoint operators can be used to derive Blumenthal’s
theorem; this approach is not new, it is mentioned, for example, in [13,
pp. 1023-1024]. In Section 5 we extend this approach to discuss the
result of Geronimus [8, 9, 10, and 11] (cf. also [7]) on the support of «
when it is assumed that, for a fixed, positive integer k, the coefficients
a, and b, with n belonging to the same residue class (mod k) have
limits when n tends to infinity. In discussing this result, we use the
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Hardy class H? to determine the spectrum of a self-adjoint operator
rather than relying on the usual approach of continued fractions.

This paper started out as a survey of certain topics connected with
Blumenthal’s theorem, but in the end it went beyond its original goal
in that some of the approaches and results are new. For example,
Theorem 2 is not a consequence of the known theorem of Poincaré, and
at least the formulation and method of proof, if not the content, of
Theorem 13 appear to be new.

2. Ratio asymptotics for the class M(a,b). The class M(2a,b)
is the class of measures for which

(2) lim a, =a and lim b, =b.
n—oo n—oo

In view of this limit relation, the recurrence equation in (1) enables
one to derive an asymptotic formula for p,_1(2)/pn(z), valid on most
of the complex plane, with the aid of the following theorem of Poincaré
(see [17], [14, §17.1, p. 526], or [16, §X.6, p. 300]):

Theorem 1. Let k be a positive integer. Suppose that, for every
integer n > 0, the difference equation

k—1
(3) Fn+k)+ ajnf(n+4) =0

j=0
holds, where the limits

(4) lim Ajn = Qj, 0<j<k,

n—oo

exist and the roots of the “characteristic equation”
k-1

(5) 2k 4+ Z a;z’ =0
j=0

all have different absolute values. Write (y,...,(; for these roots.
Then either f(n) = 0 for all n large enough or there is an 1 with
1 <1<k such that

(6) lim f(n+1)/f(n) = G
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So as to make these notes more self-contained, we intend to avoid
using this theorem in what follows. Instead, we will establish a special
case for second order equations; this result and its proof are motivated
by the approach given in [23, pp. 117 —119] to the proof of Theorem 3
below.

Theorem 2. Assume that for every integer n > 0 we have
where the limits

(8) lim A, =A and lim B,=1B

n—0o0 n—oo

exist. Let n be a positive number, and assume that

9) [f(n+1)/f(n)]* > |B|+n

for each sufficiently large n. Let (; and (3 denote the roots of the
characteristic equation

(10) 224+ Az+B=0
and assume that |(1| > |(2|. Then

(1) T f(n+1)/f(n) = .

The reason we mentioned Poincaré’s theorem was to motivate this
result. Note, however, that here we do not assume that the absolute
values of (; and (, are different, and so this result is not a direct
consequence of Poincaré’s theorem. Since, however, (1(> = B, the
inequality |(1| > |2 follows from (9) and (11); the latter, however, has
to be proved first. In fact, the role of assuming (9) is to ensure that this
inequality holds and to exclude the possibility that the limit in (11) is

Ca.

Proof. Writing L,, = f(n +1)/f(n), divide (7) through by f(n + 1).

‘We obtain B
Lyi1 +An+L—” =0.
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Subtract this equation from the analogous equation obtained via re-
placing n with n + 1. We get

(12)
Bn Bn+1
Lnyo = Lyt = Ap — Apyy + 22 —
+2 +1 +1+ Lo Lo
Bn - Bn+1 BnJrl
=A,—-A, Lpy1— Ly).
+1+ L. + LnLn—i-l( +1 )

In view of (7), (8) and (9), there is a positive number p < 1 such that,
given an arbitrary € > 0, we have

Bn - Bn+1

<€
Ly,

‘An - An+1 +

and
Bn+1
LnLnJrl

<p
for every n large enough, say, for n > N. Thus, for n > N, (12) implies
|Ln+2 — Lnta| <&+ plLlnt1 — Lal.

Using this forn =N, N +1,... ,N +v — 1, we obtain

v—1

|Ln4v+1 — Lngo| < EZPj +p"|Lny1 — L]
=0
E 174
<fp+P|LN+1_LN‘; v>1,

that is,
€

lim sup |Ln+1 - Ln| S
n—oo 1-— P

Since € here can be arbitrarily small, it follows that
(13) nlLII;o |Lnt1 — Ln| = 0.
Now let (n,) be a sequence of integers such that the limit

L= lim L,,

V—r0o0
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exists or is +0o0 or —oco. Then

L= VILII;O Ly, 41,
as well, in view of (13). Hence, it is easy to see from (7) that L is finite
and it satisfies equation (10), that is, either L = {; or L = (5. The
latter alternative is impossible in view of (9). Hence, L = {;. That is,
(L,,) has no subsequence that converges to any number (or £o00) other
than ;. Hence, (11) holds, completing the proof. O

Theorem 2 is sufficient to derive certain asymptotic estimates for
Pn—1(2)/pn(z) outside the closure of the set of zeros of the denomina-
tor. To state these estimates, let C denote the complex plane, and let

v/z2 — 1 denote the branch of the function ++/22 — 1 that is holomor-
phic in the region C\[—1, 1] and is such that

(14) |z =22 -1 <1 for z¢[-1,1].
Then we have
Theorem 3. Assume that the measure a belongs to M(1,0) (cf. (2)).

Let S be an infinite set of integers, and let Q2 be closure of the set of
zeros of pn(z) as n runs through the elements of S. Then

(15) fim  Pr1(?)

—— V21 c\Q
n—oo,n€S pn(Z) i i ’ z€ \ ’

and the convergence is uniform on compact subsets of C\Q.

This is all we need for the proof of Theorem 8 below, but in itself the
result is more useful in its stronger version: if @ € M(1,0), then we
have

(16) lim p;_éz(;) =z— 221, z € C\supp ()

and

(17) lim Pn-1(2) =z+Vvz22 -1, z € supp (a)\[-1,1];
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the convergence in (16) is uniform on compact subsets of the set indi-
cated. To appreciate these formulas, one needs to know the structure of
the support of « as described in Theorem 8. See [15, Theorems 4.1.13
and 4.1.18, pp. 33 and 36] for details.

For the proof, we need an upper estimate for p,,—1(z)/pn(2) so that
we can use Theorem 3. This is furnished by the following simple lemma.
As usual, in this lemma we write

(18) Tin > Top > > Tnpn

for the zeros of p,,. As is well known, these zeros are real numbers, and
they are interlaced in the sense that

(19) Tkn > Tk on—1 > Tk41,n5 1 < kE<n

holds for n > 1 (cf. e.g., [6, Theorem 1.2.3, p. 17] or [22, Theorem
3.3.2, p. 46)).

Lemma 4. Letn > 1 be an integer, let  be positive, and assume
that

(20) |z — zgn| > 7, 1<k<n.
Then
(21) Pn-1(2)/pn(2)| < an/n,

where a,, is the recurrence coefficient given occurring in equation (1).

It is not of great importance that this result is also true for n = 1;
however, it is somewhat inconvenient to pay attention to this case in
the proof that follows.

Proof. We have
(22)
n—1
Yn—1 Hk::l (Z - wk,n—l) Yn—1
Tn HZ:1(Z — Thn) T Ynming<p<n |z — Tkn

pn,l(z)
pn(z)
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The inequality here holds in view of (19), since this implies that we
have

|2 — @k 1| < |2 — Thy1n| O |2 — Thp-1| < |2 — Tknl

according to whether Rz < xj ,_1 or Rz > x ,_1. Thus (20) and the
relation a, = ¥,,—1/7v» imply (21), completing the proof. O

A different proof of the above lemma is given in [23, p. 118]. Next
we turn to the

Proof of Theorem 3. Let z be a nonreal complex number. Since every
Zpn 1s real, (20) is fulfilled with n = |§ z|. Hence, we have

(23) Pnt1(2)/Pn(2)] 2 8 2|/ ant1

according to Lemma 4. Now equation (1) can be written in the form

(24) pn+2(z) + An(z)pn-!-l(z) + Bnpn(z) =0, n > —1,

where
bn - n
(25) A, =21 7% and B, = L
an+2 an+2
Here
(26) lim A, = -2z and lim B, =1,
n—00 n— oo

since (2) holds with @ = 1/2 and b = 0, as a € M(1,0) according to
our assumptions. Therefore, (9) holds for large n with f(n) = p,(z) in
view of (23) provided, say, |§ z| > 2. Hence, by Theorem 2,

lim Prot1(2)

=z+v22-1
n—oo  py(2)

holds if |§ z| > 2. Hence, a fortiori, (15) also holds in this case.

Now let E be a connected regular compact subset (that is, it is
the closure of its interior) of C\Q such that it contains infinitely
many points z with |§z| > 2. Writing p for Euclidean distance,
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let n = p(E,)/2; clearly, n > 0. Now, by definition of €2, there is an
N such that (20) holds with the above 7 for every z € E and for every
n € S with n > N. Hence, (21) holds for every z € E and n € S with
n > N. Therefore, (15) holds for every z € F, and the convergence is
uniform on E by Vitali’s theorem (see, e.g., [5, §1.3, p. 9] or [19, §6.4.2,
pp. 174-176]). The proof of Theorem 3 is now complete. O

3. The set of limit points of zeros of polynomials in the class
M(a,b). The asymptotic result (Theorem 3) can be used to obtain
information about the set of limit points of the zeros of orthogonal
polynomials. Given a measure «, denote by = = Z(da) the set of
complex numbers z such that, for every neighborhood U of z, there is
an N such that, for every n > N, the polynomial p,(da) has a zero in
U. Since all zeros of orthogonal polynomials are real, it is clear that =
is a set of reals. Using Theorem 3, we obtain

Theorem 5. Suppose that a belongs to M(1,0). Then
(27) [-1,1] C E(a)
holds.

Proof. Assume the contrary. As = is closed, there is thenat € (—1,1)
such that t ¢ =. Moreover, there is an infinite set .S of positive integers
such that the set  of limit points of zeros of p,, as n runs through the
elements of S does not contain ¢. This is, however, impossible, for the
following reason:

Let E be a compact subset of C\2 that contains ¢ in its interior. The
sequence of continuous functions p,11(z)/pn(z) is uniformly convergent
for z € F as n € S tends to oo, according to Theorem 3. However, the
limit of this sequence given by (15) is not continuous at ¢ (cf. (14)).
This contradiction completes the proof of the theorem. 0O

In the opposite direction, we will show
Theorem 6. Assume that o € M(1,0), and let € > 0. Then there

are only finitely many elements of Z(c) that belong to the set
C\(-1—¢,1+¢).
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To show this, we will first prove

Lemma 7. Let x be real and let N be a nonnegative integer. Assume
that

(28) |z| > sup(a; + aj+1 + |bs])
j>N
and
(29) pn(z)| = [pn-1(2)]
hold. Then
(30) Pny1(z)| = |pn ()]
and
(31) sgn (2" ppp1(2)) = sgn (z"pa(x)) # 0

hold for every n > N.

We did not need to use absolute value signs for a; and a4 in (28),
since these are always positive. Note that (29) implies that py(z) # 0
since orthogonal polynomials of adjacent degree have no common zeros
(cf. (19)). Thus, p,(z) # 0 for n > N in view of (30). Moreover, x # 0
by (28) since a; > 0 for all j > 0. Therefore, (30) and (31) can be
stated as a single formula:

(32) sgn (2pn(2))Pnt1(z) = |pn(2)[,  n=>N.

Proof. Let n > N and assume that (30) holds with n — 1 replacing
n. By the recurrence formula given in (1), we obtain

pn(m) -

Ap+1 An+1

|z — by,|

Pnt1(z) = sgn (z)

since sgn (z) = sgn (z — b;) in view of (28). Multiplying both sides by
sgn (zpn(z)), we obtain

z — by, an
sgn (zpn())pn+1(z) = | ||pn($)\ - Pn—1(z) sgn (zpn(z))
Ap41 Ap+1
> oLl @) )
Ap+1 Ap+1
|z| — |bn] — an
> —————|pa(2)].

Ap+1
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The last holds in view of the induction hypothesis, i.e., that (30) holds
with n —1 replacing n. The coefficient of |p, (z)| on the right-hand side
is > 1 according to (28). Thus, (32) follows for n, completing the proof.
O

Proof of Theorem 6. We will show that the interval [1+¢, 00) contains
only finitely many elements of Z; we can show this for the interval
(—00,—1 —¢] in a similar fashion. Choose a positive integer N such
that

(33) su
iz

p(a; +aj41 +[bj]) <1+¢/2.
N
Let Ny > N be such that py, (z) has a zero in the interval (1+¢/2, 1+¢);

if no such V; exists, then put N; = N. Let N2 > Nj be the least integer
such that

(34) [PNat1(w0)| = P, (o)

for some zp € (1 +¢/2,1+¢). Such an Ny must exist. Indeed, if zg
is a zero of py, in this interval, then (34) holds with No = Ny. If we
had to choose N; = N because the polynomial p,, has no zero in this
interval for any n > N, then (15) of Theorem 3 holds for every z in this
interval with S being the set of all positive integers; thus, for every zg
in this interval, (34) will be satisfied if Ny is large enough.

We claim that = has no more than Ny 4+ 1 elements in the interval
[1+¢,00). Indeed, in view of (34), Lemma 7 shows that

sgn (Pn+1(20)) = sgn (pu(20)) #0,  n>Nao +1,

according to (31), since zy is positive. As limg, ;4o pp(z) = 400
(because the leading coefficient of p,, is positive), it follows from here
that for n > Ny + 1 the number of zeros (i.e., of sign changes, these
zeros being all simple) in the interval [z(,00) of p,41 has the same
parity as does that of p,, ;1. As these zeros are interlaced in the sense
of (19), the difference between the number of zeros of p,,+1 and that of
Pp in this interval is either 0 or 1; therefore, for n > N2 41 the number
of zeros of p, 41 and that of p, in this interval are equal.

That is, the number of zeros of p, for n > Ny + 1 in this interval
is the same as the number of zeros of py,;+1 in this interval; this
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number, however, cannot be more than N» + 1, the degree of the latter
polynomial. Now the claim on the number of elements of = easily
follows from the definition of this set. The proof of Theorem 6 is
complete. O

The consequence of these results for the support of a can be summa-
rized as follows.

Theorem 8. Assume that a € M(1,0). Then
(35) [—1,1] C supp (),
and for every € > 0 the set
(36) supp (a)\(—-1 —¢,1 +¢)
1s finite.

Proof. If I is a real interval that is disjoint from the support of a, then
for each n the polynomial p, has at most one zero in this interval (cf.
[22, Theorem 3.41.2, p. 50]). Therefore, it follows from Theorem 5 that

supp () is dense in (—1,1). Since supp () is closed by its definition,
(35) follows.

On the other hand, given an open real interval I that intersects
supp (), there is an integer N such that for each n > N the polynomial
pn, must have at least one zero in I. That is,

(37) supp () C E(a).

Therefore, the finiteness of the set in (36) follows from Theorem 6. The
proof is complete. O

A further consequence of Lemma 7 is
Corollary 9. Given an arbitrary measure o, we have

(38)  supp () C [~sup(a; + aj1 + |bj]), sup(a; + aji1 + [b;])].
>0 >0
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Proof. For x outside the interval in (38), we have

(39) Pry1(@)| 2 [pa(z)l,  n >0,

according to (30). Indeed, |po(z)| > |p—1(x)| (= 0); hence, Theorem 6
is applicable with N = 0. As po(z) = v0 > 0, (39) implies that p,(z)
is not zero for any z outside the interval given in (38), n > 0. Thus, E
is a subset of this interval. Hence, (38) follows from (37). O

Finally, by a simple linear transformation of x, we obtain Blumen-
thal’s theorem (see [1], [2, §§IV.3-4, pp. 113-124, esp. after formula
(4.2), p. 121], or [15, Lemma 3.3.6 and Theorem 3.3.7, p. 23]; note
that the last paper uses the notation M(a, b) differently from us: what
we mean by M(a, b) is written as M (b, a)) in [15]:

Theorem 10. Let a > 0 and b be real numbers, and assume that
a € M(a,b). Then

(40) [b—a,b+ a] C supp (@),
and for every € > 0 the set

(41) supp ()\(b—a —¢,b+a+¢)
is finite.

Blumenthal formulated his result in terms of the limit points of zeros
of p,(da) rather than in terms of measures, and his result was slightly
weaker in the sense that he considered the set of all limit points rather
than the set Z(da) considered above. The paper [3] surveys various
other results connecting the support of o with the behavior of the
recurrence coefficients, mostly for measures outside the class M(a, b)
for finite a and b.

4. Application of Weyl’s theorem to the study of the
support. With a system of orthogonal polynomials on the real line,
one can associate the following matrix acting as an operator on the
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space 12 of sequences:

b() ai 0 0

ai b1 ag 0 e
(42) A= 0 ag b2 as e 5

0 0 as b3 s

where the numbers a,, and b,, are the coefficients in the recurrence
formula given in (1). In other words, A = (@mn)o<m,n<co, Where
Unn = bp,Gnnt1 = Gngin = Gn, 7 > 0, and am, = 0 for jm —n| > L.
In case the set of the coefficients a,, and b,, is bounded, the operator
A is self-adjoint. If this set is not bounded, then the situation is more
complicated; in this case the operator A is symmetric, and it can be
extended to a self-adjoint operator, but this extension may not be
unique. It will be unique exactly when the moment problem associated
with the recurrence coefficients a,, and b, has a unique solution. In
any case, in what follows we will not be concerned with the unbounded
case.

The connection between the operator A and the support of the
measure is worked out in detail in Stone [21, §X.4, pp. 530-614]; also
see [4, pp. 1275-76 in §XII.10] for a brief outline. The connection
is particularly simple when A is bounded. Namely, in this case, the
support of the measure a equals the spectrum of the operator A.

The reason for this connection is that there is a canonical isomor-
phism ¢ between the Hilbert spaces [? and L%(—o0,00). Under this
isomorphism the sequence (0,,)S°_, in [? corresponds to the function

f= Zo'npn € Li(*O0,00),
n=0

where the convergence on the right is meant in the sense of the metric
of L2 (—o00,0). It is easy to see from (1) that, under this isomorphism,
the operator A on [? corresponds to the operator M : f — zf, and in
the bounded case it is easy to relate the spectrum of M to the support
of A.

The essential spectrum of an operator is defined as the set of limit
points of its spectrum. An important result relating the essential
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spectrum of a self-adjoint operator to that of its perturbation plays a
key role in discussing Theorem 8 with the aid of Hilbert space operators.
The result we have in mind is a Theorem of H. Weyl; (see, e.g., [18,
§134, p. 367]) and can be stated as follows.

Theorem 11. Let A and B be self-adjoint operators of a Hilbert
space, and assume that B is compact. Then the essential spectra of A
and A + B are the same.

Recall that a linear operator is called compact if it maps the unit
ball onto a set whose closure is compact; compact operators used to be
called completely continuous (vollstetig in German). In [18, loc. cit.],
this theorem is stated only for bounded A, but it is remarked that it
can easily be extended for unbounded A; in any case, we will only be
concerned below with the case of bounded A. There is also a version of
Weyl’s theorem that is valid for nonself-adjoint Hilbert space operators;
see, for example, [12, pp. 91-92, 145].

Alternative Proof of Theorem 7. For the matrix A we have A =
%T + B, where

0 1 0 0
1 0 1 0
(43) T=] 0 1 0 1 and
0 0 1 0
bo a; — % 0 0
ay; — % b1 as — % 0
B= 0 as — % b2 as — %
0 0 as — % b3

Now if @ € M(1,0), that is, if (2) holds with a = 1/2 and b = 0, then
the entries along the diagonals of the matrix B tend to 0. Since B is
a tri-diagonal matrix (i.e., all its elements except for those in the main
diagonal or immediately adjacent to it are 0), this implies that B is a
compact operator. Thus, the essential spectrum of A is the same as
that of £ T, according to Weyl’s theorem (Theorem 11).



516 A. MATE, P. NEVAI AND W. VAN ASSCHE

Therefore, it is sufficient to show that the spectrum of %T is the
interval [—1,1]. We will show this in the next lemma. The proof is
complete. O

Lemma 12. The spectrum of the matriz T given in (43), considered
as an operator on the Hilbert space 12, is the interval [—2,2].

A simple way to see the validity of this lemma is to notice that %T
is the matrix associated with the orthonormal Chebyshev polynomials
of the second kind; hence, its spectrum is the same as the support of
the measure associated with the Chebyshev polynomials of the second
kind. This support is well known to be the interval [—1,1]. We will,
however, present a different proof using the Hardy class H?2, that is,

the Hilbert space of power series

f(z) =) ¢;7
j=0

under the norm
5] 1/2
7= (X e?)
j=0

If f € H?, then f(2) is holomorphic for |z| < 1, and for almost every
z with |z| = 1 we can define f(z) as the radial limit lim, »; f(rz), and
we have

1 2w )
(14) 117 =52 [ IR ar

see, e.g., [24, Vol. 1, §VIL7, pp. 271-277]. The advantage of a proof
using the class H? is that the ideas in this proof can be generalized
to handle the asymptotically periodic case, to be discussed in the next
section. The reason the class H? is useful for this purpose is that the
unilateral shift in H? can be represented as multiplication by z.

Proof of Lemma 12. Under the isomorphism

(45) ()30 Y ezt
j=0
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between 12 and H?, the operator T can be represented on H? as

(46) (1)) = (241 16) - 1100

We will use the definition of the spectrum: a complex number A belongs
to the spectrum of T if the operator T — AI does not have a bounded
inverse (I is the identity operator). First we will show that if A\ ¢ [—2,2],
then ) is not in the spectrum of T. Before we do this, we outline a
simpler reasoning why such a A is not in the spectrum (however, the
simpler reasoning is not usable under the more general circumstances
considered in the next section): as T is self-adjoint, its spectrum is on
the real line, and, as ||T|| = 2, its spectrum is a subset of {z : |z] < 2}.
But, as we promised, we will give an argument applicable under more
general circumstances.

Fix X ¢ [—2,2], and consider the equation (T — AI)f = g for f. This
equation can be written as

(47) (242 =2) 1) = L10) = g02)
This equation can be solved for f(z) as

z9(2) + f(0)

(48) I =5 5

Solving equation (47) in this way leaves several questions unresolved.
First, how to determine f(0)? This question must be answered since
the solution must be unique. Second, is the f obtained in this solution a
member of H?, and, even if this is the case, is the operator represented
by this solution bounded?

As )\ ¢ [—2,2], the denominator of the right-hand side has two distinct
zeros ¢ and (o with |(;] <1 and |(2| > 1 (note that, clearly, (;{> = 1).
The zero in the denominator at {; must be compensated for a zero at
the same point in the numerator, since f, being in H?, must not have
a singularity inside the unit circle. That is, we must have

(49) f(0) = =Gig(Q)-

This equation determines f(0). The fact that, given g € H?, we can
uniquely determine an f € H? (via equations (48) and (49)) such
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that equation (47) is satisfied shows that the operator determined by
this latter equation is one-to-one and onto. Hence, it has a bounded
inverse, according to the Open Mapping Theorem (see, e.g., Rudin [20,
Corollary 2.12(b), p. 49]).

Alternatively, it is also easy to see directly that the inverse defined
by equations (48) and (49) is continuous and, therefore, bounded.
Indeed, the denominator in (48) is bounded away from 0 for |z| = 1.
Furthermore, in (49), f(0) depends continuously on g; this can be seen
by expressing g(¢;) with the aid of the Cauchy integral formula. Hence,
A does not belong to the spectrum of T.

Now let A € [—2,2]. In this case, the zeros {; or {2 of the denominator
of (48) both have absolute value 1 (we may have ¢; = (2). We will then
show that A belongs to the spectrum of T. We will do this essentially
by showing that, in this case, there is no way to compensate for both
singularities on the right-hand side of (48); that is, for an appropriate
choice of g, the function f defined by this equation is not in H? (because
it is not square integrable on the circumference of the unit circle) no
matter how we choose f(0). Assume that g is a polynomial, so that it
is smooth on the circumference of the unit circle. In this case, to make
the integral on the right-hand side of (44) exist, we have to compensate
for both singularities on the circumference of the unit circle in a way
similar to (49). In the case that {; # (2, this means that we must have

f(0) = —C19(¢1) = —C29(¢2),

and if (; = (3, this means that

F(0) = —C19(¢1) and  g(¢1) + ¢ig'(¢) = 0.

Given an appropriate choice of g, these requirements are impossible to
satisfy, showing that the A in question belongs to the spectrum of T.
The proof is complete. O

5. Asymptotically periodic recurrence coefficients. In what
follows, we are going to discuss the case when the recurrence coefficients
an and b, are periodic in limit. That is, we are going to discuss the
spectrum of the matrix A given in (42) when the entries satisfy the
following: there exist & > 1, positive reals 19, 71, ... ,x—1 and arbitrary
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reals A\g, A1,... , Ax_1 such that
(50) lim a, =mn, and lim b, = A\u, 0<v<k.
n— o0 n—oo
n=v (mod k) n=v (mod k)

In view of Weyl’s Theorem 11, to this end we need to study the
spectrum of the matrix

)\0 7’]1 0 0
m A1 2 0

(51) D=0 m X n3 - |,
0 0 n3 As

where, for n outside the range 0 < n < k, we defined 7, and A\, with
the aid of the equations
(52) =1, and A, =\, forn = v mod &, 0<v<ek.

This spectrum is characterized by

Theorem 13. Let k > 1 be an integer, let n, > 0 and let )\, be
real for all n > 0, and assume (52). Then, except for a finite number
of additional elements, the spectrum of the matriz D given in (51),
considered as an operator on 12, is the set of reals \ for which

k—1
(53) Do, k-1 (A) = 13 D1s—a (V)] < 2 [ ] s
j=0
where
(54)
YD S 0 0 0
Mu+1  Apt1 — A Nu+2 0 0
0 A - A 0 0
DuwN) =1 . etz Aut2 )
0 0 0 Av—1— A U
0 0 0 s A — A
w < v

forv < u, we put D, , =1.
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Since the spectrum is closed, one would expect that, instead of (53),
the spectrum is described by the set of reals A for which

k-1

(55) Do k-1 (A) = g Dy j—2| <2 H nj-
=0

However, the set of A’s described by this formula is not the closure of
the set described by (53); the reason is that the set in (55) may contain
isolated points. The A’s that do not belong to the set described in
(53) but belong to its closure will, of course, belong to the spectrum
of D, but, since there are only finitely many such points, they are
accounted for by the possible exceptional elements of the spectrum of
D, mentioned in the formulation of the theorem. We do not have an
example showing that there are reals A satisfying (55) (but not (53))
that do not belong to the spectrum of D.

We do, however, have an example showing that the spectrum may
have additional exceptional elements. These, being isolated points of
the spectrum, must, of course, be eigenvalues. We are about to present
such an example. In case k = 2, formula (53) can be written as

(56) (Ao = X (A1 = A) =115 = ni)| < 2noms.

Consider the case ng = 1, 71 = 2, and A\g = A\; = 0. In this case, the
matrix D has form

OO o NO
OO~ ON
O N O = O
= O N OO
O = O OO

As is easily seen, 0 is an eigenvalue of this matrix; the corresponding

eigenvector is
11 1 :
1 _ — —— e
<0, 70’ 2707470’ 87 > ?

where the asterisk indicates the transpose (so that this is a column
vector). This eigenvalue is not accounted for by formula (56), that is,
it is one of the exceptional eigenvalues mentioned in the above theorem.



SUPPORTS 521

Proof of Theorem 13. As in the proof of Lemma 12, we will consider
the operator D on the Hardy space H2. Given f € H?, write it in the
form

k
(57) HORDIESACH!

29 f;(2*) collects the terms with exponent congruent to j (mod k) in the
power series representing f(z). As is easily seen, under the canonical
isomorphism described in (45), the matrix D can be represented on H?
as

k—1
(58) (Df)(2) =Y (152 1+ Xz + 127 £ (25) — mez " o (0);
=0

notice that here n, = 79. That is, given an arbitrary complex A, we
have
(59)
(D = AD)f)(2) = (Ao = A fo(2") +mufu(=") + 2 o fr1(2")
k-2
+Z it 1)+ N=N () + i fia(2Y))
j=1
+ 25N (=2F 0 fo(0) + 27 Fno fo (2*)
+ M1 fo-2(2") + Meo1 = A) fe—1(2F)).

Similarly, as in (57), write
k .
(60) 9(2) =Y 27g;(2*);
=0

then, by virtue of (59), the equation
(61) (D-\)f =g
can be written in matrix form as

(62) M(), 2)f(2F) = g(2F) + 27 *no fo(0)er 1,
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where e; is the k-dimensional unit column vector with 1 for its j-th
component, and 0 for the other components, 0 < j < k — 1;

(63) f= <f0af15"' 7fk—1>* and g= <905917"' agk—1>*;

and M(A, z) is given by

)\0 - A 22770 + m
64 M(A\ = for k =2
(64) *2) (Z_2U0+771 AL —A o
and
(65)
Xo— A m 0 - 0 2Fng
m AL = A n2 0 0
M= | o A b 8
0 0 0 e Ap—2— A M—1
z P 0 0 Nk—1 Ak—1— A
for k > 2.

As in the proof of Lemma 12, A does not belong to the spectrum of
D if and only if equation (62) is uniquely solvable for f (a solution
for £ will determine f) in H?; note that to see this we used the Open
Mapping Theorem. Now equation (62) is certainly solvable, but the
solution will have certain singularities, and the question whether or
not the singularities inside the closed unit disc can be compensated for
by choosing f(0) appropriately will determine whether the solution is
in H2. Whether the need to compensate for these solutions determines
f0(0) uniquely will determine whether this solution is unique.

The singularities of the solution of the system of equations in (62)
arise from the fact that the determinant det(M(), z)) of this system
has certain zeros. However, given g; € H 2 if we find a unique solution
of (62) with fo € H?, then we can also find f; € H> for 1 < j <k —1
for all but finitely many values of A. This is because we can determine
these f;’s by substituting fy into the system of equations given in (62)
and deleting the first equation. Since the minor of M(J, z) obtained by
deleting the first row and first column is constant and nonsingular for
all but finitely many values of A, the solutions so obtained will belong
to H? (notice that the term involving 2% on the right-hand side of
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the last equation in (62) will not give rise to singularities, since this
term will be canceled out by a similar term on the left-hand side). The
finitely many exceptional values of A may give rise to eigenvalues of D.
These will be among the elements of the spectrum not accounted for
by (53) in the theorem to be proved.

As is easily seen, we have

(66)
k-1
det(M(A, 2)) = (=1)" (" + 27F) H 1 = M3 D1 —2(A) + Do r-1(N);

this equation is true for every k > 2, even though, for k£ = 2, the matrix
M(], z) has a special form. Let A be fixed. It is clear from (66) that if
A is real and (53) holds, then the equation

(67) det(M(), 2)) = 0

has two roots for z* (i.e., 2k roots for z) on the circumference of the
unit circle. On the other hand, if A is real and (55) is not satisfied,
then this equation has two roots for z*, one inside and one outside the
unit circle (the case of nonreal X is of no interest since the operator D
being self-adjoint implies that all elements of its spectrum are real).

Suppose now that A is such that (55) is not satisfied, and consider the
solution for fy of the system of equations given in (62). This solution
can be written as

(68) fo(z) = det(Mo(), 2))/ det(M(A, 2)),

where My (], z) is the matrix obtained by replacing the first column of
the matrix M(, z) by the column vector

(69) (90("), 91("), -, g1 () + 27 F 10 £o(0)) "
It is easy to see that

k—1
det(My (A, 2)) = fo(0) ((—1>’Hz—k - néDl,“w)

F=0
+ 90(2") D1 g1 + L(g1(z%), ..., gr—1(z")),
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where L(g1,...,gk—1) is a linear combination of gy, ... ,gr—1 the coef-
ficients of which are polynomials in z*. Let ¢} be a root for z* of the
equation in (67) inside the unit circle. Now it is clear that, unless

k-1
(71) (1)t H nj — M3 D1k—2(A) =0,

=0

we can choose fo(0) in a unique way such that ¢(F is a zero for z*
of det(Mo(), z)) as well. In this case, fo defined by (68) belongs to
H?2. As we mentioned above, in this case we can find fi,..., fr_1 in
H? such that equation (62) is satisfied, unless \ assumes finitely many
exceptional values, showing that A does not belong to the spectrum of
D unless it is one of these exceptional values.

Next, we show that (71) can be satisfied for at most finitely many
values of A provided that ¢y in this equation is a root of equation (67).
Indeed, equations (67) (with z = ¢3) and (71) imply

k—1
(=0 ¢t [T + Dox—1(N) =0,
j=0

and this with (71) implies

E—1 2
(72) <H ﬂj) = —ngD1x—2Do k1.
j=0

This is a polynomial equation for A\ with a nonzero leading coefficient
(since mp # 0); hence, it is satisfied only for finitely many values of A.
These values may be among the possible exceptional eigenvalues of D.

Assume now that A is such that (53) is satisfied. We want to prove
that A belongs to the spectrum of D. Since the spectrum is closed and
the set described by (53) is open, we can disregard a finite number of
values of \. Hence, we may assume that D; j_1 # 0. Let ¢} and ¢§
with |¢F| = |¢5| = 1 be the two roots for z* of equation (67) (¢F # (&)
in view of (53) and (66). In trying to solve equation (62), assume that
go is a polynomial in z and g; = 0 for 1 < j < k—1. It is clear from (70)
that it is impossible to choose fy(0) in such a way that the function
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fo(z) given by (68) belongs to H? for every choice of go. Indeed, the
expression

k-1

fo(0) ((—1)k_12_k H nj — 77(2)D1,k—2(>\)> + 90(z*) D1 k—1(N)
7=0
would have to have zeros at zF = (F and 2F = ¢§, (¢F # (&, as

noted above). It is obviously possible to choose gy in such a way that
this condition will not be fulfilled for any choice of fy(0) (it is enough
to make sure that g((¥) # g(¢})), showing that equation (62) is not
solvable in H?. Therefore, the A in question belongs to the spectrum
of D. The proof is complete. O

Similarly to the proof of Theorem 7 presented right after Weyl’s The-
orem 11, we can use Weyl’s theorem to derive the following consequence
of Theorem 13.

Theorem 14. Let k > 1 be an integer, and let a be a measure
on the real line. Assume the recurrence coefficients a, = an(da) and
by, = b (da) satisfy (50). Then the support of a consists of the closure
E of the set of reals \ satisfying (53) plus a bounded countable set F.
All limit points of the set F belong to E.

The proof is straightforward from what was said above. This result
was essentially found by Ya. L. Geronimus [8; Theorem III, p. 537],
but it was stated in terms of continued fractions. The usual proof of
this theorem involves continued fractions and is very different from the
proof given above. See also [9, 10], [11, formulas (VI.5)—(VL.7), pp.
70-71], and [7].
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