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IDEMPOTENT MULTIPLICATIONS ON SURFACES
AND ASPHERICAL SPACES

KARL H. HOFMANN AND KARL STRAMBACH

ABSTRACT. Every continuous idempotent multiplication
on a space induces an idempotent comultiplication on its coho-
mology algebra over a commutative ring and a homomorphic
idempotent multiplication on each homotopy group.

We classify all idempotent comultiplications on any graded
anticommutative algebra A∗ over a principal ideal domain K
up to degree 2 provided the degree 1 component A1 is torsion
free and the degree 2 component A2 is of rank 1. All algebraic
possibilities can be topologically realized.

We also describe all homomorphic idempotent multiplica-
tions on arbitrary groups. This allows a complete classifi-
cation up to homotopy of all idempotent multiplications on
aspherical CW-complexes. For surfaces we obtain an explicit
list. Notably, the Klein bottle allows infinitely many non-
homotopic idempotent multiplications, but all other surfaces
with nonabelian fundamental group have only the projections
as idempotent multiplications (up to homotopy).

Introduction. Idempotent multiplications on sets and topological
spaces have been considered by many authors, for instance as an
axiomatic approach to the averaging operation (sample: [2, 3, 10]).

If X denotes a connected topological space, then the existence of
H-space structures places severe restrictions on the structure of X.
(See, for instance, [6] or [16].) This is due to the presence of homo-
topy identities on both sides. If, however, one considers idempotent
multiplications μ : X × X → X, that is, multiplications which satisfy
μ(x, x) = x for all x ∈ X, then no restriction follows from the presence
of such multiplications, since every space X allows the two idempo-
tent multiplications p1, p2 : X × X → X, p(x, y) = x and q(x, y) = y
for all x, y ∈ X. These are the so-called trivial multiplications. On
the other hand, the existence of nontrivial idempotent multiplication
again forces restrictions on the space. We wish to illustrate this by dis-
cussing idempotent multiplications on suitable classes of spaces. The
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fact that idempotent multiplications restrict the structure of a space is
elucidated by the fact that there exists a bijection between the homo-
topy classes of idempotent multiplications and the homotopy classes of
multiplications with a left identity (see [9, 1.5]).

The testing of the restrictions imposed on a space by the presence of
nontrivial idempotent multiplications is usually transferred to an alge-
braic problem by applying a suitable functor H from an appropriately
selected category T of topological spaces and continuous maps, say, to
a suitable category A of algebraic objects. Typical examples are the
category of graded modules (if H is homology or cohomology), or the
category of groups (if H is homotopy πn). Now an idempotent multi-
plication in T is a continuous function μ : X × X → X such that, for
the diagonal map dX : X × X → X (a map existing in any category
with finite products!), we have

(1) μdX = 1X .

The application of any functor H yields the relation

(2) H(μ)H(dX) = 1H(X).

In practice we choose the category A so that it is equipped with a
binary operation (A, B) �→ A ⊗ B : A ⊗ A → A on the functorial
level. Examples are the tensor product of graded algebras or the
cartesian product of groups. We assume that H respects multiplication,
that is, H(X × Y ) ∼= H(X) ⊗ H(Y ). Then H(dX) = δH(X) :
H(X) → H(X)⊗H(X) is an associative comultiplication, respectively,
multiplication in the opposite category of Aop of A (in which case the
presence of a natural transformation H(X)⊗H(Y ) → H(X×Y ) suffices
instead of a natural isomorphism).

We shall illustrate two instances.

Firstly, we shall consider the category T of compact connected spaces
and continuous maps, the category A of graded K modules, where K
is a principal ideal domain, and the functor H = {X �→ H∗(X, K)} of
Alexander Čech-cohomology over K. Due to the Künneth formula, we
have a natural injection

αX,Y : H(X) ⊗ H(Y ) → H(X × Y )
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and thus a product, called cup product,

∪ : H(X) ⊗ H(X)
αX,X−→ H(X × X)

H(dX)−→ H(X),

making H(X) into an associated graded (anti-) commutative K-algebra
H(X) = A0 ⊕ A1 ⊕ A2 ⊕ · · · .

We are mostly interested in surfaces or, at least, two-dimensional
spaces. At any rate, we make the assumption that H2(X,Z) is
torsion free of rank one. Moreover, we recall that there is a natural
isomorphism H1(X,Z) ∼= [X, S1]. Hence, the abelian group H1(X,Z)
is always torsion free. The universal coefficient theorem yields the exact
sequence

0 → Hn(X,Z) ⊗ K → Hn(X, K) → Tor(Hn+1(X,Z), K) → 0

in which the Tor-term vanishes for n = 1 if H2(X,Z) is torsion free.
Thus, A1 ∼= H1(X,Z) ⊗ K. Note that F ⊗ K is torsion free over K if
F is a torsion free abelian group and K is a domain.

Furthermore, an idempotent multiplication μ : X × X → X gives a
comultiplication

cn : An = Hn(X)
H(m)−→ Hn(X × X)

α−1
X,X−→ Hn(X) ⊗ Hn(X) = An ⊗ An

in all those degrees in which An is torsion free, and these satisfy the
relations

(3) ∪n ◦ cn = 1An .

Now a nontrivial idempotent multiplication μ yields a nontrivial
comultiplication where a comultiplication c is called trivial if c(x) =
x ⊗ 1 or c(x) = 1 ⊗ x for all x ∈ An for n = 0, 1, . . . .

Our main results (Theorems 2.6, 2.7, Corollary 2.8, and Theorem 2.9)
imply a complete classification of all nontrivial idempotent comultipli-
cations of graded K-algebras A∗ = A0⊕A1⊕A2 where A0 and A2 are of
rank one. If A1A1 
= {0}, then the main consequence is rank R A1 = 2,
and this will allow us to describe the comultiplications explicitly. In
the most important case that K = Z, any torsion free abelian group
of rank 2 can occur as A1 with nontrivial comultiplications on A∗, and
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all those instances come from idempotent comultiplications on compact
connected spaces, notably on the underlying spaces of two-dimensional
compact connected abelian groups. If A1A1 = {0}, then it is a bit
more cumbersome to exhibit topological realizations. In order to illus-
trate such realizations, we discuss the case of the Klein bottle with its
idempotent multiplications in some detail and some idempotent multi-
plications on abelian topological groups containing the classifying space
B(T) of the circle group T.

Secondly, we shall consider the category T of aspherical CW-
complexes and continuous maps and the category A of groups; this time
we take for H the assignment of the fundamental group X �→ π1(X).
For the multiplication ⊗ in A we consider the cartesian product since
H is multiplicative because of π1(X×Y ) ∼= π1(X)×π1(Y ). Then every
idempotent multiplication μ : X × X → X produces a group homo-
morphism m : H(X) × H(X) → H(X) satisfying mdH(X) = 1H(X).
If X is aspherical, then so is X × X, and, therefore, every homomor-
phism m : H(X) × H(X) → H(X) is realized by a continuous map
μ : X × X → X (see [15; Chap. V, Sec. 4, pp. 224-225]). So the re-
alization is not problematic in this case. We shall show that there is
a bijection from the set of idempotent multiplications on a group G
to the semigroup End∗(G)⊆Hom(G, G) of all endomorphisms which
commute with all inner automorphisms. For Eilenberg-MacLane com-
plexes K(G, 1), this yields a classification of the set of homotopy classes
of idempotent multiplications. In the case of surfaces we shall present
explicit results.

The Klein bottle with its idempotent multiplications is a good exam-
ple for both approaches.

We remark that in both routes, the cohomological as well as the
homotopical one, the functor H factors through the category of topo-
logical spaces and homotopy classes of continuous maps, the so-called
homotopy category. Therefore, we could have considered in each case
for T the associated homotopy category. But then the issue arises
whether any homotopy idempotent multiplication μ : X × X → X
is in fact homotopic to an idempotent one. We indicate briefly that
this is true: If μdX ∼ 1X , we have to find a ν : X × X → X with
ν ∼ μ and νdX = 1X . Then we have a homotopy ft : X → X with
f0 = μdX and f1 = 1X , and we are looking for an extension to a ho-
motopy Ft : X × X → X with F0 = μ and F1dX = 1X ; if we have
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this extension we shall set ν = F1. The existence of such an extension
F , however, is guaranteed by the following fact: dX : X → X × X is
always a cofibration, because ΔX , the diagonal of X × X is a retract
of X × X, and thus ΔX × [0, 1] is a retract of X × X × [0, 1].

1. Preliminaries on multilinear algebra. In our discussion of
cohomology algebras we need certain background material on modules
which we shall provide in the present section.

In all of the following, K shall denote a commutative ring with
identity, frequently a principal ideal domain. Also, V shall denote
a K-module. All tensor products and exterior algebras are taken
over K. The module V ⊗ V will be denoted W . There are natural
endomorphisms τ, σ, α : W → W :

(i) τ (u ⊗ v) = v ⊗ u,

(ii) σ(u ⊗ v) = u ⊗ v + v ⊗ u, that is, σ = 1W + τ ,

(iii) α(u ⊗ v) = u ⊗ v − v ⊗ u, that is, α = 1W − τ .

Clearly, τ is an involution, that is, τ2 = 1W . Consequently, σ2 = 2 ·σ
and α2 = 2 · α. Also, σα = (1 + τ )(1 − τ ) = 0.

We let Σ2(V ) denote the submodule of W generated by all elements
u ⊗ u with u ∈ V . We recall that

(1)
2∧

V = W/Σ2(V ).

Lemma 1.1. If V is a direct sum of cyclic modules, then Σ2(V ) =
ker α.

Proof. Since α(u ⊗ u) = 0, the containment Σ2(V )⊆ ker α is trivial.
Let us prove the reverse. By hypothesis, V =

⊕
j∈J K · ej . Then W is

the direct sum of the modules K ·(ej⊗ek), j, k ∈ J . Let x ∈ kerα. Then
there are elements rjk ∈ K such that x =

∑
j,k∈J rjk ·(ej⊗ek) with 0 =

α(x) =
∑

j,k∈J rjk ·(ej⊗ek−ek⊗ej) =
∑

j<k(rjk−rkj)·(ej⊗ek), where
< denotes an arbitrary total order of J . Thus, j 
= k implies rjk = rkj .
Therefore, x =

∑
j<k rjk ·(ej ⊗ek +ek ⊗ej)+

∑
j∈J rjj ·(ej ⊗ej). Since

ej ⊗ ek + ek ⊗ ej = (ej + ek)⊗ (ej + ek)− ej ⊗ ej − ek ⊗ ek, we see that
x is in Σ2(V ) as we had to show.
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Lemma 1.2. Suppose V = lim−→Vi is a colimit of a direct system of
modules such that Σ2(Vi) = ker αi. Then Σ2(V ) = ker α.

Proof. Let fij : Vi → Vj denote the maps of the direct system and
fi : Vi → V the colimit maps. Set Wi = Vi ⊗ Vi and denote with
Fij : Wi → Wj and Fi : Wi → W the induced maps Fij = fij ⊗ fij and
Fi = fi ⊗fi. Since tensor products commute with direct limits and the
direct limit functor is exact, we have an infinite commutative diagram
in which all vertical sequences indicate direct limit diagrams and in
which the horizontal sequences are exact except possibly the bottom
sequence:

kerαi

�

�

incli Wi

�

Fij

�

αi Wj

�

Fij

ker αj

�

�

inclj
Wj

�

Fj

�

αj
Wj

�

Fj

kerα �
incl

W �α W

We have to show that the bottom sequence is exact. Let us denote
with X the set of all u⊗ u ∈ W with u ∈ V , and with Xi the set of all
u ⊗ u ∈ Wi with u ∈ Vi. Then Xi ⊆ ker αi. Let Gij : Xi → Xj denote
the restriction and corestriction of Fij and Gi : Xi → X the restriction
and corestriction of Fi. If u ∈ V is given, then since V = lim−→Vi, there
is an index j and an element uj ∈ Vj such that fj(uj) = u. Then
u ⊗ u = fj(u) ⊗ fj(u) = Gj(uj ⊗ uj). Thus,

Xi
Gij−→ Xj

Gj−→ X

is a direct limit diagram in the category of sets. Now suppose that some
w ∈ ker α is given. Then, by hypothesis, there is an index j and there
are elements up ∈ Vj , p = 1, . . . , q, such that w = Fj(

∑
p up ⊗ up) =∑

p Gj(up ⊗ up). Thus w is in the module generated by X, that is, in
Σ2(V ), and this proves the lemma.
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The preceding two lemmas taken together yield immediately the
following result:

Lemma 1.3. If V is the colimit of a direct system of modules, each
of which is a direct sum of cyclic modules, then Σ2(V ) = kerα.

Proposition 1.4. If K is a principal ideal domain, then Σ2(V ) =
ker α.

Proof. Every module is the colimit of the direct system of its finitely
generated submodules and the corresponding inclusion maps. If K is a
principal ideal domain, then every finitely generated module is a direct
sum of cyclic ones. Thus, Lemma 1.3 establishes the claim.

Now let us define

(2) Θ2(V ) = im α.

Then Θ2(V ) ∼= W/kerα. From (1) we recall W/Σ2(V ) =
∧2 V . Thus,

we have

Remark 1.5. Whenever Σ2(V ) = ker α, then Θ2(V ) ∼=
∧2 V . In

particular, this is the case whenever K is a principal ideal domain.

Under these circumstances, Θ2(V ) is a manifestation of
∧2

V inside
W = V ⊗ V .

Now we comment on those modules V for which
∧2

V is cyclic. We
preface the next lemma with the remark that every flat module is the
colimit of a direct system of finitely generated free modules (see [1; §1,
p. AX14, Théorème 1]). The converse is true since free modules are
flat and direct limits of flat modules are flat.

Lemma 1.6. Suppose that V is the colimit of a direct system of
finitely generated free modules and injective colimit maps and that K
is a domain. If

∧2 V is nonzero cyclic, then V is free of rank 2. If
V 
= {0} and

∧2
V = {0}, then rank V = 1.
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Proof. We write V = lim−→Vj with finitely generated free modules Vj

and colimit maps fj : Vj → V . The exterior algebra functor
∧

from
the category of K-modules to the category A of graded anticommu-
tative algebras is left adjoint to the functor associating with a graded
anticommutative algebra A∗ =

⊕∞
n=0 An the module A1. Hence, it

preserves all colimits. Since direct limits in A are computed by ho-
mogeneous components, the functor A∗ �→ A2 preserves direct limits.
Hence, the endofunctor U �→

∧2
U of the category of K-modules pre-

serves direct limits. Thus,
∧2 V = lim−→

∧2 Vj . Since
∧2 V is generated

by one element, there is an index j such that

(3)
2∧

V =
( 2∧

fj

)( 2∧
Vj

)
.

Since all maps fj are injective and all Vi and V are flat, also
∧2

fj

is injective and, thus, an isomorphism in view of (3). Thus,
∧2 Vj is

cyclic and Vj is free. Thus, rank Vj = 2, say Vj = K · uj ⊕ K · vj .
We set u = fj(vj) and v = fj(vj) and

∧2 V = K · (u ∧ v). We
claim that V = K · u + K · v. Now K is a domain; let Q denote
its quotient field. As

∧2
V is cyclic and nonzero, then the Q-vector

space Q ⊗
∧2 V =

∧2
Q(Q ⊗ V ) is one-dimensional, and thus Q ⊗ V

is two dimensional. Hence, Q ⊗ V = Q ⊗ u ⊕ Q ⊗ v. Thus, for
every element w ∈ V , there is a ring element a ∈ K such that
a · w ∈ K · u + K · v. Hence there are elements x, y ∈ K with
a · w = x · u + y · u. Since

∧2 V = K · (u ∧ v), there are elements
x′, y′ ∈ K such that u ∧ w = y′ · (u ∧ v) and w ∧ v = x′ · (u ∧ v). Now
(y′a)·(u∧v) = (u∧a·w) = (u∧(x·u+y ·v)) = y ·(u∧v), whence ay′ = y

since
∧2 V is free. Similarly, ax′ = x. Thus, a · w = a · (x′ · u + y′ · v),

whence w = x′ · u + y′ · v. This establishes the claim. Now fj : Vj → V
is injective and surjective, and thus is an isomorphism. This shows that
V is free of rank 2.

Now suppose that
∧2

V = {0}. Then
∧2

Q(Q ⊗ V ) = {0}, and thus
dimQ(Q ⊗ V ) ≤ 1. Hence, V = {0} or rank V = 1.

Lemma 1.7. Let K be a principal ideal domain and let V be nonzero
torsion free. If

∧2 V is nonzero of rank 1, then V is of rank 2. If∧2
V = {0}, then rankV = 1. If

∧2
V is nonzero cyclic, then V is

free.
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Proof. If K is a principal ideal domain, then every finitely generated
torsion free module is free. Since every module is the colimit of
the direct system of finitely generated submodules, the hypotheses of
Lemma 1.6 are satisfied, and that lemma proves the assertion in case
that

∧2 V is cyclic. If
∧2 V is of rank 2, then let Vj be any nonzero

finitely generated submodule of V . Then
∧2

Vj may be considered as
a submodule of

∧2 V , and since the latter is of rank 1, then
∧2 Vj is

of rank 1 and finitely generated. Hence, it is cyclic nonzero and thus
Vj is free of rank 2 by the preceding. Thus V is the ascending union of
free submodules of rank 2, hence has rank 2.

At this point we consider two endomorphisms f, g : V → V . They
induce an endomorphism f ⊗ g : W → W and we shall have reason in
the next section to consider the morphism

(4) T
def= (f ⊗ g)α : W → W.

Remark 1.8. If f ⊗ g is injective, then im T ∼= Θ2(V ). In particular,
if K is a principal ideal domain, then im T ∼=

∧2 V .

Proof. Clearly, if f ⊗ g is injective, then im T ∼= im α, whence the
first assertion follows from Definition (2). The second claim is then a
consequence of Remark 1.5.

The following lemma will utilize this information. It will be applied
in the next section.

Lemma 1.9. Assume the following hypotheses:

(i) K is a principal ideal domain.

(ii) V is torsion free.

(iii) f and g are injective.

(iv) The image of T satisfies

(5) rank im T ≤ 1.
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Then the following conclusions hold: If T 
= 0, then V is of rank 2. If
T = 0, then V = {0} or V is of rank 1.

Moreover, if im T is nonzero cyclic, then V is free (of rank 2).

Proof. Since V is torsion free, V is flat and thus (iii) implies that f⊗g

is injective. Now Remark 1.8 applies and shows that im T ∼=
∧2

V . The
present lemma now follows from Lemma 1.7.

We retain our assumptions on f and g but no longer assume that
f ⊗ g is injective. In exchange for that, however, we now assume that

(6) f + g = 1V .

In particular, we continue to assume that V is flat so that, for any
submodule V ′ of V , we may identify V ⊗V ′ and V ′⊗V with submodules
of W .

Lemma 1.10. If V is flat and (6) is satisfied, then

(7) T (V ⊗ ker g) = ker g ⊗ im g

and

(8) T (ker f ⊗ V ) = im f ⊗ ker f.

Proof. We prove (7); the proof of (8) is analogous. First we note that
an element w ∈ V is in ker g if and only if 0 = g(w) = (1 − f)(w),
that is, if and only if f(w) = w. Next we observe that α(V ⊗ ker g)
in W is the submodule generated by the elements v ⊗ w − w ⊗ v
with v ∈ V and w ∈ ker g. But for any such element we have
(f ⊗ g)(v⊗w−w⊗ v) = −f(w)⊗ g(v) = −w⊗ g(v) in view of our first
observation. Thus, T (V ⊗ ker g) = (f ⊗ g)α(V ⊗ ker g) = ker g ⊗ im g
which is the asserted identity (7).

We summarize the results of this section in the following proposition:

Proposition 1.11. Let V be a K-module with two endomorphisms
f and g and assume the following hypotheses:
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(i) K is a principal ideal domain.

(ii) V is torsion free.

(iii′) f + g = 1V .

(iv) The image of T satisfies

(5) rank im T ≤ 1.

Then one of the following conclusions holds:

(a) f = 0 and g = 1, or else f = 1 and g = 0.

(b) f 
= 0 and g 
= 0 and

(b1) if T 
= 0, then V is of rank 2, and if, in addition, im T is
cyclic, then V is free,

(b2) if T = 0 and V 
= {0}, then V is of rank 1,

(b3) V = {0}.
Moreover, Case (b2) can occur only if f and g are both injective.

Proof. Lemma 1.10 applies, and then (5), (7) and (8) show that each
of im f ⊗ ker f and ker g ⊗ im g is of rank 1 and indeed cyclic if imT
is cyclic, since K is a principal ideal domain. Now we have a case
distinction: Either we are in Case (a) or in Case (b). If we are in case
(b), then both im f ⊗ ker f and ker g ⊗ im g can be zero only if ker f
and ker g are zero. Then (b1), (b2) and (b3) follow by Lemma 1.9. We
now assume that ker f 
= {0}. (The case that ker g 
= {0} is treated
analogously.) But also f 
= 0 since we are not in Case (a). Hence, the
fact that im f ⊗ker f is of rank 1, respectively cyclic, implies that both
of the torsion free modules im f and ker f are of rank 1, respectively
cyclic. In the cyclic case, they are free of rank 1. Then the exact
sequence

0 → ker f
incl−→ V

quot−→ im f → 0

shows that V is of rank 2, respectively free of rank 2, and so we are in
Case (b1).

2. Idempotent comultiplications. In this section we consider
graded anticommutative algebras over a principal ideal domain K.
Such algebras arise as the cohomology algebras of compact spaces.
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Since we shall be interested eventually in two-dimensional spaces, we
concentrate on low dimensions and require that the degree 2 component
of the algebra be cyclic.

Specifically, we shall deal with the following data: As before, K shall
be a principal ideal domain. We consider a graded K-algebra

A = A0 ⊕ A1 ⊕ A2 ⊕ · · ·

with ApAq ⊆Ap+q; further, xpyq = (−1)pqyqxp for arbitrary elements
xp ∈ Ap and yq ∈ Aq and xpxp = 0 for p odd. As is customary in
this context, we assume A0 is a free module generated by the identity
element 1, that is, A0 = K ·1 and k �→ k ·1 is an isomorphism K → A0.
In addition, however, we make the assumption

(Z) A2 = K · e for some element e,

that is, A2 is cyclic.

Now consider a comultiplication c : A → A⊗A, that is, a morphism of
graded K-algebras. We denote with m : A⊗A → A the multiplication
of the algebra, that is, we have ab = m(a⊗ b). Our basic assumption is
the hypothesis that the comultiplication c be idempotent, specifically,
that the following condition is satisfied:

(I) mc = 1A.

For simplicity, we denote the K-module A1 with V , we write W =
V ⊗ V , and we use the algebra multiplication and hypothesis (Z) in
order to define an antisymmetric bilinear from b : V × V → K by the
following condition:

(1) uv = b(u, v) · e for u, v ∈ V.

The bilinear form b corresponds to a linear form b′ : W → K such that
b(u, v) = b′(u ⊗ v). The comultiplication c defines module morphisms
in degrees 1 and 2:

c1 : V → V ⊗ 1⊕ 1 ⊗ V,

c2 : K · e → K · e ⊗ 1⊕ W ⊕ 1 ⊗ K · e.
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This allows us to introduce the following data.

Definition 2.1. There are well-defined K-module morphisms f, g :
V → V , well-defined elements r, s ∈ K and a well-defined tensor t ∈ W
such that

c1(v) = f(v) ⊗ 1 + 1⊗ g(v), for all v ∈ V,(2)
c2(e) = r · (e ⊗ 1) + t + s · (1⊗ e).(3)

Lemma 2.2. If the comultiplication c is idempotent, then

f + g = 1V ,(4)
r + b′(t) + s = 1.(5)

Proof. The idempotency (I) of c implies m1 ◦ c1 = 1V in degree 1,
and this condition, in view of (2), is equivalent to (4). Likewise, we
have m2 ◦ c2 = 1K·e and, in view of (3), this means (5).

In the next lemma we use the function α of the introduction to Section
1 and the morphism T : W → W introduced in (4) of Section 1.

Lemma 2.3. For any comultiplication c, the data b, f, g, r, s, and t
are connected by the following identities:

b(f(u), f(v)) = rb(u, v) for all u, v ∈ V.(6)
b(g(u), g(v)) = sb(u, v) for all u, v ∈ V.(7)

(8)
b(u, v) · t = (f ⊗ g)(u ⊗ v − v ⊗ u)

= (f ⊗ g)α(u ⊗ v)
= T (u ⊗ v) for all u, v ∈ V.

Proof. Since c is a morphism of K-algebras, we have the relation

(∗) c(uv) = c(u)c(v) for all u, v ∈ V.
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Because of (1), the left side of (∗) is c(uv) = c(b(u, v) · e) = b(u, v) · c(e)
which equals b(u, v) · (r · (e ⊗ 1) + t + s · (1 ⊗ e)) in view of (3).
Because of (2), the right-hand side of (∗) is c(u)c(v) = (f(u) ⊗
1 + 1 ⊗ g(u))(f(v) ⊗ 1 + 1 ⊗ g(v)) = f(u)f(v) ⊗ 1 + f(u) ⊗ g(v) −
f(v) ⊗ g(u) + 1 ⊗ g(u)g(v), where we pay careful attention to the
anticommutativity of A. Now f(u)f(v) ⊗ 1 = b(f(u), f(v)) · (e ⊗ 1)
by (1). Similarly, 1 ⊗ g(u)g(v) = b(g(u), g(v)) · (1 ⊗ e). Finally,
f(u) ⊗ g(v) − f(v) ⊗ g(u) = (f ⊗ g)(u ⊗ v − v ⊗ u). If we finally
evaluate c(u)c(v) and compare the components in K · (e ⊗ 1), W , and
K · (1 ⊗ e), respectively, on both sides, we find precisely the equations
(6), (8), and (7), respectively.

We shall now apply the results of Proposition 1.11. For this purpose,
we need a definition.

Definition 2.4. (i) The multiplication of a graded algebra A is
called trivial up to degree 2 if A1A1 = {0}.

(ii) A comultiplication c of a graded algebra A is called trivial up to
degree 2 if c(x) = x ⊗ 1 for all x ∈ An or c(x) = 1 ⊗ x for all x ∈ An

for n = 0, 1, 2.

Remark 2.5. Under our general hypotheses on A, the multiplication
is trivial up to degree 2 if and only if b = 0, and the comultiplication is
trivial up to degree 2 if and only if one of the following two possibilities
occurs:

(f, g, r, s, t) = (1V , 0V , 1, 0, 0) or (f, g, r, s, t) = (0V ,1V , 0, 1, 0).

Now we can formulate the following theorem:

Theorem 2.6. Let A∗ be a graded anticommutative algebra over a
principal ideal domain K such that A0 and A2 are cyclic and A1 torsion
free. Suppose further that there is an idempotent comultiplication.
Then exactly one of the following two possibilities occurs:

(i) The multiplication and the comultiplication are not trivial up to
degree 2 and A1 is free of rank 2.
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(ii) The multiplication is trivial up to degree 2 and the following
cases arise:

(iia) A1 
= {0} and c(v) = v ⊗ 1 for all v ∈ A1, respectively,
c(v) = 1 ⊗ v for all v ∈ V , and c(e) = r · (e ⊗ 1) + t + (1 − r) · (1 ⊗ e)
with arbitrary elements t ∈ A1 ⊗ A1 and r ∈ K.

(iib) rank A1 = 1 and c(v) = f(v) ⊗ 1 + 1 ⊗ (1V − f)(v) for
all v ∈ A1 and c(e) = r · (e ⊗ 1) + (1 − r) · (1 ⊗ e) with an arbitrary
endomorphism f 
= 0, 1V of the rank 1-module A1 and an arbitrary
r ∈ K.

(iic) A1 = {0} and c(e) = r · (e ⊗ 1) + (1 − r) · (1 ⊗ e) with an
arbitrary r ∈ K.

Proof. First assume that the multiplication and the comultiplication
are not trivial up to degree 2. Then the assertion follows from Propo-
sition 1.11 unless f = 0 or f = 1V . Let us now suppose that f = 1V ;
the case that f = 0, that is g = 1V , is treated analogously. Then (7)
implies s = 0 since b 
= 0. As g = 0, equation (8) implies that t = 0.
Either (6) or (5) now implies r = 1. Then Remark 2.5 says that the
comultiplication is trivial up to degree 2, contradicting our assumption.

Now we assume that the multiplication is trivial up to degree 2. Then
(5) implies

(5∗) r + s = 1.

Again, we have to distinguish the case that f = 0 or f = 1V or its
negation. Once more we shall treat the case that f = 1V . This is Case
(iia). Now suppose that f 
= 0,1V . We apply Proposition 1.11(b).
Since multiplication is trivial up to degree 2, Case 1.11 (b1) is ruled
out. In Case 1.11(b2) we have rank A1 = 1 obtaining our Case (iib),
and in Case 1.11(b3) we get our Case (iic).

We note that an endomorphism of a rank 1 module over a principal
ideal domain K amounts to a scalar multiplication with a suitable
element of the quotient field of K.

It remains to discuss in detail the Case (i) of nontrivial multiplication
and comultiplication where A1 is free of rank 2.
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We begin this discussion with a remark on skew symmetric forms on a
free K-module V of rank 2. Two forms b1 and b2 are equivalent if there
is an automorphism ϕ : V → V such that b2(u, v) = b1(ϕ(u), ϕ(v)).
Each skew symmetric form b : V × V → K is uniquely determined
by a linear form b′′ :

∧2 V → K via b(u, v) = b′′(u ∧ v). If ϕ

is an automorphism of V , then b(ϕ(u), ϕ(v)) = b′′((
∧2

ϕ)(u ∧ v)) =
det(ϕ)b′′(u ∧ v) = det(ϕ)v(u, v) by the definition of the determinant.
It follows that b1 and b2 are equivalent if and only if there is an
automorphism ϕ of V such that b2 = det(ϕ)b1. Let K∗ denote the
group of units of K. Since det : Aut(V ) → K∗ is surjective, the
equivalence classes of such forms under automorphisms of V correspond
bijectively to the cosets of the multiplicative semigroup of K modulo
K∗. If we fix a basis of V , then each skew symmetric bilinear form is
equivalent to one which is expressed by the matrix

(9) a · H, where H =
(

0 1
−1 0

)
,

and where a ∈ K is uniquely determined modulo K∗ by the equivalence
class.

Theorem 2.7. Let A∗ be a graded anticommutative algebra over a
principal ideal domain K such that A0 and A2 are cyclic and A1 is tor-
sion free. Suppose further that there is an idempotent comultiplication
which is not trivial up to degree 2 and that the multiplication is not triv-
ial up to degree 2. Then A1 is a free K-module V of rank 2 equipped
with a nondegenerate skew symmetric bilinear map b : V × V → K.
Moreover, there exists a basis e1, e2 of V , an endomorphism f 
= 0,1V

of V , and ring elements a, mjk ∈ K, j, k = 1, 2, such that b(e1, e2) = a
and that the comultiplication c in degrees 1 and 2 is given by

c1(v) = f(v) ⊗ 1 ⊕ 1 ⊗ (1V − f),
c2(e) = det f · (e ⊗ 1)

+
∑

j,k=1,2

mjk · (ej ⊗ ek)

+ (1 − tr f + det f) · (1 ⊗ e).
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The matrix coefficients ajk of f and the mjk are related as follows:

(8†)

am11 = −a12,

am22 = a21,

am12 = a11 − det f,

am21 = −a22 + det f.

The coefficients ajk satisfy the following congruence relations:

(10)
a12 ≡ a21 ≡ 0 (mod a),
a11 ≡ a22 (mod a),
a2
11 ≡ a11 (mod a).

Proof. We select a basis of V so that b has the matrix representation
(9) with a 
= 0. We may now express an element u of V as a pair
(x, y) with x, y ∈ K and identify V ⊗ V with the space M2(K) of
2 × 2-matrices in such a way that the tensor u ⊗ v of u = (x, y) and
v = (x′, y′) is given by the matrix(

x
y

)
( x′ y′ ) =

(
xx′ xy′

yx′ yy′

)
.

Then we have

α(u ⊗ v) =
(

x
y

)
( x′ y′ ) −

(
x′

y′

)
( x y )

=
(

0 xy′ − x′y
x′y − xy′ 0

)
= det(u, v) · H,

where det(u, v) = xy′ − x′y.

Let us write the matrix of f as

F =
(

a11 a12

a21 a22

)
,

whence 1V − f has the matrix

E2 − F =
(

1 − a11 −a12

−a21 1 − a22

)
.
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Condition (6) now translates into the matrix form a · FHFT = ra ·H,
where (·)T denotes transposition. Since a 
= 0 and K is a domain, this
is equivalent to

(6∗) FHFT = r · H.

An explicit matrix calculation shows FHFT = det f · H, whence (6∗)
and thus (6) is equivalent to

(6∗∗) r = det f.

Analogously, (7) is equivalent to s = det(1V − f). An explicit
computation shows that det(1V −f) = 1− tr f +det f where tr f is the
trace of f . Thus, in the presence of (6∗∗), condition (7) is equivalent to

(7∗∗) 1 + r − s = tr f.

In degree 2, the given comultiplication yields via (3) a tensor t which
corresponds to a matrix

M =
(

m11 m12

m21 m22

)
.

The linear map b′ : M2(K) → K is determined by its values on the
basis elements (

1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
.

With the aid of the formula b((x, y), (x′, y′)) = b′
(

xx′ xy′

yx′ yy′

)
we calculate

these values to be 0, 0, a, and −a, respectively, since b has the matrix
a · H. Thus,

(11) b′(t) = a(m12 − m21).

Now (5), in view of (6∗∗), (7∗∗) and (11) is equivalent to

(5∗∗) a(m12 − m21) = tr f − 2 det f.

Finally, we shall exploit (8). First we write g = 1V −f as before, and
thus also G = E2 − F . Now we calculate (f ⊗ (1V − f)) ◦ α(u ⊗ v) =
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f(u)⊗g(v)−f(v)⊗g(u) = F
(

x

y

)
(x′ y′)GT−F

(
x′

y′

)
(x y)GT, but

this matrix equals F
(

0 xy′−x′y
x′y−xy′ 0

)
GT = det(u, v) · FH(1V − F )T.

On the other hand, b(u, v) · t = (x y)(a ·H)
(

x′

y′

)
M = a det(u, v) ·M .

Hence, (8) is equivalent to

(8∗) a · M = FH(E2 − F )T.

An explicit calculation, however, yields

FH(E2 − F )T = (F − det f · E2)H.

Thus (8) is equivalent to

(8∗∗) a · M = (F − det f · E2)H.

Translated into coefficients, this last relation is equivalent to the fol-
lowing set of linear equations for the coefficients mjk of M :

(8†)

am11 = −a12,

am22 = a21,

am12 = a11 − det f

= a11(1 − a22) + a12a21,

am21 = −a22 + det f

= a22(a11 − 1) − a12a21.

We note from this that (5∗∗) is a consequence of (8†).
We claim that

(10)
a12 ≡ a21 ≡ 0 (mod a),
a11 ≡ a22 (mod a),
a2
11 ≡ a11 (mod a).

By (8†), a divides a12, a21, and a22 − a11, hence also a11(a22 − 1); since
a22 ≡ a11 (mod a), this proves the claim.

Corollary 2.8. Let A∗ = A0⊕A1⊕A2 be a graded anticommutative
algebra over a principal ideal domain K such that A0 and A2 are cyclic
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and A1 is torsion free. Suppose further that the multiplication is not
trivial. The following are necessary and sufficient conditions for a
nontrivial idempotent comultiplication c to exist on A∗.

(i) The degree 1 component A1 is a free K-module V of rank 2
equipped with a nondegenerate skew symmetric bilinear map b : V ×V →
K.

(ii) There exist a basis e1, e2 of V and ring elements a, ajk, mjk ∈ K,
j, k = 1, 2, such that

(iia) b(e1, e2) = a and

(iib) with the endomorphism f 
= 0,1V of V whose matrix with
respect to the basis e1, e2 is (

a11 a12

a21 a22

)
,

the following system of equations is satisfied;

(8†)

am11 = −a12,

am22 = a21,

am12 = a11 − det f,

am21 = −a22 + det f.

Under these circumstances, the comultiplication c is given by

c1(v) = f(v) ⊗ 1 ⊕ 1 ⊗ (1V − f),
c2(e) = det f · (e ⊗ 1)

+
∑

j,k=1,2

mjk · (ej ⊗ ek)

+ (1 − tr f + det f) · (1 ⊗ e).

The coefficients ajk satisfy the following congruence relations:

(10)
a12 ≡ a21 ≡ 0 (mod a),
a11 ≡ a22 (mod a),
a2
11 ≡ a11 (mod a).
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Proof. By Theorem 2.7 we know that the stated conditions are
necessary. Its proof, however, shows that they are also sufficient.

We shall now relax the requirement that K is a principal ideal domain
and that A2 is cyclic. We shall assume merely that K is a domain and
that A2 has K-rank one. In this case we consider the quotient field
Q of K and the ground ring extension A∗

Q = A0
Q ⊕ A1

Q ⊕ · · · , where
An

Q = Q ⊗ An. We may assume that A∗ is a graded K-subalgebra of
A∗

Q (when considered as a K-algebra). Since the comultiplication of
A∗

Q remains nontrivial if that of A∗ is nontrivial, then Theorems 2.6
and 2.7 and Corollary 2.8 apply at once to A∗

Q. If the multiplication of
A∗ is trivial up to degree 2, then the same is true for A∗

Q. This yields
the information contained in Theorem 2.6(ii) for A∗

Q with Q in place
of K. Scalar multiplications with r, 1 − r ∈ Q, however, will preserve
A1. If the multiplication in A∗ is not trivial up to degree 2, then the
same holds for A∗

Q and by Theorem 2.6(i), the K-module V = A1 is
of rank 2. Furthermore, Theorem 2.7 applies to AQ with Q in place of
K and with VQ in place of V . We select the basis {e1, e2} of VQ in V .
Then the elements a, mjk, j, k = 1, 2, persist to be in K. However, the
matrix coefficients ajk need not be all in K; yet equations (8†) show
that a12, a21 and the trace of f , namely, a11 + a22 are all in K. The
equations (10) are without relevance over the field Q. For easy reference
we formulate these conclusions at least in the case that An = {0} for
n ≥ 3 (the situation of Corollary 2.8). It is understood that for a
K-module V the ground field extension Q ⊗ V is denoted VQ with V
identified with a submodule of VQ and that fQ for an endomorphism f
of V denotes the extension to VQ.

Theorem 2.9. Let A∗ = A0 ⊕A1 ⊕A2 be a graded anticommutative
algebra over a domain K such that A0 is cyclic, A2 is of K-rank one,
and A1 is torsion free. Suppose further that the multiplication is not
trivial. Let Q denote the quotient field of K. If c is a nontrivial
idempotent comultiplication c on A∗, then the following conclusions
hold:

(i) The degree 1 component A1 is a K-module V of rank 2 equipped
with a nondegenerate skew symmetric bilinear map b : V × V → K.
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(ii) There exist a free subset {e1, e2} of V , ring elements a, mjk ∈ K,
j, k = 1, 2, and an endomorphism f of V different from 0,1V such that

(iia) b(e1, e2) = a and

(iib) the endomorphism fQ of VQ has a matrix over Q with respect
to the basis e1, e2 of the form(

a11 a12

a21 a22

)
,

such that the following system of equations is satisfied:

(8†)

am11 = −a12,

am22 = a21,

am12 = a11 − det f,

am21 = −a22 + det f.

In particular, a12, a21, and tr f = a11+a22 are contained in K. Under
these circumstances, the comultiplication c is given by

c1(v) = f(v) ⊗ 1 ⊕ 1 ⊗ (1V − f)(v),
c2(e) = det f · (e ⊗ 1)

+
∑

j,k=1,2

mjk · (ej ⊗ ek)

+ (1 − tr f + det f) · (1 ⊗ e).

We remark that there are further conditions imposed on the matrix
coefficients a11 and a22 of fQ due to the fact that the K-submodule
V of VQ is invariant under fQ and 1VQ

− fQ, and that the scalar
multiplications with det f and 1 − tr f + det f leave A2 invariant as
a consequence of the particular form of c2(e) above.

3. Multiplications on groups. In the next section we shall need
information on idempotent homomorphic multiplications on groups.
Here an idempotent homomorphic multiplication on a group G is a
homomorphism m : G × G → G such that m(x, x) = x for all
x ∈ G. The set of all idempotent multiplications on G will be denoted
idhom(G).
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Definition 3.1. Let G be a group. For any function f : G → G we
define mf : G×G → G by mf (g, h) = f(g)f(h)−1h. For each function
m : G × G → G we define fm : G → G by f(g) = m(g, 1).

Remark 3.2. For any f the function mf satisfies mf (g, g) = g and
fmf

= f .

In a group G we shall write [g, h] for the commutator ghg−1h−1 of
two elements.

Lemma 3.3. Let f be an endomorphism of a group G. Then the
following conditions are equivalent:

[f(g), f(h)−1h] = 1 for all g, h ∈ G.(1)
mf : G × G → G defines an idempotent(2)

homomorphic multiplication of G.

Proof. The idempotency of mf is clear by Remark 3.1. First assume
(1). A direct computation will show that mf is a homomorphism:
mf (gg′, hh′) = f(gg′)f(hh′)−1hh′ = f(g)f(g′)f(h′)−1(f(h)−1h)h′ =
f(g)f(h)h−1f(g′)f(h′)−1h′ by (1). This last term is mf (g, h)mf (g′, h′),
and thus (2) is proved. Conversely, assume (2). Then f(h)−1hf(g) =
mf (1, h)mf(g, 1) = mf (g, h) by (2). But mf (g, h) = f(g)f(h)−1h.
This implies (1).

Lemma 3.4. If m : G×G → G is an idempotent homomorphic map,
then the fm : G → G given by fm(g) = m(g, 1) is an endomorphism
satisfying m = mfm

. In particular, fm satisfies (1) above.

Proof. Trivially, fm(g)fm(h) = m(g, 1)m(h, 1) = m(gh, 1) = fm(gh).
Further,

mfm
(g, h) = fm(g)fm(h)−1h = m(g, 1)m(h, 1)−1h

= m(gh−1, 1)h = m(gh−1, 1)m(h, h) = m(g, h)

in view of the idempotency of m. This proves the lemma.
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Lemma 3.5. Condition (1) of Lemma 3.3 implies that [g, f(g)] = 1
for all g and is equivalent to the following:
(3)

fcommutes with all inner automorphisms Ig = (x �→ gxg−1)of G.

Proof. If, in condition (1) one takes h = g, one sees g =
f(g)(f(g)−1g) = (f(g)−1g)f(g) which is equivalent to [g, f(g)−1] = 1,
and this is equivalent to [g, f(g)] = 1. Now we prove the implication
(1) ⇒ (3):

(f ◦ Ig)(x) = f(gxg−1) = f(g)f(x)f(g)−1

= gg−1f(g)f(x)f(g)−1 = gf(x)g−1f(g)f(g)−1, (by (1))
= gf(x)g−1 = (Ig ◦ f)(x)

for all x ∈ G, which is (2). Now we show (3) ⇒ (1): In view of (3) we
compute

f(g)f(h)−1 = f(gh−1) = f(h)−1f(Ihg)
= f(h)−1Ihf(g) = f(h)−1hf(g)h−1

which implies (1).

Definition 3.6. Let End∗(G) denote the set of all endomorphisms
f of G satisfying the equivalent conditions (1) and (3).

According to condition (3), the set End∗(G) is the centralizer of
the group Inn(G) of all inner automorphisms of G in the semigroup
End(G) of all endomorphisms and is, in particular, a subsemigroup.
The elements of End∗(G) are sometimes called the normal operators
on G.

Proposition 3.7. For any group the function f �→ mf : End∗(G) →
idhom(G) is a bijection with inverse m �→ fm. The identity and the
zero of End∗(G) yield the two trivial multiplications.

It is clear now that we have to classify the endomorphisms satisfying
(1). For any function f : G → G on a group G we define f∗ : G → G
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by f∗(g) = f(g)−1g, that is, by f(g)f∗(g) = 1 for all g ∈ G. With this
notation, condition (1) is equivalent to

(1′) [f(g), f∗(h)] = 1 for all g, h ∈ G.

Moreover, f∗∗(g) = f∗(g)−1g = (f(g)−1g)−1g = Ig−1f(g).

Lemma 3.8. If f ∈ End∗(G), then f∗ ∈ End∗(G) and f∗∗ = f .

Proof. If f satisfies (1), then straightforward calculation shows that,
due to [g, f(g)] = 1, the function f∗ is an endomorphism. Also, (3)
implies Ig−1f(g) = f(g), whence f∗∗ = f . Now (1′) is symmetric in f
and f∗, whence f∗ ∈ End∗(G).

We notice that an element x is in the kernel of f if and only if it is
left fixed by f∗ and vice versa.

Lemma 3.9. If f ∈ End∗(G) and if we set A = im f , B = im f∗,
then

(i) [A, B] = {1} and A ∩ B ⊆Z(G),

(ii) G = AB, and

(iii) G ∼= (A × B)/D with D = {(a, a−1) | a ∈ A ∩ B} ∼= A ∩ B.

Proof. The proof of (i) is immediate from (1′), that of (ii) from
f(g)f∗(g) = 1 and from (i).

Proposition 3.10. If Z(G) = {1}, then the following statements
are equivalent:

(i) f ∈ End∗(G).

(ii) f2 = f and f(G) is normal, that is, G is the direct product of
im f and ker f .

Proof. The implication (ii) ⇒ (i) is immediate. We shall now prove
(i) ⇒ (ii). Let A and B be as in Lemma 3.9. Since Z(G) = {1} the
group G is the direct product of the subgroups A and B. If a ∈ A
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and b ∈ B, (3) implies af(b)a−1 = f(aba−1) = f(b), since a and b
commute. Thus [A, f(B)] = {1}. But Z(A) = {1}; hence f(B) = {1}.
Also, f(A) = f(AB) = f(G) = A. Since ker f = fix f∗ ⊆B, we know
that ϕ = f | A : A → A is an automorphism commuting with all inner
automorphisms. By (1′) we have ϕ∗(A)⊆Z(A)⊆Z(G) = {1}, whence
ϕ = idA. This means that f2 = f , im f = A. The proof is of the
equivalence of (i), and (ii) is complete.

Under these circumstances, the members of End∗(G) are called de-
composition endomorphisms (see [11; p. 238, 2.3.5]). From loc.cit., p.
238, Theorem 14, we know that End∗(G) is abelian. In other words,
End∗(G) is a semilattice.

We discuss an example which is relevant for the classification of the
idempotent multiplications on the Klein bottle. We let η : Z → {0, 1}
denote the nontrivial group homomorphism

η(z) =
1
2
(1 − (−1)z).

Proposition 3.11. Let G denote the semidirect product Z�δ Z with
the unique nonconstant homomorphism δ : Z → AutZ. Then

(i) for each endomorphism ϕ of G there are integers p, r, s such that

ϕ(x, y) =

{
(py, sy), if s ≡ 0 (mod 2);

(rx + η(y)p, sy), if s ≡ 1 (mod 2)

= (rη(s)x + p(η(s)η(y) + η(1 − s)y), sy).

(ii) The endomorphism ϕ is in End∗(G) if and only if ϕ agrees with
ϕs, s ∈ Z given by

ϕs(x, y) = (η(s)x, sy).

Proof. We begin by observing that the multiplication in G is given
by

(4) (x, y)(x′, y′) = (x + (−1)yx′, y + y′).
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(i). We consider an endomorphism ϕ of G. The commutator group
G′ is 2Z× {0}, and thus ϕ((1, 0)2) = ϕ(2, 0) ∈ G′. Set ϕ(1, 0) = (a, b).
Then (a + (−1)ba, 2b) = ϕ(1, 0)2 ∈ G′, and thus b = 0. Hence,
ϕ(Z×{0})⊆Z×{0}. Since ϕ induces an endomorphism on the factor
group G/(Z×{0}) we can write ϕ(x, y) = (α(x, y), sy) with an integer
s and a function α : Z2 → Z which we have yet to determine. A quick
calculation shows the functional equation

(5) α(x + (−1)yx′, y + y′) = α(x, y) + (−1)syα(x′, y′).

We first set x′ = y = 0 and deduce α(u, v) = β(u) + γ(v) with
β(u) = α(u, 0) and γ(v) = α(0, v). If in (5) we set y = y′ = 0,
we obtain β(x + x′) = β(x) + β(x′). Thus, there is an integer r
such that β(u) = ru. Finally, in (5) we set x = x′ = 0 and derive
γ(y+y′) = γ(y)+(−1)syγ(y′). That is, γ is a cocycle and y′ = 0 shows
γ(0) = 0. Now we apply (5) with x = y′ = 0, x′ = y = 1 and derive
(−1)r + γ(1) = γ(1) + (−1)sr, that is, (1 + (−1)s)r = 0. Thus, s ≡ 0
(mod 2) implies r = 0.

If s ≡ 0 (mod 2), then γ is an endomorphism, hence there is an
integer p such that γ(y) = py. In this case, ϕ(x, y) = (py, sy).

Now suppose that s ≡ 1 (mod 2). We set γ(1) = p. Then γ(1+ y) =
p − γ(y). Inductively, we obtain

(6) γ(y) =
{

0, if y ≡ 0 (mod 2),
p, if y ≡ 1 (mod 2).

But (6) is equivalent to

(7) γ(y) =
1
2
(1 − (−1)y)p = η(y)p.

Now we proceed to the proof of (ii). Let I(p,t) denote the in-
ner automorphism implemented by (p, t). We note that (p, t)−1 =
(−(−1)tp,−t) = ((−1)t+1p,−t). Hence,

I(p,t)(x, y) = (p, t)(x, y)(p, t)−1

= (p, t)(x + (−1)y+t+1p, y − t)
= (p + (−1)tx + (−1)y+1p, t + y − t)
= ((−1)tx + (1 − (−1)y)p, y).
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In order for the endomorphism ϕ to commute with all inner auto-
morphisms, it is necessary and sufficient that ϕ commute with I(0,1),
I(1,0) since (0,1) and (1,0) generate G. Now suppose that ϕ(x, y) =
(rx + (1 − (−1)y)p/2, sy) with s ≡ 1 (mod 2). Then ϕI(0,1)(x, y) =
ϕ(−x, y) = (−rx + (1 − (−1)y)p/2, y), while I(0,1)ϕ(x, y) = (−rx −
(1 − (−1)y)p/2, sy) = (−p, s). The equality of these two expressions
for all (x, y) is equivalent to p = 0. We now assume p = 0. Similarly,
ϕI(1,0)(x, y) = ϕ((x + (1 − (−1)y), y), 1) = (rx + r(1 − (−1)y), sy) and
I(0,1)ϕ(x, y) = I(0,1)(rx, sy) = (rx + (1 − (−1)sys), s). The equality of
these two expressions for all x, y is equivalent to r = 1. Thus, if s ≡ 1
(mod 2), then ϕ ∈ End∗(G) if and only if ϕ(x, y) = (x, sy).

On the other hand, if ϕ(x, y) = (py, sy) with s ≡ 0 (mod 2), then
I(0,1)ϕ(0, 1) = I(0,1)(p, s) = (−p, s) and ϕI(0,1)(0, 1) = ϕ(0, 1) = (p, s).
Hence, p = 0. One verifies quickly that ϕ(x, y) = (0, sy) yields a ϕ in
End∗(G). A recombination of the two cases yields exactly the assertion
(ii).

We derive a complete list of homomorphic idempotent multiplications
on G:

Corollary 3.12. The idempotent homomorphic multiplications m :
G × G → G on the group G = Z �δ Z are as follows:
(8)

m((u, v), (x, y)) =

{
((−1)v−yx, sv + (1 − s)y), if s ≡ 0 (mod 2);

(u, sv + (1 − s)y), if s ≡ 1 (mod 2)

= ((−1)v−yη(1 − s)x + η(s)u, sv + (1 − s)y).

Proof. By Proposition 3.7, every idempotent multiplication on G is
of the form mϕ with some ϕ ∈ End∗(G). By Definition 3.1,

(9) mϕ((u, v), (x, y)) = ϕ(u, v)ϕ(x, y)−1(x, y).

From Proposition 3.11, we know that ϕ ∈ End∗(G) implies ϕ(a, b) =
(ra, sb) with r = (1 − (−1)s)/2. Then
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mϕ((u, v), (x, y)) = (ru, sv)(rx, sy)−1(x, y)
= (ru, sv)(−(−1)syrx,−sy)(x, y)
= (ru, sv)(−(−1)syrx + (−1)−syx,−sy + y)
= (ru + (−1)sv((−1)−sy(1 − r)x), su − sy + y),

whence

(10) mϕ((u, v), (x, y)) = (ru + (1 − r)(−1)s(v−y)x, sv + (1 − s)y).

However, (10) and (8) are equivalent statements.

4. Aspherical CW-complexes. We recall that a connected space
X is called aspherical if πn(X) for all n ≥ 2. If μ : X × X → X
is an idempotent multiplication, then, upon identifying π1(X × X)
with π1(X) × π1(X), on the group G = π1(X) we obtain a group
homomorphism m = π1(μ), m : G × G → G with mdG = 1G. Such an
m is a homomorphic idempotent multiplication on the group G. If X
is an aspherical connected CW-complex, then every such m is induced
by a continuous function μ : X × X → X (see [15; Chap. V, Sec. 4,
pp. 224-225]) which, by a remark in our introduction is homotopic to
an idempotent multiplication (inducing, of course, the same m). In
short, the set id(X) of homotopy classes of idempotent multiplications
of X is mapped bijectively under the function [μ] �→ π1(μ) onto the
set idhom(G) of homomorphic idempotent multiplications of G =
π1(X). Therefore, we have classified the idempotent homomorphic
multiplications of an arbitrary group G up to homotopy in Section
3. This yields, in particular, a classification of the homotopy classes
of nontrivial idempotent multiplications on all Eilenberg MacLane
complexes K(G, 1). (See, for example, [14, p. 95].)

The simplest examples of aspherical Eilenberg MacLane complexes
K(G, 1) are the surfaces with the exception of the sphere S2 and the
projective plane P 2. In the case of aspherical surfaces we shall now
make the classification of idempotent multiplications up to homotopy
explicit. According to [4], the aspherical surfaces fall into three classes:

(1) Abelian fundamental group.

(a) the plane,
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(b) the cylinder,

(c) the Möbius band, and

(d) the 2-torus.

For this class we have End∗(π1(X)) = End(π1(X)) and every endo-
morphism of ϕ1(X) yields an idempotent homomorphic multiplication
of π1(X) by Proposition 3.7.

(2) Nonabelian fundamental group with nontrivial center.

(e) The Klein bottle.

Corollary 3.12 has classified all idempotent homomorphic multiplica-
tions on π1(X) ∼= Z �δ Z.

(3) Nonabelian fundamental group with trivial center.

(f) All other surfaces.

The remaining task is to determine idhom(π1(X)).

Lemma 4.1. If X is a surface, then G = π1(X) cannot be a product
AB of two subgroups satisfying [A, B] = {1} and A 
⊆ B such that B
is nonabelian.

Proof. Assume the contrary. Let Z denote the cyclic subgroup of A
generated by some element a /∈ B. Then [Z, B] = {1} and, thus, ZB Is
a subgroup with Z in its center. Hence, we find a covering surface Y of
X such that π1(Y ) ∼= ZB, and in view of the classification of surfaces,
Y is a Klein bottle. Then ZB ∼= π1(Y ) ∼= Z�δ Z. The center of Z�δ Z
is {0}×2Z, and the image of Z must be a subgroup of this group. Since
no nontrivial central subgroup of Z �δ Z splits, the central subgroup
Z ∩B must be nontrivial. Hence, there is a natural number n ≥ 1 such
that

(Z/(Z ∩ B)) × (B/(Z ∩ B)) ∼= ZB/(Z ∩ B) ∼= Z �δ′ Z(2n),

where δ′ is induced by δ. The center of Z �δ′ Z(2n) is {0} × Z(4n),
and thus no nontrivial central subgroup splits. This implies a ∈ Z ⊆B;
hence, a ∈ B, a contradiction.

Proposition 4.3. If, on an aspherical surface X, there is an
idempotent multiplication which is not homotopic to one of the two
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projections, then X is a cylinder, a Möbius band, a 2-torus or a Klein
bottle.

Proof. Lemma 4.1 and Proposition 3.10 rule out the surfaces whose
fundamental group has trivial center. Thus, the classification of sur-
faces proves the assertion.

5. Cohomology 2-surfaces.

Definition 5.1. Let K be an integral domain. A K-cohomology
surface is a Hausdorff space X such that the Čech-cohomology groups
Hn(X; K) over K vanish for n > 2 and H2(X, K) is either zero
or torsion free of rank 1, that is, H2(X, K) may be isomorphically
embedded into the additive group of the quotient field of K.

Remark 5.2. All compact abelian groups of topological dimension 2
are K-cohomology surfaces for all K.

Proof. If X is a compact abelian group, then its character group X̂
is naturally isomorphic to H1(X,Z) ∼= [X, S1]. Moreover, Hn(X,Z) ∼=∧n X̂ (see, e.g., [5]). The space X is topologically two-dimensional if
and only if rank X̂ = 2. Thus, every compact two-dimensional group
is a Z-cohomology surface. Since the Z-cohomology groups are torsion
free in dimensions n > 0, the universal coefficient theorem shows that
they are K-cohomology surfaces for each domain K.

We note that, in particular, every torsion free abelian group F of
rank 2 is the first integral cohomology group of a cohomology surface,
namely F̂ .

An idempotent multiplication m : X × X → X on a cohomology
surface induces an idempotent comultiplication on the cohomology ring
A = H∗(X, K) since H2(X, K) is torsion free.

Then Theorems 2.6 and 2.7, Corollary 2.8, and Theorem 2.9 classify
the cohomology classes H∗(m; K) of the possible comultiplications. In
particular, we have the following consequence.
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Proposition 5.3. Consider a K-cohomology manifold X for which
the cup product does not induce the zero map H1(X, K)⊗H1(X, K) →
H2(X, K). If there is an idempotent multiplication m on X which is
not cohomologous to one of the two projections, then H1(X, K) has
rank 2.

We wish to observe in the following remarks that the algebraic
situations described in these results actually do arise from idempotent
comultiplications of compact cohomology surfaces.

Remark 5.4. Let F be any torsion-free abelian group of rank 2.
Then A =

∧
F is an algebra satisfying the hypotheses of Theorem

2.9. Every endomorphism f : F → F gives an endomorphism f̂ of
the compact abelian group X = F̂ . If m : X × X → X is given by
m(x, y) = f̂(x) + (1 − f̂)(y), then m induces a comultiplication on A
with the properties described in Theorem 2.9. Thus, in Theorem 2.6
the case (i) is topologically realized.

We shall note that the cases listed under (ii) in Theorem 2.6 are
topologically realized.

We shall make repeated reference to the universal coefficient theorem
which provides two exact sequences (split in a nonnatural fashion):

(U1)
0 → Hn(X;Z) ⊗ K → Hn(X; K) → Tor(Hn+1(X,Z), K) → 0,

n = 0, 1, . . . ,

and
(U2)

0 → Ext(Hn−1(X), K) → Hn(X; K) → Hom(Hn(X;Z); K) → 0,

n = 1, 2, . . . .

In particular, for a path-connected space X, the singular integral ho-
mology group H0(X) is cyclic and, therefore, the group Ext(H0(X), K)
vanishes. The exact sequence

0 → π1(X)′ → π1(X) h→ H1(X) → 0

yields a natural isomorphism

αX : H1(X, K) → Hom(H1(X); K) �

Hom(h,K)
Hom(π1(X), K).



IDEMPOTENT MULTIPLICATIONS 1311

Hence, a continuous function f : X → Y between pathwise connected
spaces induces a diagram of homomorphisms in which the vertical maps
are natural isomorphisms.

(1)

H1(Y, K)

�

αY

�

H1(f,K)
H1(X, K)

�

αX

Hom(π1(Y ), K) �

Hom(π1(f),K)
Hom(π1(X), K).

Let us first consider the Klein bottle K. Then the first singular inte-
gral homology group, as the abelianization of the fundamental group,
is Z(2) × Z. The second one is zero since K is nonorientable. The
universal coefficient theorem (U2) shows that the integral cohomol-
ogy groups are H1(K;Z) = Z and H2(K;Z) = Z(2), respectively
H1(K, GF (2)) = Z(2)2 and H2(K, GF (2)) = Z(2). Since a rank
1 abelian group does not support a nonzero skew-symmetric bilinear
form, the cup product is trivial on A = H∗(K;Z). For different rea-
sons, the cup product on A = H∗(K, GF (2)) is trivial, too. (Indeed,
if H1(K; GF (2)) ⊗ H1(K, GF (2)) → H2(K; GF (2)) is nonzero, then
we consider the double covering T2 → K of the Klein bottle by the
2-torus and conclude that the map H1(K; GF (2))⊗ H1(K, GF (2)) →
H1(T2; GF (2)) ⊗ H1(T2; GF (2)) ∪→ H2(T2; GF (2)) is nonzero. We
can write H1(T2; GF (2)) = GF (2)2 and identify the cup product with

u ⊗ v → u ∧ v : H1(T2; GF (2)) ⊗ H1(T2, GF (2))

→
2∧

GF (2)2 ∼= H2(T2; GF (2)).

Now the homomorphism η : H1(K; GF (2)) → H1(T2; GF (2)) is
equivalent to the homomorphism

Hom(π1(K),Z(2)) → Hom(π1(T2),Z(2))

induced by Z2 ∼= π1(T2) → π1(K) ∼= Z�δZ given by (m, n) �→ (m, 2n).
It follows that im η has GF (2)-dimension 1. But then η(x) ∧ η(y) = 0
for all x, y ∈ H1(K; GF (2)). This is a contradiction which proves the
claim.) Thus, in both cases, the algebra A belongs to type (ii) in
Theorem 2.6.
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The idempotent multiplications m : K × K → K were completely
characterized by the homomorphic multiplications μ : π1(K)×π1(K) →
π1(K) which we characterized in Corollary 3.12:
(2)

μ((u, v), (x, y)) =
{

((−1)v−yx, sv + (1 − s)y), if s ≡ 0 (mod 2),
(u, sv + (1 − s)y), if s ≡ 1 (mod 2),

for all homotopy classes u, v, x, y ∈ π1(K). The comultiplication
induced by H1(m; K) on the level of the first cohomology groups

H1(K; K)→(H1(K; K)⊗K)⊕(K⊗H1(K; K)) ∼= H1(K; K)⊕H1(K; K),

in view of (1), is equivalent to

(3)
M : Hom(π1(K), K)

Hom(μ,K)−→ Hom(π1(K) × π1(K), K)
∼=−→ Hom(π1(K), K) ⊕ Hom(π1(K), K).

Thus, if Φ ∈ Hom(π(K), K), we have M(Φ) = M1(Φ) + M2(Φ) with
Mk(Φ) = Φ ◦ μ ◦ prk, k = 1, 2, with the two projections prk onto the
factors of π1(K)2. Thus, if μ is given by μ(g, h) = ϕ(g)ϕ(h)−1h with a
ϕ = ϕs as in Proposition 3.11, then

Φ(μ(g, h)) = (Φ ◦ ϕ)(g) + (1 − (Φ ◦ ϕ))(h),

whence M1(Φ) = Φ ◦ ϕ and M2(Φ) = 1 − (Φ ◦ ϕ).

From the fact that Hom(H2(K), K) = Hom({0}, K) = {0}, the
universal coefficient theorem gives us a natural isomorphism

Ext(H1(K), K) → H2(K, K).

We recall H1(K) ∼= Z(2) ⊕ Z. When the characteristic of K is dif-
ferent from 2 we have Ext(Z, K) = {0}. If the characteristic is 2,
then H2(K, K) is nonzero. In particular, this group contains exactly
one nonzero element e if K = GF (2). In this case the endomor-
phism ϕs of π1(K) induces on Ext(H1(K), K), hence on H2(K, K), the
zero-morphism if s ≡ 0 (mod 2) and the identity morphism if s ≡ 1
(mod 2). This means that the induced homomorphism is just scalar
multiplication with s on Z(2). The resulting comultiplication in di-
mension 2 is given by c(e) = s · (e ⊗ 1) + (1 − s) · (1 ⊗ e).
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If K = Z, then the rank of A1 = H1(K,Z) ∼= Z is 1. Then the Klein
bottle K and its idempotent multiplications topologically realize the
case (iib) of Theorem 2.6. (In this case the scalar r of the formula for
c(e) in (iib) equals the present scalar s, and thus r and f = (Φ �→ Φ◦ϕs)
are not independent.)

If K = GF (2), then H2(K, K) = {0}, and the endomorphisms ϕs of
π1(K) induce on H1(K, GF (2)) = Z(2)2 the zero morphism if s ≡ 0
(mod 2) and the identity morphism if s ≡ 1 (mod 2). This gives us a
topological realization of case (iia) in Theorem 2.6 with t = 0.

For the projective plane P 2, the algebra A = H∗(P 2;Z) satisfies
A1 = {0} and A2 = Z(2). Multiplication on Z(2) with any integral
scalar is either zero or the identity. The comultiplication on the level
of dimension 2 in case (iic) is then automatically trivial; it is then
realized by the trivial multiplications on P 2.

We summarize:

Remark 5.5. In the listing of comultiplications on graded algebras in
Theorem 2.6, case (ii) is topologically realized as follows:

(iia) A∗ = H∗(K, GF (2)) with the idempotent multiplications of the
Klein bottle. In this realization, the tensor t always vanishes.

(iib) A∗ = H∗(K,Z) with the idempotent comultiplications of
the Klein bottle. In this realization, the scalar r depends on the
endomorphism f .

(iic) A∗ = H∗(P2, GF (2)) with the trivial multiplications on P 2.

We do not know whether all topological realizations of the case (iia)
in Theorem 2.6 must have t = 0.

We remark that there are simple examples of topological realizations
of cases (iib) and (iic) which are not cohomology 2-surfaces but do
have the desired properties up to degree 2. If T denotes the circle
group and B(T) the classifying space of the circle group according
to Milgram [8] (see also [13] and [7]), then B(T) is a topological
abelian group whose cohomology ring H∗(B(T),Z) is the polynomial
ring Z[e] in one generator with deg(e) = 2. Also, the cohomology ring
H∗(T,Z) of T is the exterior algebra ΛZ[x] with deg(x) = 1. If we set
X = T × B(T), then H∗(X,Z) = ΛZ[x] ⊗ Z[e]. The endomorphism
ϕ : X → X given by ϕ(a, b) = (na, rb) with n, r ∈ Z, n 
= 0, 1, gives a
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continuous idempotent multiplication mϕ on X by Definition 3.1. The
comultiplication c induced on A∗ = H∗(X,Z) is of the type described
in (iib) in Theorem 2.6 with f(v) = nv.

If we set X = B(T), then A∗ = H∗(X,Z) = Z[e]. We define a
continuous idempotent multiplication mϕ on X with ϕ(b) = rb with
r ∈ Z, and obtain a topological realization of case (iic) in Theorem 2.6.
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