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STUDYING SINGULAR SOLUTIONS OF A
SEMILINEAR HEAT EQUATION BY A
DILATION RESCALING NUMERICAL METHOD

B.J. LEMESURIER

ABSTRACT. A method of dynamic rescaling of variables is
used to investigate numerically the nature of the point singu-
larities of the cubic and quadratic nonlinear heat equations in
one and two dimensions, with evenness and radial symmetry,
respectively. This has allowed solutions to be computed until
the amplitude of the spike has grown by a factor of 10° or
more.

This high numerical resolution is used first to corroborate
the occurrence of singularities of the predicted form for sev-
eral choices of initial data and then to test a conjecture of
Galaktionov and Posashkov [4] concerning the spatial scale
and shape of the solution near the singularity.

1. Background. The equation
(1.1)
¢r=A¢+|¢|" ¢, ¢:R"xQ—=R, QCRY p>1 ¢(0,2)=g(z)

is known to develop point singularities in finite time (Fujita [2,3]). It
also has the trivial singular solutions

(12)  dta)=rE—F,  B=1/p-1), x=p"

It is conjectured that the growth rate of all singular solutions is the
same as for the ODE solutions (1.2). The “ODE growth rate” can be
shown to be a lower bound using local in time existence theory. It has
been shown to be an upper bound also under numerous combinations
of extra hypotheses by Weissler [10], Friedman and McLeod [1], and
Giga and Kohn [5,6].

The latter result is related to a rescaling to u(r, &)

(1.3a) u=A"Ptu, E=x/At), dr/dt=I"%(t)
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(1.3b) A(t) = (t* — t)V/2.

This gives

(1.4) ur = Au+ [uPtu — Bu — %5 - Vu,

with a time-dependent boundary condition unless Q = R%. 1 will

restrict attention to the latter case from now on.

The only nontrivial, 7-independent solutions are the obvious ones
u(T, &) = %k, which correspond to the solutions in (1.2). Further, all
bounded global solutions converge to one of these or to 0, uniformly on
bounded ¢ intervals [6].

However, this result completely loses track of the behavior for large x
and gives no indication of the decay as £ — oo of u for large but finite
7. To study this, another scaling can be used in which the spatial scale
is not enlarged so quickly:

(1.5a) u=\"2(t)u, &=ux/u(t), dr/dt = \72(t)
(1.5b) 1>> p(t) >> A(t) ast—t".

This gives

(1.6)

ur = 0(7)Au + |u|p_1u — Ba(r)u — b(1)€ - Vu,

a(r) = d(In(1/N)/dr, b(r) = d(in(1/p)/dr, 6(r) == (M),
—0as 17— o0

The explicit time dependence of A and p has not been specified as it
will instead be computed dynamically in the numerical scheme below.
For ), this allows checking of the rate asserted above, without knowing
t* in advance. The choice of p will be made in a way that keeps u in
the middle ground between flattening out (as for x4 = A) and forming
a narrow spike (as for 4 = 1). For example, assuming that ¢ decays
monotonically in z, we could require that u(r,1) = u(r,0)/2. It is
necessary to leave p unspecified as we have no theorems yet on the
form that will give this behavior.

There is, however, a conjecture of Galaktionov and Posashkov [4]
that the desired form in one dimension is

(1.7) u(t) = M) (n(1/(t" — D))".
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If this is so (and for higher dimensions also), discarding the u, and
6 - Au terms in the limit 7 — oo suggests that

(1.8) u(r,€) = f(€) = k(L +[¢]*/c) "

for k as above and some positive ¢, and

(1.9) 8(t) ~ —er=™m

for some positive ¢. Galaktionov and Posashkov further argue that

(1.10a) 2n=1
(1.10Db) c=4p/(p —1)*.

As the numerically computed dilation factors will at best be asymptotic
to constant multiples of the conjectured forms, the conjectured form
for A and the limiting value & of u(r,0) are most conveniently tested
by the equivalent statements:

(1.11) a(r)
(1.12) p(7)

d(In(1/X))/dr — a positive constant
u(7,0))P~ Ja(1) — 1.

2. The numerical method. Numerical study of the singular
solutions described above is not straightforward. The solution forms
a spike near which space and time derivatives grow without bound as
the singularity time is approached. Correspondingly, the fineness of
grid point spacing and smallness of time step size required to maintain
numerical accuracy grows without bound, so fixed grids are inadequate.

Periodically refining the spatial grid near the singularity and reducing
the time step on the finer grid appropriately has been more successful
(R. Kohn and M. Berger, personal communication), but I propose here
a method that uses a modified version of the continuous rescalings of
(1.3) and (1.5) so that one computes on a fixed grid in the variables u, 7
and &. It is based on a method introduced for study of the nonlinear
Schrédinger equation in LeMesurier [7] and in [8,9]. It has so far been
applied to radially symmetric solutions in two dimensions and even
solutions in one dimension, fixing the singularity at the origin.
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As mentioned before, the form (1.3b) cannot be used numerically
without knowing t* in advance. Instead one could determine A\ dynam-
ically during the computation by requiring u(7,0) = k, for example.
Setting u,(7,0) = 0 in a variant of (1.6) with x4 = X would give an
equation determining a(7) = (In(1/\)), in terms of the current value of
u(t,-), which can be integrated to determine A. However, this method
is subject to numerical instabilities due to its dependence on data at
the single point £ = 0. This is overcome by instead holding constant
some ¢-integral functional of u(r,-), giving a in terms of a -integral.
Specifically, I have used the condition

(2.1) G(u(r,-)) = / |Vu|? d¢ = Gy, a prescribed constant.

This choice is determined more by computational convenience than
theoretical considerations and is justified simply by the fact that for
the cases studied it gives u(7,0) — a constant, as desired.

This method gives satisfactory but predictable confirmation of the
growth rate and limiting form of u via checking of (1.11) and (1.12).
Of more interest is a modification following equations (1.5) and (1.6).
For this, two side conditions must be imposed to determine A and y, or
rather their logarithmic 7 derivatives a and b. Guided by the expected
form f(€) in equation (1.8), and issues of computational expediency,
the conditions used are almost but not quite (2.1) and

(2.2) M(u(r,-)) := /u2 d¢ = My, a prescribed constant.

These norms are finite for f so long as
(2.3) (p—1)d< 4

and this indeed gives the observed limit on p for the cases d = 1,2
studied. Higher p values could no doubt be used by using norms based
on integrals of higher powers of u and its gradient.

The reason why (2.1) and (2.2) are not exactly the conditions used is
that the presence of ¢ in the resulting expressions for the logarithmic
derivatives of A and p would give a coupled pair of nonlinear ODEs to
solve. Instead, the approximation of discarding the ¢ - Au term from
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these equations gives one an invertible pair of linear algebraic equations
for the logarithmic derivatives. These should give G(u(r,-)) — Go,
M (u(r,-)) = My due to § — 0 so long as (2.3) holds. This is confirmed
by the numerical results.

3. Numerical results. Three principal cases were studied: p = 3
and p = 2 in one space dimension with even data, and p = 2 in two
space dimensions with radially symmetric data. In addition, several
runs were performed with various values of p near 5 in one dimension
and near 3 in two dimensions, which confirm that the useful range of
the current method is as given in (2.3).

In each case, solution with the dynamic similarity rescaling fashioned
after (1.3), (1.4) gave the expected results: u converged to a constant
and (1.11) and (1.12) held, confirming the growth rate of (1.3b). More
specifically, 1 < p(1) < 1.01 at the end of the various computational
runs and it was very slowly decreasing towards 1 in each case.

The more interesting results are derived with the two parameter
rescaling modeled on (1.5), (1.6). These again confirm the growth rate
by having u converge to a constant, bounded profile with (1.11) and
(1.12) holding. The final values of p(7) are in the range 1.004-1.007
and slowly decreasing. The convergence of u is shown in Figures 1-3.

The profiles at the end of each run were then tested against the form
f of the conjecture in (1.8). As the numerical rescalings can at best
give the expected form up to a horizontal and a vertical dilation, the
parameters « and c in the expression for f were chosen in order to have
it meet the u profile at the origin and one other £ value. The resulting
fits are excellent as shown by Figures 4 and 5.

The most interesting question, and the one requiring computations
that reach very close to the singularity, is the horizontal scaling rate u.
The conjecture of (1.9) and (1.10) was tested for the p =3, d =1 case
by plotting &(7) - 7 against 7 in Figure 6. This indicates approximate
convergence to a constant as the conjecture predicts, but to more
fairly consider other possible values for 7, log(d(7)) was plotted against
log(7) for all three cases in Figures 7-9. The conjecture now implies
convergence to a straight line with slope —2n (—1 according to (1.10)).
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FIGURE 1la. u(7,€) vs. { ford=1,p=3at 7 =0,5,10,15,20.
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FIGURE 1b. The same, further from the origin.
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FIGURE 2a. u(r,€) vs. £ ford=1, p =2 at 7 = 0, 10, 20, 30, 40, 50.
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FIGURE 2b. The same, further from the origin.
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FIGURE 3a. u(r,€) vs. £ for d =2, p =2 at 7 = 0, 10, 20, 30, 40.
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FIGURE 3b. The same, further from the origin.
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FIGURE 5. Final data u(40,¢) for d = 2, p = 2 compared to the conjectured profile.
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FIGURE 6. §(7) -7 vs. Tford=1, p = 3.
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FIGURE 7. Log §(7) vs. logT ford =1, p = 3.
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FIGURE 8. Log 6(7) vs. logT ford=1,p = 2.
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FIGURE 9. Log §(7) vs. log7 for d =2, p = 2.
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In each one-dimensional case the result is qualitatively confirmed,
while in two dimensions the logarithmic form with a different value for
7 is indicated. The final “2n” values from the graphs are:

for each p value in one dimension, 1.1 and slowly decreasing

for p = 2 in two dimensions, 1.4 with no clear trend up or down.

The convergence to the predicted value here is not nearly as good
as for p above, as one expects from an attempt to observe a slow
logarithmic correction to a power law. Further computations to larger
7 values will soon be done to further study this question. Also [4]
should be extended to radial solutions in several dimensions for checking
against the numerical results that are now available. In particular, it
is hoped that a different 1 value will arise.
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