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ALMOST PERIODICITY AND DEGENERATE
PARABOLIC EQUATIONS

MARCO BIROLI

1. Introduction and results. In the present paper we are
interested in the almost periodic solutions to degenerate parabolic
problems with special emphasis on the case of Stefan or porous media
equations. We recall that the case of nondegenerate parabolic problems
has been studied in the framework of nonlinear semigroups theory in
[3] (for the case of linear or nonlinear variational inequalities see also

[2]).
The central tool in this paper is Haraux’s theorem on the existence

of almost periodic solutions to abstract first order (in t) equations with
m-monotone operators, which are not uniformly monotone.

We give now the precise framework of this paper.

For the definition of (weakly) almost periodic functions in abstract
spaces, we refer to [1, p. 1]. Let f(t) be a function in L], (R;X),
p > 1, and consider the function

1
o) = [ f(e+)ds

from R to LP(0,1;X); we say that f is SP-(weakly) almost peri-
odic (bounded) in X if g(t) is (weakly) almost periodic (bounded) in
£7(0,1; X).

Let Q C RY be a bounded open set with smooth boundary I'; consider
the degenerate parabolic problem

(1.1) Diw—AB(u) > f,  Blu)r=0
where (8 is an increasing locally Lipschitz continuous function on R
with 8(0) = 0.

The Cauchy problem for (1.1) has been studied by H. Brézis, [4], as
an application of general results on nonlinear semigroups, choosing as
a Hilbert space the space H~!(Q).
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We define the functions ®(r) and y(r) by the following relations
(1.2) o(r)

r :/Orﬁ(s)ds
(13) 1) = [ @) as

We consider the following assumptions on the function §:

c|r|™ — ey < @(r) < es|B(r)* + ca

w | OF +er
1B(s)| < ¢e5|8'(s)] + co (¢; >0,i=1,...,6;m > 2).

Theorem 1. Let f be S*-almost periodic in L*(Q); then there exists
a solution u to (1.1) which is weakly almost periodic in L™(Q) and
such that the trajectory of y(u) is relatively compact in L*(Q) and S*-
bounded in H* ().

We apply the result of Theorem 1 to the cases:

(1.4) B(r)=—r"+(r—1)" (Stefan case)

(1.5) B(r) = |r|™%r (Porous media case).

Corollary 1. Let f be S%-almost periodic and (3 given by (1.4); there
exists a solution to (1.1) which is weakly almost periodic in L?(Q) and
such that B(u) is almost periodic in L*(Q)) and S?-almost periodic in
H(Q).

Moreover, if u is a solution of (1.1) bounded in L*(2) and @ is the
solution of a Cauchy problem for (1.1) with initial data ug in H=*(£2)
with B(u) in L*(Q), we have lim;_, ;o (B(u) — B(@)) = 0 in L2(2).

Then if uy, uz are two solutions to (1.1), which are almost periodic in
H=1(Q), then B(u1) = B(uz) and (u; — ug) is independent of t.

Remark 1. We observe that (1.1) can be written as

(1.1") Diyp(v) — Av 3 f, v =0



ALMOST PERIODICITY 595

where 1 is the inverse graph of ; from Corollary 1 we obtain the
existence of a unique L?(£2)-almost periodic solution, which “attracts”
all solutions to the Cauchy problem for (1.1') in L?*() as t — +oo0.
Finally, we point out that the uniqueness of the L?(Q2) almost periodic
solution of (1.1) does not imply the uniqueness of the L?(2) bounded
solution of (1.1").

Corollary 2. Let f be S*-almost periodic in L*(2) and (3 given
by (1.5); there exists a solution of (1.1) which is almost periodic in
L™(Q) and we have uniqueness for the solution of (1.1) which is almost
periodic in H 1(Q). Moreover, if i is the solution of a Cauchy problem
for (1.1) with initial data uo in H—*(2), we have

lim (& —u)=0 n L™(Q).

t——+o0

In section 2 of this paper we prove that, if @ is the solution of the
Cauchy problem for (1.1) with @(0) = ug, ®(ug) € L'(£2), then ®(%)
is bounded on Ry in L'(). This result, together with the one of A.
Haraux, recalled in the same section, gives the existence of an L™ (2)-
weakly almost periodic solution. In section 3 we finish the proof of
Theorem 1 and in section 4 we give a proof of Corollaries 1 and 2.

Finally, we observe that the results in this paper can be extended to
other cases of boundary conditions.

2. Existence of a weakly almost periodic solution in L™(Q).
Consider the Cauchy problem

Do — AB(a) > f
Bla)r =0,  @(0)=uo € H (Q)

where B(ug) is in Hj () (for the results in this section it is enough to
assume P(ug) € L'(Q)).

From the results of [4], (2.1) has a solution in H'(0,T; H (), with
B(@) in the space L%(0,T; H}(2)), VT > 0.

We multiply the equation (2.1) by (@) and we obtain

(22) o [ #@as) + @13 < [ o) s

(2.1)
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(|| - |]1 denotes the usual norm in the space H}(Q2)).

From (2.2) we have

ey o [e@a)+js@iz<a [ ifan

and by (H) we can write (2.3) as

(2.4) Dt(/ﬂfb(ﬂ)da:> +02/Qq>(a)dmgcl/ﬂ|f|2dx+03.

The boundedness of ®(@) in L!(2) on R, can be proved by (2.4) and
the following easy lemma (probably well known).

Lemma 1. Let ¢(t) be a positive absolutely continuous function such
that

(2.5) Dep(t) +an(t) <n(t),  ¢(0)=v, a>0,
where 1(t) is S'-bounded on R ; then
Pt) <C

where C' depends only on 1 and Sup R, j;”l In(s)|ds.

We omit the proof of the lemma, which is very easy.

From (H) we obtain
(2.6) / |a|™ dz < / ®(a)dz+Cy <C
Q Q
on R, where C is a constant independent of ¢ in R,.

From (2.3) we obtain
(2.7)

t+1 t+1
/ ||ﬂ(a)||§dsg4sup3+/@(a)dx+201/ /|f|2dacds.
t Q t Q
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Then

t+1
(m)/'nmwam
t

t+1
§C5<SupR+/<I>(a)dx+SupR+/ /|f|2dwds>.
Q t Q

By (2.6), (2.7), (2.8) using classical methods to prove the existence of
a bounded solution [1] an existence result can be proved for a solution
u of (1.1) on R such that

(2.9) /megd
Q
t+1
(2.10) [ switas<c
t
t+1
(2.11) / ||Dsu|*, ds < C,
t

where C” is a constant independent of ¢ in R; we observe that (2.11)
implies that uniform continuity on R of u in H ().

We recall the following result due to A. Haraux, [5].

Theorem 2. Let H be a Hilbert space and A a maximal monotone
operator in H. Consider the equation

(2.12) Diu+ Au> f

where f is an S% almost periodic function in H. If there exists a
solution 4 of (2.12) which is uniformly continuous in H and with
relatively compact trajectory, then there exists a solution of (2.12) on
R which is almost periodic in H.

From the proof of Theorem 2 we can assume that the range of u is
contained in the convex closure of the range of w.

Theorem 2 leaves open the question if all solutions of (2.12) uniformly
continuous on R with relatively compact trajectory are almost periodic
in H. The answer is positive if A is a subdifferential [5].



598 M. BIROLI

We observe now that the operator v — (—Af(v)) can be seen as
a subdifferential operator in H~!(Q); then from the first part of this
section we have the existence of a solution u to (1.1) which is almost
periodic in H~!(Q) and bounded in L™ ().

From the boundedness in L™ () we obtain easily the weak almost
periodicity of w in L™(Q).

We recall also that from (2.10) B(u) is S? bounded in H'(2).

3. Proof of Theorem 1. By approximation (formally by multipli-
cation of (1.1) by D;5(a)) we easily obtain

(3.1) / D@ da -+ SDA(I8@)3) / F4/ (@) Do (i

From (3.1) (2.10) and the S*-boundedness of f in L*(2) we deduce

t+1
(3.2) / / Doy ()2 dw ds < C
t Q

where C is a constant dependent on ||3(ug)||; and on the S* bound of
f in L*(Q2) but independent of ¢ in R..

By approximation of our problem by nondegenerate parabolic prob-
lems and taking into account (2.9) and the S? boundedness of f in
L?(Q) we obtain

t+1
(3.3) / 7(@)]2ds < C

where C'is a constant dependent on [, ®(uo) dz and on the S? bound
of f in L?(Q) but independent of ¢ in R (formally is a multiplication
of (1.1) by u).

From (3.3) we can deduce, by standard methods,
t+1 t+1
(3.4) / / Dery(w)? de ds < C, / ()| ds < C.
t Q t

From (3.4) the relative compactness in L?(Q) of the trajectory of y(u)
can be easily proved.
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4. Proof of Corollaries 1, 2. (a) Corollary 1. We prove at first
the almost periodicity of 3(u). We observe that in our case 5(s) = y(s)
and B'(s) is bounded on R (then the results of section 3 hold again for
f S? bounded in L?(Q)). From equation (1.1) we can easily prove that

/01 /Q B(u(t +n,z)v(n, z) dn dz

is almost periodic for every v € C3(0,1; H3(£2)).

Taking into account the boundedness of y(u) in L?(Q2), we obtain
that y(u) is S? weakly almost periodic in L?(£2) and from (3.2) and the
relative compactness of the trajectory of u in L?(Q2) we deduce that
v(u) is S? almost periodic in L*(Q2).

Fix a sequence {s,} in R; we can suppose (Ve > 0)

1
(4.1) /0 /Q|B(u(t+n+sn,x))—X(t+n,w)|2dndw§6, VieR

for a suitable function X(¢,z) and n > n..

From (1) there exists, Vt € R, t* € (t,t + €'/?) such that
(42) 1B + s2)) = (¢ 2) P d < <1
Q

(t* can depend on n and the set of the points t* is not negligible).
From (3.2) we have

(4.3) / 1B(u(t” + sn, 7)) — Blult + sp, )| dw < Ce*/*
Q
and also

(4.4) /Q IX(E,2) — X(t, 2)| do < CeY/4.

From (4.3), (4.4) we can deduce the almost periodicity of [(u)
in L'(Q); then, taking into account the relative compactness of the
trajectory of B(u) = v(u) in L?(f2), the almost periodicity of 8(u) in
L?(Q) follows.
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We observe now that in our case ®(u) = |3(u)|?/2; then, taking into
account the almost periodicity of 3(u) in L?(2) and the relation

D[ #was) +1wIE = [ s6t)do

the S? almost periodicity of 3(u) in HJ () easily follows.

Now let 4 be the solution of the Cauchy problem with initial data
@(0) = ug, where ug is in H1(Q) and B(up) is in H}(Q); suppose also
B(u(0)) € Hy(9).

From (3.2), (3.3) we have that the trajectory of B(a) = ~(a) is
relatively compact in L*(Q). We multiply (1.1) by —A~'(a@ — u),
where —A~! denotes the inverse of the operator of —A with Dirichlet
homogeneous boundary conditions; we obtain

@) D=l )+ [ (B(@) - )@~ v)da =0,

From (4.5), taking into account the boundedness of @, u in H~1(f2),
we obtain that (8(@) — B(u)) (& — u) is integrable on Ry x Q. Then

t+1
(4.6) lim /Q (B(@) — B(w)) (@ — u) da ds = 0.

t—+oo t
We observe that (3() — B(u)) (@ — u) > |B(@) — B(u)|?; then

t+1
(4.7) lim / |B(@ (u)|? dz ds = 0.

t—+o00

From (3.2), (3.3), recalling that 8 =+, we obtain

(4.8) lim (B(@) — B(u)) =0 in L*(Q).

t——+o0

We observe that if ug (u(0)) is in H *(£2), (4.8) holds again while ® (&)
(®(u)) is integrable on (0,1) x Q and B(a@) (8(u)) is in L%(4, 1; HL(Q)),
V& > 0; then we can repeat the preceding proof only changing the initial
instant.
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Let now u; and us be two solutions of (1.1) almost periodic in
H1(Q); (4.5) holds again with @ and u replaced by u; and uy for
t € R. Then

(4.9) Di(llur = ua||* 1) < 0= Dy(|Jus — u2|[?,) = 0.

Then

(4.10) /Q 18(wr) — Blus)|? dz < /(,B(ul) — B(us) (w1 — us) dz = 0.

Q

From (4.10) we have B(u1) = B(uz) a.e. From (1.1) we obtain
Dius = Dius in H71(Q); then w = w3 — ug is a vector in L?((2)
independent of .

(b) Corollary 2. Firstly we observe that in our case y(u) =
|u|(™/2) =1y and that the following algebraic inequality

(4.11) lla|™ Vg — [b|™Vb| > cla — b

(for every integer n > 1 and ¢ > 0 suitable) can be easily proved (for
example by contradiction).

The relative compactness of the trajectory of y(u) in L?(2) and (4.11)
imply the relative compactness of the trajectory of u in L™ (Q); then u
is almost periodic in L™ (12).

The uniqueness of the H~1(Q2) almost periodic solution and the
asymptotic behavior of the solutions of the Cauchy problem can be
proved by the same methods of part (a) taking into account (4.11) and
the particular form of ~, 5.

During the writing of this paper I was informed through personal
communication that A. Damlamian and N. Kenmochi have proved the
same result of Corollary 1 independently.
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