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ON THE REMAINDER TERM FOR ANALYTIC FUNCTIONS
OF GAUSS-LOBATTO AND GAUSS-RADAU QUADRATURES
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ABSTRACT. We study the kernels in the contour integral
representation of the remainder term of Gauss-Lobatto and
Gauss-Radau quadratures, in particular the location of their
maxima on circular and elliptic contours. Quadrature rules
with Chebyshev weight functions of all four kinds receive spe-
cial attention, but more general weights are also considered.

1. Introduction. Let I' be a simple closed curve in the complex
plane surrounding the interval [-1,1] and D be its interior. Let f

be analytic in D and continuous on D. We consider an interpolatory
quadrature rule

(1) [ st =3 pm) + Ra(f)

with
(1.2) 1<y <71ny_1<:---<7m1 <1
30.
N
(1.3) wy(z) =wn(z;w) = H(z -7,), z2€C,

v=1

denote its node polynomial (which in general depends on w), and define

(14)  py(zw) = [1 %w(t) dt, zeC\[-1,1],
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210 W. GAUTSCHI

then, as is well known, the remainder term Ry in (1.1) admits the
contour integral representation

1
(1.5) Rn(f) = T?{KN(z;w)f(z)dZ,
™ Jr
where the “kernel” K can be expressed, e.g., in the form
(1.6) Ky(zw) = 5EY - cp
’ wn(z3w)’

This is easily verified by applying the residue theorem to the inte-
gral (2mi)~" §.[f(2)wn (t)/((z — t)wn(2))] dz and subsequent integra-
tion in ¢, recalling that the weights A\, in (1.1) are given by A\, =
f_ll[wN(t)/((t — 7 )wh (1,))]w(t) dt, since (1.1) is interpolatory. Note
that wy in (1.3) and (1.4) may be multiplied by any constant ¢ # 0
without affecting the validity of (1.6). It is also evident from (1.6) that

(1.7) Kn(zZ;w) = Kn(z;w).

In order to estimate the error in (1.1) by means of

(1.8) |Bn(£)] < (2m) (D) max | Ky (25 w)] - max | £(2)],
zel zel

where ¢(T") is the length of the contour I', it becomes necessary to study
the magnitude of | K| on I'. This has been done in a number of papers
(see [1, §4.1.1] for references) for Gauss = type and other quadrature
formulae, and for contours I' that are either concentric circles centered
at the origin or confocal ellipses with focal points at £1. The thrust
of this work has been directed towards upper bounds, or asymptotic
estimates, for the maximum of |K | in (1.8). In an attempt to remove
uncertainties inherent in such estimates, we determined in [2] (see also
[3]), for Gauss formulae, the precise location on I' where |K | attains
its maximum, and we suggested simple recursive techniques to evaluate
Kn(z;w) for any z € C\[—1, 1]. Here we investigate, in the same spirit,
quadrature rules of Gauss-Lobatto and Gauss-Radau type, especially
for any of the four Chebyshev weight functions

o OTUERL -0

wy(t) = (1= )72 (1+6)7, wa(t) = (1—-t)2(1+1)72,

o=
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In Section 2 we consider circular contours and general weight func-
tions. In Section 3 explicit formulae are derived for the Lobatto and
Radau kernels Ky (;w) with w = w;, ¢ = 1,2,3,4. Their maximum
moduli are analyzed in Section 4, both on circular and elliptic contours.

2. Some general results for circular contours. In this section,
' =0C,, C, ={z € C: |zl =r}, where r > 1. For positive weight
functions w and quadrature rules of Gaussian type, with NV = n, it is
known from [2] that

2.1 K, (z;
(2.1)  max [ (2;w)]
K, (r;w) if w(t)/w(—t) is nondecreasing on (—1,1),
B |Kp(—r;w)| if w(t)/w(—t) is nonincreasing on (—1,1).
We now explore the implications of this result to Gauss-Lobatto (Sub-
section 2.1) and Gauss-Radau formulae (Subsection 2.2).

2.1. Gauss-Lobatto formulae. These are the quadrature rules (1.1)
with N=n+2, 7y = —1, n = 1 and Rn(f) = 0 whenever f € Pa,11
(the class of polynomials of degree < 2n + 1). They are clearly
interpolatory. We denote w’(t) = (1 — t*)w(t) and write m,(;;w’)
for the polynomial of degree n (suitably normalized) orthogonal with
respect to the weight function w’. It is well known that

(2:2) wnt2(z;w) = (1 — 2%)ma(z;0"),

from which there follows

proaziw) = [ BETAED

= /_1 (i w?) wL)wL(t) dt = pn(z;w")

z—t
and, therefore, by (1.6),

K, (z;w")

(23) Knpa(z0) = =220

Here, K, (-;w”) is the kernel for the n-point Gauss formula relative to
the weight function w’. Since |1 — 22| attains its minima on C, at
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z=rand z = —r, and since w’(t)/wk(—t) = w(t)/w(—t), we have as
an immediate consequence of (2.1) that

(2.4 Kpalsw)| = § 7oAt
. a. n , =
Tecr 1Bt L K (—rywh)],

depending on whether w(t)/w(—t) is nondecreasing or nonincreasing,
respectively. In particular (cf. [2, p. 1172]), for the Jacobi weight
function w(t) = (1 — t)*(1 +t)?, a > —1, 8 > —1, the first relation in
(2.4) holds if o < 8 and the second if o > .

2.2.  Gauss-Radau formulae. There are pairs of such formulae,
namely, (1.1) with N = n+1, 7y = =1, and (1.1) with N = n+ 1,
71 = 1, both having R, (f) =0 for f € Py,. It suffices to consider one
of them, say the former, since the kernels of the two formulae are simply
related. If we denote w(—t) = w*(¢) and write Kj(ijl) (; w) for the kernel

of the Radau formula with 7y = —1 and 7 = 1, respectively, a simple
computation indeed will show that Kﬁl)(z;w) = —Kl(v_l)(—i; w*),

where bars indicate complex conjugation. Therefore,
+1 -1 — *
(2.5) KN (5 0)] = [K Y (~5w7)),

i.e., the modulus of KJ(VH) for the weight function w at the point z has

the same value as the modulus of KJ(V_I) for the weight function w* at

the point —Zz, the mirror image of z with respect to the imaginary axis.

For the Radau formula with 7y = —1, we write w?(t) = (1 + t)w(t)
and have, as is well known,

(2.6) Wni1(z;w) = (1 + 2)m,(z;w).
There follows, similar to the case of Lobatto formulae,

K, (z;wh)

2. K, : =
(27) wra(zsw) = =250

where K, (-; wf?) is the kernel for the n-point Gauss formula relative to
the weight function w®. Since |1 + z| on C, attains its minimum at
z = —r, we can now apply the second result in (2.1), giving

_ | En(=rswh)]

2. K, ; =
(238) max K (3 0)| = =
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provided wf(t)/wf(—t) is nonincreasing on (—1,1). Unfortunately,
this condition is not satisfied for the Chebyshev weights w, wq, w3 (cf.
(1.9)). We conjecture, in fact, that the maximum in (2.8) is attained
at z = r, rather than z = —r, when w = wj (cf. Subsection 4.2).

3. Remainder kernels for Chebyshev weight functions. In
this section, after some preliminaries on orthogonal polynomials, we
provide explicit formulae, for Lobatto = and Radau = type rules, of
Ky (;w) when w =w;, i = 1,2,3,4 (cf. (1.9)).

3.1. Preliminaries. We shall need some facts about Jacobi polynomi-
als with half-integer parameters. They are given here in a form general
enough to be applicable (if need be) to Lobatto and Radau formulae
with multiple fixed points.

Lemma 3.1. The polynomial of degree n orthogonal on (—1,1) with
respect to the weight function (1— t2)*1/2+k, k > 0 an wnteger, is given
by Tr(llj_)k (t), where Ty, denotes the m*" = degree Chebyshev polynomial
of the first kind.

Proof. See Equation (4.21.7) in [4] and the paragraph following this
equation. O

The following two lemmas are also known, but are stated here in
a form more suitable for our purposes. We recall that Chebyshev
polynomials U, V;, of the second and third kind (orthogonal relative to
the weight functions (1 —#2)'/2 and (1 —t)~/2(1 +1)'/2, respectively)
are given by

sin(n +1)8
sin @

cos(n + £)6

3.1 U, 0) =
(3.1) (cos ) o0

, Va(cosf) =

Lemma 3.2. Let U, be the polynomial of degree n orthogonal on
(—1,1) with respect to the weight function (1 —t)Y/2(1+t)Y/2+* k>0
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an integer. Then

(3.20) Uno(t) =Ux(t),

(3.2¢)

U kt_L U . (n+k+2)(n+k+1) .
n,k( ) - 1+t { n+1,k—1( )+ (TL+ %k‘—f— %)(n—i—%k—i—l) n,k—l( )}7

k=1,2,3,....

Proof. Define U,, 1,(t) = [(n!(n + k + 1)!y/7)/(20(n + k/2 + 1)['(n +
k/2+3/2))]P,51/2’1/2+k)(t), and use the second relation in [ 4, Equation
(4.5.4)] with a =1/2, = —1/2 + k. O

Lemma 3.3. Let V,;, be the polynomial of degree n orthogonal on
(—1,1) with respect to the weight function (1—1t)~Y/2(1+4)1/2+k k>0
an integer. Then

(3.30) Vao(t) = Va(t),
(3.31)
Vk (t)_L{V 0+ (n+k)(n+k+1) Vv (t)}
A T R (n+ Lk)(n+ Lk+ 1) ™ L0

k=1,2,3,....

Proof. Define V,, 1(t) = [(n!(n + k)!y/7)/(T(n + k/2 + 1/2)I'(n +
k/2+ 1))]P,§71/2’1/2+k)(t), and use the second relation in [ 4, Equation
(4.5.4)] with a = —1/2, = —1/2 + k.0

3.2. Chebyshev-Lobatto formulae. We begin with the weight function
wy and consider (1.1) with w = wy, N =n+2, 7y = -1, 74 = 1,
Ry (f) =0 for f € Pa,41. Since the nodes 7, 2 < v < N — 1, are the
zeros of 7, (+; (1 — t?)wy) = m,(-;w2), we may take

(3.4) Wnie(z3wy) = (1= 22U, (2),
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giving

(35) pusa(ziwn) = / A=0n®) ) 1)t / Un(®) o 1) .

1 z—1

Now it is well known (cf. [2, p. 1177]) that

utl — uf(n+1) 1 Un(t) T
(3.6) Un(z) = B w— /1 . _tUJ2(t) dt = e

where z and u are related by the familiar conformal map
1 -1
(3.7) z= §(u+ u™), |ul >1,

which transforms the exterior of the unit circle, {u € C: |u| > 1}, into
the whole z-plane cut along [—1,1]. Concentric circles |u| = p, p > 1,
thereby are mapped into confocal ellipses

1 . .
(3.8) E,={2z€C:z= §(pe“9 +p~te”), 0 <9 < 21}

with foci at 1 and sum of semiaxes equal to p.

Substituting (3.6) in (3.4) and (3.5), and noting that 22 — 1 =
(u —u~1)%/4, one obtains

4m
S untl(y — ) (untt — g (ntD))”

(39) Kn+2(z;w1) =

Proceeding to the weight function ws, we recall that the nodes 7,,
2 < v < N —1, are now the zeros of m, (:; (1—t?)ws) = m, (; (1 —2)3/?),
hence, by Lemma 3.1 (with k& = 2), the zeros of T}/, ,. Therefore,

wna(z3wz) = (1= 2%)T,/ 5 (),
which, by the differential equation satisfied by 7},42, becomes

wna(z3w2) = 215 15(2) = (n+2)*Toia(2).
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With the help of

Tns2(2) = 5[Unta(2) = Un(2)l,  Tpys(2) = (n+2)Unta(2)

one then gets

n+ 2
2

wnt2(z;w2) = {=(n+2)[Un2(2) = Un(2)] + 22Un+1(2)},
which can be simplified, using the recurrence relation 22U, 11 = U2+
U,, to

—w {Un+2(z) _nt 3Un(z)} .

3.10 n ; =
(3.10)  wnt2(z;w2) o

In terms of the variable u, cf. (3.7), using the first relation in (3.6), this
can be written as

1 2
wny2(2z;we) = 7—(71 + 1)+ ){u"+3 — ()

2(u —u~t)

_n+t3 (un+1 _ u—<"+1>) }
n+1

From (3.10) and the second relation in (3.6), we find

1)( 2 n
Prt2(25w2) = _ntl) n+ / v +2 2(t) dt
3 [ ULt
—"+ ()wz(t)dt}
n+1/)_;,2z2—1
_ (n+(n+2)m u? n+3
N 2yntl n+1]"
Therefore, finally,
T w - w3 - Z—ii’(ufu’l)

(3.11) Knya(z3we) = wntl ynt3 _ = (n+3) _ n_ﬁ(un—l—l — y— (D)’

In the case w = w3 we have wy,2(t; w3)

(1 2)m(t (1 21+
t)3/2); hence, by Lemma 3.2 (with k& = 1) and

1) and (3.2,),
{ n+2

n ) :1_2U ]-_ n
wnt2(2;w3) = (1 = 27) z +1(8) + =

Un(z)} .
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Using (3.6) together with 1 — z = —(u — 1)?/2u yields

lu—-1 2
Wnt2(z;ws) = u {un+2 _ u—(n+2)+n + (un+1 _ u_("+1)>} '

2u+1 n+1
Furthermore,
1
w t;w
pn+2(z;w3) :/ 4’1’%%2( ! 3) wg(t) dt
1 z—1t
UV Upya(t) + 222U, (¢
:/ nr®) + o "()wQ(t)dt
1 z—1t
T 1 n+2
s ntl)’
giving
(3.12)
Kpia(555) = ——2 241 1
+2(ZyWw3) = — — — -
n ) untl gy — 1 yn+2 — g (n+2) 1 Z_ﬁ(un+1 —u (n+1))
The case w = w4 is easily transformed to the previous case,
since wa(t) = wz(—t) implies wpi2(z;ws) = (=1)"wpi2(—2;ws)

and ppia(z;ws) = (1) ppia(—2;ws). Therefore, Knio(z;ws) =
—Kpi2(—2z;ws) or, equivalently,

(3.13) Kn+2(z;w4) = —Kn+2(—2; ’wg).
The kernel for w = w, is thus obtained from that for w = w3 essentially
by reflection on the imaginary axis.

3.3. Chebyshev-Radau formulae. In analogy to (3.6) one has

T S T LVt 2m

w+ 1 ) w3(t)dt:

(3.14)  V,(z) = P T

The first relation follows from the second relation in (3.1) by writing
all cosines in exponential form, using Euler’s formula, and then putting
u = €. To prove the second relation, substitute ¢ = cos 6 to obtain

1 1 1
n(t T 5)0cos 50
/ —V()wa(t)dt:2/ cos(n 1 5)0cos 50 4
12—t 0 z —cosf
_ /7r cos(n + 1)0 + cosnf
—Jo z —cosf

de,
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and then use Equation (5.3) in [2] and the equation immediately
following it to evaluate the last integral.

For reasons indicated in Subsection 2.2, we consider only Radau
formulae with the fixed point at —1. Thus, N = n+ 1, 7y = —1
n (1.1), and Ry (f) =0 for f € Py,. We treat in turn the four weight
functions w;, 1 = 1,2,3,4 (cf. (1.9)).

For w = wy, in view of m,(+; (1 + t)wy) = m,(-;ws), we can take
wnt1(z;w1) = (1 + 2)Vi(z), which, by the first relation in (3.14) and
1+ 2z = (u+ 1)%/2u, gives

1
wn+1(z;w1) = §(u+ 1)(’“” +u—(n+1))

and, by the second relation in (3.14),

( ] ) _ 2r
Pn+1(R;W1) = (u — ].)Un )
hence
4
3.15 K, ; = .
( ) +1(25w1) (uZ = 1)(u2" 1 £ 1)

In the case w = ws, we are led to m, (+; (14+t)ws) = 7, (5 (1—1)/2(1+
t)3/2) and may apply Lemma 3.2 and (3.2;) to obtain

nE2y o).

wn+1(z;w2) = (l + Z)Un,l(z) = Un-l-l(z) + ntl "

Using (3.6), we find

1 2
Wnt1(z;we) = p— {u"+2 —y~(n+2) Z—il (un+1 _ u—(n-i-l))}

and

™ _ n+2

giving

T 1—u_2+2—ﬁ(u—u_1)

untl unt2 — uf(n+2) + Zi% (unJrl _ u—(n+1)) .

(3.16) K,i1(z;w2) =
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For w = w3, since 7, (+; (1 + t)ws) = mn (- (1 — )~ Y2(1 + t)%/?), we
can appeal to Lemma 3.3 (with k¥ = 1) and (3.3;) and obtain, similarly
as above, using (3.14), that
(3.17)
2ru+ 1 w4 %

_ 2 — 1 2n+43 1 —n\"
wh = L O 4 2 )

Knyi(z5w3) =

Finally, when w = wy, we have (1+t)wy = wa, so that w41 (2;ws) =
(14 2)U,(z), and we find, using (3.6), that

2T u—1
un+1 (u + 1)(un+1 _ u—(n+1)) .

(3.18) K,i1(z;ws) =

4. The maximum of the kernel for Chebyshev weight func-
tions. In this section we present results, in part theoretical, in part
empirical, concerning the location of the maximum of |Ky(z;w)| as
z varies on the circle () or the ellipse &,, both for Lobatto and

Radau type formulae, and for the Chebyshev weight functions w = w;,
i=1,2,3,4 (cf. (1.9)).

4.1. Lobatto formulae. For circular contours, the question of interest
is already settled by the discussion in Subsection 2.1, for any of the four
Chebyshev weight functions (in fact, for arbitrary Jacobi weights). For
elliptic contours £, (cf. (3.8)) we must insert u = pe’” in the respective
formulae for K, 42(-;w;) and study the behavior of |K,2(;w;)| as a
function of ¥. Because of (1.7), it suffices to consider 0 < ¢ < , and
for the weight functions w; and ws to consider 0 < ¥ < 7/2, because
of the additional symmetry |K,+2(—2;w;)| = |Kpy2(z;w;)], i = 1,2.

The analysis is simplest in the case of w = w;. We have

[u™ —u ™% = p?™ 4 p 2™ — 2cos2m¥, u = pe'”,

2

which, for any natural number m, attains its minimum (p™ — p~"™)° at

¥ = 0. Therefore, from (3.9), one immediately obtains

1 _
max | K (2 w1)| = Knto (5 (p+p7") ;w1>
_ 4
(p—p~ ) (P2 = 1)

(4.1)
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Thus, we have

Theorem 4.1. The kernel of the (n + 2)-point Lobatto formula for
the Chebyshev weight function wy attains its maximum on the ellipse
&, on the real axis; the value of the mazimum is given by (4.1).

For w = wy and w = w3z we have only empirical and asymptotic
results. In the case w = wq, computation shows that |K, 2(z;ws)|,
z € &,, attains its maximum on the real axisif n =1 orn =2. If n is
odd and > 3, the maximum is attained on the real axis if 1 < p < pp,
and on the imaginary axis if p, < p (at either place if p = p,). If
n > 4 is even, the behavior is more complicated: we have a maximum
on the real axis if 1 < p < p!,, on the imaginary axis if p, < p, and in
between if p!, < p < p,, where p!, p, are certain numbers satisfying
1 < p!, < pn. Numerical values for n = 3(1)20 have been determined
by a bisection procedure and are shown in Table 4.1.

TABLE 4.1. The bounds pl,, pn, n = 3(1)20, for Lobatto
formulae with Chebyshev weight wo.

n| p, Pn | M| Py Pn | M| Py Pn

3 1.4142 | 9 1.0350 | 15 1.0127
4(1.2093 1.5955 | 10 | 1.0287 1.3138 | 16 | 1.0113 1.2237
5 1.1170 | 11 1.0235 | 17 1.0099
6 | 1.0822 1.4483 | 12 | 1.0199 1.2756 | 18 | 1.0089 1.2051
7 1.0580 | 13 1.0169 | 19 1.0080
8 | 1.0451 1.3671 | 14 | 1.0147 1.2466 | 20 | 1.0073 1.1896

The empirical observations above can be verified asymptotically as
pd 1, or as p — o0, for any fixed n. In the first case, a lengthy
calculation reveals that when ¥ =0 (i.e., 2= (p+ p~1)/2),

(4.2)

1 o1 N 3m =2
‘Kn+2<§(ﬂ+ﬂ aw2> (n+1)(n+2)(n+3)(ﬂ 7% pll,

whereas, for other values of ¥, including ¢ = 7/2, K, o is either
O(1) or O((p — 1)7') as p | 1. Interestingly, for example, there
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are local peaks of O((p — 1)7!) for values ¥ € (0,7/2) satisfying
(n + 1)sin(n + 3)¥ — (n + 3)sin(n + 1)¥ = 0. When p — oo, one
finds
(4.3)

1/2
(n+3)m n?—5 9
Kppo(ziwg)| ~ e Jg g 79 2w
[ Knv2(zw2)] (n+1)p?nt3 (n+1)(n+3)p o8

p — 0.

For n = 1 and 2, the coefficient multiplying cos 29 in (4.3) is positive,
while for n > 3 it is negative, which explains the behavior observed, at
least when p is large.

In the case w = ws, there is numerical evidence that the maximum
of | Ky y2(-;ws)| on &, is attained consistently on the positive real axis.
This can be verified asymptotically, both for p | 1 and p — co. In the
first case,

1 _ (2n + 3)w 9
44) Ko (=(0+p sws )| ~ —TT () 1y-2, 1,
(4.4) +2 <2(P p~) 3) (n+1)(n+2)(ﬁ? ) P
the value at z = —(p + p~1)/2 being of the same order, but with

(
smaller coefficient 37/((n + 1)(n + 2)(2n + 3)). Again, there are sharp
peaks of O((p — 1)71) at values of ¥ € (0,7) satisfying, this time,
(n + 1) sin(n + 2)3 + (n + 2) sin(n + 1)9 = 0. In the second case,

(4.5)

2(n+2)w 2 +4n+1 1 eosd 1/2
n ot 1)pPn s (n+)(n+2)” !
p — 00.

Kopi2(z;ws)| ~ (

The same behavior, modulo reflection at the imaginary axis, holds for
w = wy, by virtue of (3.13).

4.2. Radau formulae; circular contours. The case wp, again, is
amenable to analytic treatment. We now have z = re®, + > 1, and, by
(3.7),

(4.6) u=z+ 22—1=ei9<r+ rz_efzi(a),

where the branch of the square root is taken that assigns positive values
to positive arguments. There follows

1 ) —\ —1
Y ;= (26’9\/ r2 — 6*2’9> ,

u2i—1 wu—wu"
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hence
u < 1
w? =17 2/r2 -1’

the bound being attained for § = 0 and § = 7. Furthermore,

2n+1 ,
(7’ +Vr?— 6_%9) " + e~ (2nt+1)i0

2n+1
—12(r+\/r2—1> _1,

with equality holding for § = . Consequently, by (3.15),

w2t 4 1| _

—2n+1
Z ‘7‘ + r2 _ 67219

4 1
(4.7) gle%>5|Kn+1(z;w1)| = |Kpt1(=r;w1)| = AR iR ]

where

(4.8) R=r++r2-1

We have shown

Theorem 4.2. The kernel of the (n + 1)-point Radau formula (with
fized node at —1) for the Chebyshev weight function wy attains its
mazimum modulus on C, on the negative real axis; the mazrimum is
given by (4.7), (4.8).

For w = wy, we conjecture
max |Kpy1(2z;wa)| = [Kpy1(—r;w2)]
ZGCT

- (R-RY) (R 2)

= Rn+2 Z_ié (RnJrZ _ R*("+2)) _ (Rn+1 _ R*(”ﬂLl))

(where the denominator is easily shown to be positive for R > 1), and,
for w = ws,

max K, 4+1(z;ws)| = Kyy1(r; ws)
zeC)

21 R+1 R+ 30
T R R 1 % (Rn+2 + Rf(n+1)) + (Rn+1 + an)’
where R is given by (4.8). When w = wy, the kernel (3.18) is
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sufficiently simple to be treated analytically. Note, first of all, that
by (4.6) we have |u| > R (with equality for 6 = 7), hence

1 > Rn+1 o 1

+1
™" — lur T = RntL’

f(n+1)| > ‘u|n+1 -

u

again with equality holding for § = 7. Next, from the relation (3.7)
between z and u, there follows (2 —1)/(z + 1) = [(u — 1)/(u + 1)]?, so

that
u— 1" |21 2 -2reosf+1 _ (r+1)* (R+1)°
u+1 z4+1|  r24+2rcosf+1 " \r—-1)  \R-1/ °

Here again, the bound is attained for § = 7. Consequently, by (3.18),

R+1 1
(49) zné%): |Kn+]_(2,’, w4)| = |Kn+]_(—’f'; ’LU4)‘ = QWﬁW

This proves

Theorem 4.3. The kernel of the (n + 1)-point Radau formula (with
fized node at —1) for the Chebyshev weight function wy attains its

mazimum modulus on C,. on the negative real axis; the maximum is
given by (4.9), (4.8).

4.3. Radau formulae; elliptic contours. Putting u = pe'” in (3.15),
one obtains, for w = wy,

[ Knt1(25w1)]
_ 4dmp
~[(p* = 2p? cos 209 + 1)(pAn+2 4 2p2n+1 cos(2n 4+ 1) + 1)]1/2”

which clearly takes on its maximum at ¢ = . Thus,
(4.10)
4dmp

L ~1
gt sl = s (5 0+578)) | = Gr iy

and we have

Theorem 4.4. The kernel of the (n + 1)-point Radau formula (with
fized node at —1) for the Chebyshev weight function wy attains its
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mazimum modulus on &, on the negative real aris; the mazimum 1is

given by (4.10).

For w = w2 and w = wg, the kernel is found by computation to behave
more curiously. In the former case, we have a situation similar to the
Lobatto formula for the same weight function, namely, the maximum
is attained on the negative real axis, when n = 1,2, 3, and also when
n > 4, but then only if 1 < p < pl, or p, < p, where p/,, p, are shown
in Table 4.2; otherwise, the maximum point moves on the ellipse &,
from somewhere close to the imaginary axis to the negative real axis
as p increases.

TABLE 4.2. The bounds pl,, pn,n = 4(1)10, for
Radau formulae with Chebyshev weight wa.

/

n| py, Pn P Pn

1.0681 12.267
1.2845 4.7385 1.0506 14.385
5| 1.1518 7.7651 1.0394 16.470

1.0965 10.087 | 10 | 1.0317 18.533

© 0 |3

Asymptotically one finds, consistent with the above, that
(4.11)

(n+2)w 2n+3 1 2
K, ) ~ 1-2 0 ’
[ Kn+1(2; w2)] (n+ 1)p2n+2 (n+1)(n+2)p cos

p — 00,

-

and
(4.12)
6w

1 —1y. -2
Kn+1< 2(P+P ),w2> ~ (n+1)(n+2)(2n+3)(p 1) ) p\l/]-a
the value at the other end approaching the finite limit (2n+3)7/(2(n+
1)(n+2)) when p | 1, and there being the familiar peaks of O((p—1)71)
when (n 4 1)sin(n 4+ 2)9 + (n 4+ 2)sin(n +1)9 =0,0 < ¥ < 7.

For w = w3, there is numerical evidence to suggest that the maximum
is attained on the negative real axis for 1 < p < p,, and on the positive
real axis for p > p,, where p,, is as shown in Table 4.3.
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TABLE 4.3. The values pn, n = 1(1)10, for
Radau formulae with Chebyshev weight ws.

n| pon | m | pa
1]1.1339 | 6 | 1.0022
2| 1.0318 | 7 | 1.0015
3(1.0126 | 8 | 1.0010
4{1.0063 | 9 | 1.0008
5 | 1.0036 | 10 | 1.0006

There is, again, asymptotic corroboration:
(4.13)

2(2n + 3)7 4n? +4n—1
K ; ~
‘ n+1(Z,’LU3)| (2n+ 1)p2n+2 { (2n+ 1)(2n+ 3)p cos s
p — 00,
and
(4.14)
1 67
K, 4 N N _1)-2
“( plpte )’w"’) (n+1)(2n+1)(2n+3)(p )

pdl

There are secondary peaks, as p | 1, of order O((p — 1)) at ¥ =0
and at values of ¥ € (0, ) satisfying (2n + 1) cos(n + 3/2)9 + (2n +
3) cos(n +1/2)9 = 0.

The values p,, in Table 4.3 are conjectured to be solutions of the
equation

(4.15) . = n
P —1=Z e (Pt —1) \p=1/ p— 35

P14 S (P 4 1) <p + 1>2 P+ onts

expressing equality of the values of |K,,1(-; ws)| at both real vertices
of the ellipse &,.

Finally, when w = wy, Equation (3.18) for u = pe® implies
|Kn+1(2; wa))|

_on p? —2pcos+1
Tt | (p242pcos 94+1)(p2nt2 4 p—(2n42) — 2 cos(2n+2)09)

[N
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which is largest when ¥ = 7, giving

1 _
max K, 11(2;w4)| = | Knia <—— (p+p71) ;w4>‘
z€E, 2

o ptl 1
Thus, we have

Theorem 4.5. The kernel of the (n + 1)-point Radau formula (with
fized node at —1) for the Chebyshev weight function wy attains its
mazimum modulus on £, on the negative real azxis; the marimum s
given by (4.16).
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