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ON THE VORTEX SOLUTIONS OF SOME
NONLINEAR SCALAR FIELD EQUATIONS”

MICHAEL I. WEINSTEIN

1. Introduction. Complex scalar nonlinear evolution equations
have been used to model the dynamics of quantum structures. An ex-
ample is the dynamics of quantum vortices in the theory of superfluids
[2, 1]. In [3] a study is made of the effective dynamics of interacting
vortices given nonlinear Schroedinger (NLS), Klein-Gordon (NLKG),
and heat equations (NLH) as exact dynamics. The equations of evolu-
tion are

—iyy = A+ (1—[¢[*)y  (NLS)
Yu =AY+ (1-|y*)y  (NLKG)
Y =A¢+ (1)  (NLH)

where ¢ : RZ x R, — C.

Vortex solutions of these equations are obtained in the form:
(1) U (r,0) = Uy (r)e™?

where (r,6) denotes polar coordinates in R?, and U, (r) satisfies:

(2) —AU+n?/r*U — (1 - |UP)U =0
(3) UW0)=0 and U(r) —1 asr— oo.

Here, A, = 0, + 1/rd, is the radial Laplacian in R?. It can be shown
[3] that a solution of (2)—(3) has the asymptotic behavior

(4a) Un(r) = ar"[1 —r*/4(n+1)] asr—0
(4b) 1-n?%/2r? asr — oo.
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The solutions 9y, (r, 8) for |n| > 1 are vortices in the sense that the
vector field defined by its real and imaginary parts can be thought of
as a flow field with circulation about the zero of ¥ = 4, given by
2mn = [V - dl, where ¢ = 6 denotes the phase of 1. A construction
of the functions U, (r) is presented in [3]. The approach is to convert
(2) to an equivalent integral equation and to solve by iteration. While
this technique constructs the isolated n-vortex ,, it does not give
information which can be used toward a stability analysis of the solution
¥n(r,0) relative to the underlying dynamics. The dynamic stability
question is fundamental, for the effective dynamics are viewed as that
of a set of isolated yet interacting vortices in the limit of small ratio
of vortex core size to inter-vortex distance [1,3]. Our goal here is
to present a wariational characterization of these vortex solutions as
minimizers of a natural relative energy of the system. A relative energy
functional is employed due to the infinite energy of the vortex solutions
(logarithmic divergence). This relative energy functional is natural
from the dynamic standpoint and provides some information about the
stability properties of the n-vortex.

2. A family of approximate problems. We fix n and let U®
solve
(5R) ~AUR+ 02U - (1 [ URPUR =0
(6R) UR(0)=0 and UR(R)=1.

We shall construct a solution of (5R)—(6R) by solving a minimization
problem. Let

n2
™ i) = (197 + 5172 ) + 30 PP
and define
R n .
®) = [ i

Clearly, JE(f) > 0.

Proposition 1. Min{J®[f] : f(0) = 0, f(R) = 1} is attained at a
C*> function U satisfying (5R)—(6R).
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Proof. Let {f;} denote a minimizing sequence. Then,

R
(9) / 10,1512 + n2r=2|f; 2 dr < C

and we have that {f;} is bounded in H'. Therefore, there is a
subsequence with a weak H! limit, and which converges strongly in
LP, for any p > 2. We denote this limit by UF. The foregoing and
the weak lower semi-continuity of the first two terms of J® imply that
JE[f.] = infJE[f]. Computing the Euler-Lagrange equation of J
about the minimizer f, gives (5R)-(6R). That U% € C* follows from
elliptic regularity techniques. O

To pass to the limit as R — oo, we require 4 priori estimates on the
sequence {U%(-,n)}, which are independent of R.

Proposition 2. Let UR(r) solve (5R)-(6R). Then,
(10a) 0.UR(r)>0 forre (0,R) and 0<UR(r)<1
(10b)
PURGY 4 [ 1= URGsPsds = n?UR ()P + 771 - UR()F
0

(10c) UM B) < £
R
(10d) / [1—U%(s)%)?sds < n?
0
(10e) [1—-UR(r)?)? < QT—Z

Proof. (10a): Let w denote 9,U%. Then w satisfies the equation
(LR + r=2)w = 2n%r73U%, where L = —A — 1 + 3(U%)? 4 n2r=2
is a nonnegative operator, being the second variation of JT at its
minimum. We claim that w is positive since the right hand side of
the equation for w is pointwise positive. To see this, observe that
exp(—Ht), where H = L® + 772 is a positivity preserving semigroup
and that H™! = [ exp(—Ht) dt is then also positivity preserving (see

[4]).
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(10b): Multiply (5R) by 720,U, integrate from 7 to s, and then
integrate by parts.

(10c), (10d): Set r = R in (10Db).
(10e):

R
- U = — / 1 — UR(s)2)U(5)0,U(s) ds
< [/TRsu _ U?(s)]st] v
. [/R 573U () (202 (s) + (1 — Uz(s))2/2}ds}

n[nz /TR s 3ds 472 /TR(l —Uz(s))zsdsp}

n?/r.

1/2

1/2

IN

IN

To get the first inequality we used (10b) and to get the second we used
(10a) and (10d). This completes the proof of Proposition 2. O

Using the estimates (10), we can pass to the limit in the weak form
of (2)—(3) to obtain a weak solution of (2)—(3). Elliptic theory can then
be used to conclude that the limiting solution, U(-,n), is a classical
solution.

We also have uniqueness by the following argument communicated
to me by P.L. Lions. Let 8 > 1, and define g = 80U, where U solves
(2)—(3). Let v be any other solution of (2)—(3) and define d = g — v.
Since 6 > 1, we have that for r larger than some Ry, d > 0. We now
show that d > 0 for r < Ry.

First, note that d satisfies the equation —Ad — d + n?/r%d + g3 —
v® = (1 — 02)g®. By the convexity of the function f(s) = s3,
g —v3 < 3¢%(g — v), and, therefore, L(f)d > (1 — 0=2)g® > 0. Here,
L(#) = —A — 1+ 362U? + n*r=2 > L(1), since § > 1. Now L(1) is
the second variation of the functional &,[-] (see section 3) for which
U(-,n) is a minimizer and, therefore, L(1) > 0 and L(#) > 0 for § > 1.
It follows that d > 0 or g > v. Letting § — 1, we have U(-,n) > v.
Similarly, by interchanging the roles of U and v we get v > U, implying
U=nv.
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3. U,(,n) as a minimizer of the relative energy. Let
e(y) = 1/2|Vy|? + 1/4 (1 — ||?)2. It is easily checked formally that
[ e(¥) d*z is a conserved integral for NLS, is decreasing for NLH and
that [ |¢]? + e(y) d®z is conserved for NLKG.

A possible approach to the stability of the n-vortex relative to some
underlying dynamics is the Lyapunov method (see, for example, [5,
7] for an application to the stability of solitary waves of NLS). This
method attempts to exploit the property of an equilibrium being
a (possibly constrained) minimum of a suitable energy functional.
An immediate difficulty is that ¢, (r,n) has infinite energy due to a
logarithmic divergence. This can be seen using the asymptotic relation
(4b). The situation can be remedied by introducing a relative energy
functional [3]:

(1) Ealf] = / e(f) — e(U (-, n))]rdr.

Theorem 2. Min{&,[f] : f(0) = 0, f(co)e ¥ =1} =0, and the
minimum is attained at y,.

Outline of the Proof. First by the analysis of Section 2, £,[g] =
fleR[e(g)—e(U(-, n))]rdr > 0. The result can be obtained introducing
for each admissible f a sequence {f%}, where f%(0) = 0, fE(r) =1
forr > Rand f® — f as R — co. e(f®) is then added and subtracted
in the integrand of (11). The result is then obtained by breaking up
the integral into integrals over different ranges of r and then using the
estimates (10) to pass to the limit. O

4. Remarks on well-posedness and stability. Here we discuss
some questions concerning the dynamics of NLS with the boundary
condition ¥ — exp(inf) as |z| — oo which appear to be open.

(1) Although it is straightforward to prove a local existence result for
NLS in some space with large |z| asymptotics given by e'"?, continuing
to a global solution is nontrivial. For example, in a neighborhood of a
solution v,,, it is natural to use the relative energy functional to obtain
a priori bounds. Since it merely defines a semi-norm, it appears that
more information is required to obtain a global solution.
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(2) The variational analysis of sections 3 and 4 suggests some sort
of stability or metastability relative to data of the form ¥ (r,t = 0) =
(U(r,n)+po(r)) exp(ind), where ¢ is small. In this case, the linearized
system for ¢(r,t) = u + iv is dyw = JLw, where w = (u,v), J
is the unit symplectic matrix and L is the diagonal and self-adjoint
matrix operator with diagonal entries l;; and lzs having the large r
behavior: l;; ~ —A and lss ~ A — 2. Therefore, the continuous
spectrum of L is the entire imaginary axis (an application of Weyl’s
theorem on essential spectrum). This, together with our variational
analysis, suggests that ¢, (r, §) may not be nonlinearly stable and that
the nature of the instability may be of a slow sub-exponential type.
This is in contrast to the study of solitary wave stability, where zero
is an isolated point in the spectrum of JL and possible secular growth
could be eliminated by modulation of symmetries [5, 6, 7, 8].

5. Another question of interest concerns the stability or meta-
stability properties of v, relative to arbitrary initial perturbations
which preserve the boundary condition at co. Are the |n| > 1 vortices
unstable?

REFERENCES

1. J. Creswick, H. Morrison, On the dynamics of quantum vortices, Phys. Lett.
T6A 267 (1980).

2. E. Gross, Dynamics of interacting bosons, in Physics of many particle systems,
(ed. by E. Meeron), Gordon and Breach Science Publishers, Inc., New York, 1966.

3. J. Neu, Notes on vortex dynamics for nonlinear scalar fields, UC Berkeley
preprint, 1987.

4. M. Reed, B. Simon, Methods of mathematical physics IV: Analysis of operators,
Academic Press, Boston, 1978.

5. J. Shatah, W. Strauss, Instability of nonlinear bound states, Comm. Math.
Phys. 100 (1985), 173.

6. M.I. Weinstein, Modulational stability of ground states of mnonlinear

Schroedinger equations, SIAM J. Math. Anal. 16 (1985), 472.

7. , Lyapunov stability of ground states of nonlinear dispersive evolution
equations, Comm. Pure Appl. Math. 39 (1986), 51.

8. A. Soffer and M.I. Weinstein, Multichannel nonlinear scattering for noninte-
grable equations, Comm. Math. Phys. 133 (1990), 119.




FIELD EQUATIONS 827

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NJ 08544

Current address: Department of Mathematics, University of Michigan, Ann Arbor,
MI 48109. e-mail: mw@math.lsa.umich.edu.



