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GENERALIZATIONS OF THE
GLEASON-KAHANE-ZELAZKO THEOREM

KRZYSZTOF JAROSZ

Let A be a commutative, complex Banach algebra with a unit and
let M be a one codimensional subspace of A. A.M. Gleason [5] and,
independently, J.P. Kahane and W. Zelazko [8] proved that

M is an ideal if and only if M consists only of
(%) N
noninvertible elements.
Equivalently, if each element f of M belongs to a proper ideal Iy,
which may depend on f, then M is actually an ideal. There is one-
to-one correspondence between one codimensional subspaces (ideals) of
any unital Banach algebra A and one dimensional subspaces of A%, the
space of all linear functionals on A (linear-multiplicative functionals),
hence the Gleason-Kahane—Zelazko theorem can be formulated:

Let F' € A#. Then F is multiplicative if and only
if for any f € A we have F(f) € o(f),

where o(f) denotes the spectrum of f.

The aim of this note is to give the history of various extensions and
generalizations of the above result and to present some open problems.

In 1968 W. Zelazko [15] proved that the statement (7) holds for
any complex Banach algebra not necessarily unital and commutative.
The proof is strictly algebraic, showing that F' € A* is multiplicative
if and only if F' restricted to any commutative subalgebra of A is
multiplicative.
algebras, not necessaril*y commutative, but they are not equivalent for
nonunital Banach algebras. Here are two simple examples.

Statements (*) and ( ) are equivalent for any complex, unital Banach

Example 1. Let S be a locally compact, not o-compact, Hausdorff
space. Put Ay = Cy(S), the algebra of all continuous functions defined
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on S which vanish at infinity. By the result of W. Zelazko Ay has the
(:) property. To see that A does not satisfy (x), let M be any one
codimensional subspace of A. For any f in A the set f~!(C\{0}) is
o-compact, the set f~1(0) is nonvoid, and thus any function from M
is contained in some, and in fact in infinitely many, distinct maximal

ideals. Evidently, M need not be an ideal.

Example 2. Put B = {(z,w) € C?: |22 + |w|? < 1}. Let Ag be the
algebra of all complex, continuous functions defined on B, which are
analytic functions of two complex variables on int B and which vanish
at the point (0,0). Any function from A has infinitely many zeros in
B but evidently not all one-codimensional subspaces are ideals.

The above examples are taken from the paper [13] of C.R. Warner and
R. Whitley. In this paper they also prove that, although the statement
(%) is not satisfied for all nonunital algebras, it holds, for example, for
algebras generated by a single element or for L'(G)-algebras, where
G is a locally compact, metrizable, abelian group. In 1983 C.P. Chen
[2] proved that (%) holds for any commutative Banach algebra with a
countable maximal ideal space.

In all the above mentioned results only complex Banach algebras
are considered. The reason is that even the Gleason-Kahane—Zelazko
theorem does not hold for real Banach algebras. To get a simple
example put A = Cg[0,1] and define F € A* by

1
F(f):/of(t)dt, for f € A.

We have F(f) € o(f) for any f € A, but F is not multiplicative. In
1978 N. Farnum and R. Whitley [4] showed that an algebra Cr(S)
has the (:) property if and only if S does not contain any nontrivial
connected subset; so (:) is rather an unusual property for this type of
algebra. On the other hand, S.H. Kulkarni [10] recently noticed that
the Gleason—Kahane—Zelazko theorem can be reformulated in a way
which holds for real Banach algebras.

Theorem. Let F be a linear map from a real Banach algebra A with
unit 1, to the complex plane such that F(1) = 1 and F(a)*+ F(b)? # 0
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for all a,b in A, such that ab = ba and a® + b* is invertible. Then F is
multiplicative.

During the last ten years B. Aupetit, S. Kowalski and Z. Stodkowski,
C.R. Warner and R. Whitley as well as M. Roitman and Y. Sternfeld
extended the classical result is four distinct ways.

In 1979 B. Aupetit [1] showed that the statement ( ) can be extended

to some operators between two Banach algebras as follows.

Theorem. Let A and B be complex Banach algebras with identity
and suppose that B has a separating family of finite dimensional ir-
reducible representations. If T is a linear map from A onto B such
that Tz is invertible in B for all invertible x in A, then we have
Tx = (T1) - Sz for every x in A, where S is a Jordan morphism.

In 1980 S. Kowalski and Z. Stodkowski [9] obtained a surprising result
that the assumption of linearity can be much weakened.

Theorem. Let A be a complex, not necessarily unital nor commuta-
tive Banach algebra, and let F' be a complex valued function defined on
A such that

F0)=0

and

F(f)—F(9) €o(f—g), forallf,gin A.

Then F' is linear, continuous, and multiplicative.

In 1981 M. Roitman and Y. Sternfeld [12] proved that the classical
result can be extended to a wide class of topological algebras, which
satisfy some spectral conditions. For example, if each element of a
topological algebra A has a bounded spectrum, then (I) holds. The
following example shows that (:) does not hold in general.

Example 3. Let H(C) be the algebra of all entire functions and put

A={feHC):|/fllk= sgg|f(z)exp(—\z|/k)| < oo for k € N}.
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A is a topological algebra and for any nonconstant function f from A
we have o(f) = C. Hence, for any linear functional F' defined on A such
that F(1) =1 we have F(f) € o(f) but F need not be multiplicative.

Finally, C.R. Warner and R. Whitley [14] considered the following
problem.

Let A be a Banach algebra and let M be an n-codimensional closed
subspace of A. Assume that each element f of M belongs to at least
n distinct regular, maximal ideals of A. Does this imply that M is an
ideal and hence the intersection of n distinct maximal ideals?

They proved that the answer is positive if A = C(S), where S is a
compact subset of the real line or if A = L'(R). They also pointed out
that the answer is negative in general even for complex, commutative
Banach algebras with unit; one example being A = Ay @ Ce, where Ag
is the algebra of Example 1 or of Example 2.

With the above n-codimensional problem in mind, we define a more
general P(k,n) property.

Definition. Let A be a Banach algebra. We say that A has P(k,n)
property, n and k positive integers, if the following holds: Let M be
any closed k codimensional subspace of A with the property that for
any f in M there are at least n distinct closed maximal, regular ideals
I{,... IS with f € I]f for 7 = 1,...,n. Then there are n distinct
regular maximal ideals Iy,... ,I, of A such that M C Iy N---N L,.

The problem of characterizing the Banach algebras with the P(k,n)
property is far from being solved in general but the answer is known for
some Banach algebras. In [6] it has been proved that a C(S) algebra
has P(k,1) property for any positive integer k and for any compact
Hausdorff space S; and [6] also shows that this algebra has the P(k,n)
property, with n > 2 if and only if any one point subset of S is Gs. This
result has been generalized by C.P. Chen and P.J. Cohen [3], N.V. Rao
[11], and the author [7], for various other self-adjoint, complex Banach
algebras. The following theorem is now known.
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Theorem. Let A be a commutative, self-adjoint Banach algebra.
Assume that

A is regular, the mazimal ideal space of A is o-compact

and each point of this space is a Gs,

or
A is point spectral.

Then A has the P(k,n) property for any positive integers k and n.

Here A is said to be a point spectral if for any finite subset K of
M (A), the maximal ideal space of A, there is exactly one closed ideal
J such that {T e M (A): JCI} =K.

For the non self-adjoint Banach algebras, the situation is much less
clear. The only nontrivial result here is due to Pomorski [manuscript].
He proved that the disc algebra has the P(2,2) property. The disc
algebra is the algebra of all complex, continuous functions defined on
the closed unit disc, which are analytic in the interior of the disc, taken
with the supremum norm.

The following problems are open.

Problem 1. Does any commutative, complex, unital Banach algebra
A have the P(k, 1) property, for k > 27

Remark . Note that if M is a finite codimensional subspace of A, then
CI(M ), the sup norm closure of the space of all Gelfand transforms of the
elements of M, is a finite codimensional subspace of a function algebra
cl(A) ¢ C(M(A)). Moreover, if M consists only of noninvertible
elements, then the same holds for CI(M ). Hence, for this problem,

we can assume without loss of generality that A is a function algebra.

Problem 2. Does the disc algebra have the P(k,1) property, with
k> 27

The above problem is a very special case of the first one but this
case seems to be the basic one. If this problem can be solved for the
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disc algebra, then, by some very general induction arguments, it can be
shown that the result follows for a large class of other Banach algebras.

Problem 3. Let A be a commutative complex Banach algebra
containing an f which is not an element of any maximal, regular ideal
of A. Does A have the P(k, 1) property with & > 1?7

Problem 4. Let A be as in the previous problem and assume that
all the points of 9t (A) are Gs. Then, does A have the P(k, n) property
for all positive integers k and n?
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